New Home Forums Math Olympiad - IOQM Combinatorics counting in two ways... find bijection

Viewing 2 posts - 1 through 2 (of 2 total)
  • Author
    Posts
  • #24707
    Aritra
    Moderator

    #24710
    swastik pramanik
    Participant

    Notice that \(|A\times B|=mn\). Also, \(|C_i|=n\) for all \(i=1,2,3,\cdots ,m\). hence \(\sum_{i=1}^m |C_i|=\sum_{i=1}^m n=mn\). Similarly, we can prove that \(\sum_{j=1}^n |D_j|=mn\).

    And hence, we get our desired result.

Viewing 2 posts - 1 through 2 (of 2 total)
  • You must be logged in to reply to this topic.
linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram