Case 1 : Let $n=1$
$\frac {\phi (n)}{n}=1$
Case 2 : Let $n \ne 1$
then $n= p_1^{a_1}p_2^{a_2}\ldots p_k^{a_k}$ where $p_i'$s are distinct primes and $a_i\in \mathbb N,\quad i=1,2,\ldots k$
then $\frac{\phi(n)}{n}=\frac{(p_1-1)(p_2-1)\ldots(p_k-1)}{p_1 p_2\ldots p_k} < 1$
hence cannot be an integer.
ANS : Only $n=1$