New Home Forums Math Olympiad - IOQM Geometry Orthocentre

Viewing 2 posts - 1 through 2 (of 2 total)
  • Author
    Posts
  • #66918
    Crazy Gamer
    Participant

    H is the orthocentre of triangle ABC. Prove that

    BC/AH+CA/BH+AB/CH≥3√3

    #67646
    Shirsendu Roy
    Spectator

    plz upload actual question, because this question needs modification

    considering the question to be find the value of the given expression,

    BC/AH+CA/BH+AB/CH

    here BC/AH=(AD/AH)(DC/AD)(BC/DC)

    =(sinB)(sinA/cosA)(1/sinB)

    =tanA

    same way CA/BH=tanB

    AB/CH=tanC

    or, tanA+tanB+tanC=tanAtanBtanC

    [where 0=tan(A+B+C)=(tanA+tanB+tanC-tanAtanBtanC)/(1-tanAtanB-tanAtanC-tanBtanC)]

    =(BC/AH)(CA/BH)(AB/CH)

     

     

Viewing 2 posts - 1 through 2 (of 2 total)
  • You must be logged in to reply to this topic.
linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram