AMC 10A Year 2006 Problems 21 Sequential Hints

Join Trial or Access Free Resources
[et_pb_section fb_built="1" _builder_version="4.0"][et_pb_row _builder_version="3.25"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"]

Understand the problem

[/et_pb_text][et_pb_text _builder_version="3.27.4" text_font="Raleway||||||||" background_color="#f4f4f4" custom_margin="10px||10px" custom_padding="10px|20px|10px|20px" box_shadow_style="preset2"]How many 4 digit positive numbers have at least that is a 2 or a 3?

(a)2439.     (b)4096.     (c)4903.     (d)4904.     (e)5416

[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row _builder_version="4.0"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_accordion open_toggle_text_color="#0c71c3" _builder_version="4.0" toggle_font="||||||||" body_font="Raleway||||||||" text_orientation="center" custom_margin="10px||10px"][et_pb_accordion_item title="Source of the problem" open="on" _builder_version="4.0"]American Mathematical Contest 2006 10 A Problem 21

[/et_pb_accordion_item][et_pb_accordion_item title="Topic" _builder_version="4.0" open="off"]Combinatorics 

[/et_pb_accordion_item][et_pb_accordion_item title="Difficulty Level" _builder_version="4.0" open="off"]4/10

[/et_pb_accordion_item][et_pb_accordion_item title="Suggested Book" _builder_version="4.0" open="off"]

Challenges and Thrills in Pre College MathematicsExcursion Of Mathematics 

[/et_pb_accordion_item][/et_pb_accordion][et_pb_tabs active_tab_background_color="#0c71c3" inactive_tab_background_color="#000000" _builder_version="4.0" tab_text_color="#ffffff" tab_font="||||||||" background_color="#ffffff" min_height="148px" custom_padding="||24px|||"][et_pb_tab title="Hint 0" _builder_version="4.0"]Do you really need a hint? Try it first!

[/et_pb_tab][et_pb_tab title="Hint 1" _builder_version="4.0"]

Step 1.After having a look into this problem you can see our main aim here is to find out the total number of 4 digit positive numbers with at least one 2 or one 3 in it. Now we can do this by subtracting the number of 4 digit positive number which do not have any 2's or 3's from the total number of 4 digit positive numbers. Its easy, give it a try.

[/et_pb_tab][et_pb_tab title="Hint 2" _builder_version="4.0"]

Step 2.Now lets' proceed forward and try to find out the total number of 4 digit positive integers . We can use all digit from 0 to 9 as we do not have any restriction . Now to make a table with this

So that you can fill the boxes with number of options in order. As the first box from the right is of unit place ,the next box is of the tenth place, the next box is of the hundredth place and the last box in the extreme left is of the thousandth place. Now you can fill these boxes with the possibilities. (Like here the thousandth place can take 9 options as we can not put 0 there then it will be a 3 digit number). As simple as that, give it a try!!!.

[/et_pb_tab][et_pb_tab title="Hint 3" _builder_version="4.0"]

Step 3. Now for the 2nd part. So try to find out the total number of 4 digit positive integers which don't have any 2's and 3's in it  . So now in this case we have 8 digits(2 and 3 are excluded). Now to make a table with this 

.So that you can fill the boxes with number of options in order. As the first box from the right is of unit place ,the next box is of the tenth place, the next box is of the hundredth place and the last box in the left is of the thousandth place. Now you can fill these boxes with the possibilities in this case. (Like here the thousandth place can take 7 options as we can not put 0 there then it will be a 3 digit number)

[/et_pb_tab][et_pb_tab title="Hint 4" _builder_version="4.0"]

Step 4.Now when you have found the number of positive 4 digit numbers in both the cases now 

(total number of 4 digit positive integers)-( total number of 4 digit positive integers which don't have any 2's and 3's in it )=(total number of 4 digit positive numbers with at least one 2 or one 3 in it). Very close to the solution just about to crack it !!!.

[/et_pb_tab][et_pb_tab title="Hint 5" _builder_version="4.0"]

Total number of 4 digit positive integers(Table 1) = 9000Total number of 4 digit positive integers which don't have any 2's and 3's in it(Table 2) = 3584Total number of 4 digit positive numbers with at least one 2 or one 3 in it = 5416 that's your required answer.

 

[/et_pb_tab][/et_pb_tabs][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"]

Start with hints

[/et_pb_text][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="48px||48px" custom_padding="20px|20px|0px|20px||" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"]

Watch video

[/et_pb_text][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" min_height="12px" custom_margin="50px||50px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"]

Connected Program at Cheenta

[/et_pb_text][et_pb_blurb title="Amc Training Camp" url="https://www.cheenta.in/matholympiad/" url_new_window="on" image="https://www.cheenta.in/wp-content/uploads/2018/03/matholympiad.png" _builder_version="3.23.3" header_font="||||||||" header_text_color="#e02b20" header_font_size="48px" link_option_url="https://www.cheenta.in/matholympiad/" link_option_url_new_window="on"]

Cheenta AMC Training Camp consists of live group and one on one classes, 24/7 doubt clearing and continuous problem solving streams.

Start for free. 

[/et_pb_blurb][et_pb_button button_url="https://www.cheenta.in/matholympiad/" url_new_window="on" button_text="Learn More" button_alignment="center" _builder_version="3.23.3" custom_button="on" button_bg_color="#0c71c3" button_border_color="#0c71c3" button_border_radius="0px" button_font="Raleway||||||||" button_icon="%%3%%" background_layout="dark" button_text_shadow_style="preset1" box_shadow_style="preset1" box_shadow_color="#0c71c3"][/et_pb_button][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="50px||50px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"]

Similar Problems

[/et_pb_text][et_pb_divider _builder_version="3.22.4" background_color="#0c71c3"][/et_pb_divider][/et_pb_column][/et_pb_row][et_pb_row _builder_version="4.0"][et_pb_column type="4_4" _builder_version="4.0"][et_pb_post_nav in_same_term="on" _builder_version="4.0"][/et_pb_post_nav][/et_pb_column][/et_pb_row][/et_pb_section]
More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram