$\left(\frac{1+\sqrt{3} i}{2}\right)$
$=\left[\frac 12+\frac{\sqrt 3}{2}\iota\right]$
$=[\cos \frac{\pi}{3}+\iota\sin \frac{\pi}{3}]$
$=[e^{\frac{\iota\pi}{3}}]$
Therefore $\left(\frac{1+\sqrt{3} i}{2}\right)^{n}=[e^{\frac{\iota\pi}{3}}]^n$
$=[e^{\frac{n\iota \pi}{3}}]$
Elements of $A$ are
Now for $n=1$
$a_1=e^{\frac{\iota \pi}{3}}$
for $n=2$
$a_2=e^{\frac{2\iota \pi}{3}}$
for $n=3$
$a_3=e^{\frac{3\iota \pi}{3}}=e^{\iota\pi}=-1$
for $n=4$
$a_4=e^{\frac{4\iota \pi}{3}}=e^{\iota\pi}\cdot e^{\frac{\iota \pi}{3}}= -e^{\frac{\iota \pi}{3}}$
for $n=5$
$a_5=-e^{\frac{2\iota \pi}{3}}$
for $n=6$
$a_6=e^{\frac{6\iota \pi}{3}}=(-1)^2=1$
Now for $n=7,8,\ldots$ the elements will repeat.
Therefore only $6$ distinct element in $A$.