New Home Forums Math Olympiad - IOQM Number Theory number theory

Viewing 2 posts - 1 through 2 (of 2 total)
  • Author
    Posts
  • #73907
    Anwesha Das
    Participant

    find all positive integers n such that 3^n-1+5^n-1 divides 3^n+5^n

    #74715
    Shirsendu Roy
    Spectator

    Let 3^{n-1}+5^{n-1}|3^n+5^n then there exists some positive integer k such that 3^n+5^n=k(3^{n-1}+5^{n-1})

    if k >=5

    k(3^{n-1}+5^{n-1})>=5(3^{n-1}+5^{n-1})=5.3^{n-1}+5.5^{n-1}>3^n+5^n

    then k<=4

    3^n+5^n=3.3^{n-1}+5.5^{n-1}>3(3^{n-1}+5^{n-1})

    then k>=4 that is k=4

    3^n+5^n=4(3^{n-1}+5^{n-1}) which gives

    5^{n-1}=3^{n-1} which becomes impossible if n>1

    then n=1 as we see 2|8.

Viewing 2 posts - 1 through 2 (of 2 total)
  • You must be logged in to reply to this topic.
linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram