New Home Forums Math Olympiad - IOQM Geometry Internal Intersection Of Two Circles

Viewing 2 posts - 1 through 2 (of 2 total)
  • Author
    Posts
  • #28574
    Soumyadeep mandal
    Participant

    S_1 and S_2 are two circles touching internally at O, with S_1being the inner circle. A straight line cuts S_1 at A, D and S_2 at B, C. prove that :

    AB:CD = (OA.OB):(OC.OD)

    I need a rigorous proof for this please... thank you.

    #28577
    Nitin Prasad
    Participant

    The following figure illustrates the given situation, and we need to show that  $$\frac{AB}{CD}=\frac{OA.OB}{OC.OD}$$

    Observe that $$\frac{AB}{CD}=\frac{ar(OAB)}{ar(OCD)}=\frac{\frac{1}{2}OA\cdot OB\sin(\angle AOB)}{\frac{1}{2}OC\cdot OD\sin(\angle COD)}$$

    Hence if $$\angle AOB=\angle COD$$ then we are done.
    Now observe that $$\angle EOC+\angle COD=\angle EOD=\angle OAD=\angle OBA+\angle AOB=\angle EOC+\angle AOB$$
    Hence we have $$\angle AOB=\angle COD$$

    Here you should consider directed angles to avoid configuration issues

Viewing 2 posts - 1 through 2 (of 2 total)
  • You must be logged in to reply to this topic.
linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram