AMC 10A 2020 Problem 6 | Divisibility Problem

Join Trial or Access Free Resources

Try this beautiful Problem based on Divisibility Problem from AMC 2020 Problem 6.

Divisibility Problem: AMC 10A 2020 Problem 6


How many 4-digit positive integers (that is, integers between 1000 and 9999 , inclusive) having only even digits are divisible by 5 ?

  • 80
  • 100
  • 125
  • 200
  • 500

Key Concepts


Divisibility

Counting Principle

Suggested Book | Source | Answer


AMC 10A 2020 Problem 6

100

Try with Hints


What is the divisibility rule for a number divisible by 5?

Now apply this for unit, tens, hundred and thousand digits.

Here the unit digit must be 0. So I just have one choice for units place.

The middle two digits can be 0, 2, 4, 6, or 8.

But the thousands digit can only be 2, 4, 6, or 8 since it cannot be zero.

Now try to count how many choices are there for each position.

Then there was 1 choice for unit digit.

5 choices for middle two digits.

4 choices for thousands digit.

Now calculate the total number of choices you can make.

AMC-AIME Program at Cheenta

Subscribe to Cheenta at Youtube


More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram