Cube of Positive Integer | Number Theory | AIME I, 2015 Question 3

Join Trial or Access Free Resources

Try this beautiful problem from the American Invitational Mathematics Examination, AIME, 2015 based on Cube of Positive Integer.

Cube of Positive Numbers - AIME I, 2015


There is a prime number p such that 12p+1 is the cube of positive integer.Find p..

  • is 107
  • is 183
  • is 840
  • cannot be determined from the given information

Key Concepts


Algebra

Theory of Equations

Number Theory

Check the Answer


Answer: is 183.

AIME, 2015, Question 3

Elementary Number Theory by David Burton

Try with Hints


\(a^{3}=12p+1\) implies that \(a^{3}-1=12p\) that is (a-1)(\(a^{2}\)+a+1)=12p

a is odd, a-1 even, \(a^{2} +a+1 odd implies a-1 multiple of 12 that is here =12 then a=12+1 =13

\(a^{2}+a+1=p implies p= 169+13+1=183.

Subscribe to Cheenta at Youtube


More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram