New Home Forums Math Olympiad - IOQM Question Help

Viewing 3 posts - 1 through 3 (of 3 total)
  • Author
    Posts
  • #69473
    Arjun
    Participant

    Let a,b,c be positive real numbers such that abc=1. Prove that

    a(a−1)+b(b−1)+c(c−1)≥0

    #69536

    WE WILL GET BACK TO YOU SOON

    #69552
    Kamal Kamra
    Participant

    Now we know that $a,b,c$ are positive real numbers and $abc=1$.
    $$\frac{a^2+b^2+c^2}{3} \geq {(a^2b^2c^2)}^\frac{1}{3} \space \space \space \space \space (By\space AM\geq GM)) $$
    $$\frac{a+b+c}{3} \geq {(abc)}^\frac{1}{3} \space \space \space \space \space (By\space AM\geq GM))$$
    Now subtracting both inequalities give:
    $$a(a-1)+b(b-1)+c(c-1)\geq {(a^2b^2c^2)}^\frac{1}{3}-{(abc)}^\frac{1}{3}$$
    Now because $abc=1$ and $a,b,c$ are positive real numbers:
    $$a(a-1)+b(b-1)+c(c-1)\geq 0$$
    QED

Viewing 3 posts - 1 through 3 (of 3 total)
  • You must be logged in to reply to this topic.
linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram