Try this beautiful problem from the American Invitational Mathematics Examination, AIME, 2009 based on Equations with a number of variables.
For t=1,2,3,4, define \(S^{t}=a^{t}_1+a^{t}_2+...+a^{t}_{350}\), where \(a_{i}\in\){1,2,3,4}. If \(S_{1}=513, S_{4}=4745\), find the minimum possible value for \(S_{2}\).
Series
Theory of Equations
Number Theory
Answer: is 905.
AIME, 2009, Question 14
Polynomials by Barbeau
j=1,2,3,4, let \(m_{j}\) number of \(a_{i}\) s = j then \(m_{1}+m{2}+m{3}+m{4}=350\), \(S_{1}=m_{1}+2m_{2}+3m_{3}+4m_{4}=513\) \(S_{4}=m_{1}+2^{4}m_{2}+3^{4}m_{3}+4^{4}m_{4}=4745\)
Subtracting first from second, then first from third yields \(m_{2}+2m_{3}+3m_{4}=163,\) and \(15m_{2}+80m_{3}+255m_{4}=4395\) Now subtracting 15 times first from second gives \(50m_{3}+210m_{4}=1950\) or \(5m_{3}+21m_{4}=195\) Then \(m_{4}\) multiple of 5, \(m_{4}\) either 0 or 5
If \(m_{4}=0\) then \(m_{j}\) s (226,85,39,0) and if \(m_{4}\)=5 then \(m_{j}\) s (215,112,18,5) Then \(S_{2}=1^{2}(226)+2^{2}(85)+3^{2}(39)+4^{2}(0)=917\) and \(S_{2}=1^{2}(215)+2^{2}(112)+3^{2}(18)+4^{2}(5)=905\) Then min 905.