Try this beautiful Problem from Geometry based on Circle from PRMO 2017.
Let $\Omega_{1}$ be a circle with centre 0 and let $A B$ be a diameter of $\Omega_{1} .$ Le $P$ be a point on the segment $O B$ different from 0. Suppose another circle $\Omega_{2}$ with centre P lies in the interior of $\Omega_{1}$. Tangents are drawn from A and B to the circle $\Omega_{2}$ intersecting $\Omega_{1}$ again at $A_{1}$ and $B_{1}$ respectively such that $A_{1}$, and $B_{1}$ are on the opposite sides of $A B$. Given that $A_{1} B=5, A B_{1}=15$ and $O P=10,$ find the radius of $\Omega_{1}$
Geometry
Circle
Answer:$20$
PRMO-2017, Problem 27
Pre College Mathematics
Let radius of $\Omega_{1}$ be $R$ and that of $\Omega_{2}$ be $r$
From figure, $\Delta \mathrm{ADP} \sim \Delta \mathrm{AA}_{1} \mathrm{B}$
[
\begin{array}{l}
\Rightarrow \frac{D P}{A, B}=\frac{A P}{A B} \
\Rightarrow \frac{r}{5}=\frac{R+10}{2 R}
\end{array}
]
Can you now finish the problem ..........
Again, $\Delta B P E \sim \Delta B A B_{1}$
Therefore $\frac{P E}{A B_{1}}=\frac{B P}{B A}$
$\Rightarrow \frac{r}{15}=\frac{R-10}{2 R}$
Can you finish the problem........
Dividing (1) by (2)
$3=\frac{R+10}{R-10} \Rightarrow R=20$