Digits and Integers | AIME I, 1990 | Question 13

Join Trial or Access Free Resources

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1990 based on Digits and Integers.

Digits and Integers - AIME I, 1990


Let T={\(9^{k}\): k is an integer, \(0 \leq k \leq 4000\)} given that \(9^{4000}\) has 3817 digits and that its first (leftmost) digit is 9, how many elements of T have 9 as their leftmost digit?

  • is 107
  • is 184
  • is 840
  • cannot be determined from the given information

Key Concepts


Integers

Digits

Sets

Check the Answer


Answer: is 184.

AIME I, 1990, Question 13

Elementary Number Theory by David Burton

Try with Hints


here \(9^{4000}\) has 3816 digits more than 9,

or, 4000-3816=184

or, 184 numbers have 9 as their leftmost digits.

Subscribe to Cheenta at Youtube


More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram