Let 3^{n-1}+5^{n-1}|3^n+5^n then there exists some positive integer k such that 3^n+5^n=k(3^{n-1}+5^{n-1})
if k >=5
k(3^{n-1}+5^{n-1})>=5(3^{n-1}+5^{n-1})=5.3^{n-1}+5.5^{n-1}>3^n+5^n
then k<=4
3^n+5^n=3.3^{n-1}+5.5^{n-1}>3(3^{n-1}+5^{n-1})
then k>=4 that is k=4
3^n+5^n=4(3^{n-1}+5^{n-1}) which gives
5^{n-1}=3^{n-1} which becomes impossible if n>1
then n=1 as we see 2|8.