Polynomial with positive integers | RMO 2015 Mumbai Region)

Join Trial or Access Free Resources
This is a problem from Regional Mathematics Olympiad, RMO 2015 Mumbai Region based on Polynomial with positive integers. Try to solve it.
Site title
Title
Primary category
Separator

Problem: Let P(x) be a polynomial whose coefficients are positive integers. If P(n) divides P(P(n) -2015) for every natural number n, prove that P(-2015) = 0.

Discussion: 

Let $ \displaystyle { P(x) = a_k x^k + a_{k-1} x^{k-1} + a_{k-2} x^{k-2} + ... + a_1 x + a_0 } $ and $ s=2 $

Then $ \displaystyle { P(P(n) - 2015) = a_k (P(n) - 2015)^k + a_{k-1} (P(n) - 2015)^{k-1} + ... + a_1 (P(n) - 2015)) + a_0 } $ and $ s=2 $

Now note $ \displaystyle { P(n) - 2015 \equiv (-2015) \mod P(n) } $ and $ s=2 $

$ \displaystyle { \Rightarrow {P(n) - 2015}^t \equiv {-2015}^t \mod P(n) } $ and $ s=2 $

$ \displaystyle { P(P(n) - 2015) } $ and $ s=2 $
$ \displaystyle { \equiv a_k (P(n) - 2015)^k + a_{k-1} (P(n) - 2015)^{k-1} + ... + a_1 (P(n) - 2015)) + a_0 } $ and $ s=2 $
$ \displaystyle { \equiv a_k (- 2015)^k + a_{k-1} (- 2015)^{k-1} + ... + a_1 (- 2015) + a_0 } $ and $ s=2 $
$ \displaystyle { \equiv P(-2015)\mod P(n) } $ and $ s=2 $

But it is given that $ \displaystyle { P(P(n)-2015) \equiv 0 \mod P(n) } $ and $ s=2 $ for all n.
Hence $ \displaystyle { P(-2015) \equiv 0 \mod P(n) } $ and $ s=2 $ for all n.

Note that P(-2015) is a fixed number, hence with finitely many divisors.

As $ a_k $ is positive, by increasing n arbitrarily, we can increase the value of P(n) infinitely.

But infinitely many numbers cannot divide a finite number (P(-2015)) unless it is equal to 0.

There fore P(-2015) = 0.

Chatuspathi:

More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram