Divisibility Problem | PRMO 2019 | Question 8

Join Trial or Access Free Resources

Try this beautiful problem from the PRMO, 2010 based on Divisibility.

Divisibility Problem - PRMO 2019


Find the number of positive integers such that \(3 \leq n \leq 98\) and \(x^{2^{n}}+x+1\) is divisible by $ x^{2}+x+1.$

  • is 107
  • is 48
  • is 840
  • cannot be determined from the given information

Key Concepts


Inequalities

Algebra

Number Theory

Check the Answer


Answer: is 48.

PRMO, 2019, Question 8

Elementary Number Theory by David Burton

Try with Hints


for n={3,5,...97}

where n is odd since factor of \(x^{2}+x+1\) is also factor of given expression

Then n=48.

Subscribe to Cheenta at Youtube


More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram