New Home Forums Math Olympiad - RMO and INMO À doubt from the quiz.

Viewing 5 posts - 1 through 5 (of 5 total)
  • Author
    Posts
  • #29004

    A set of five different positive integers has a mean (average) of 20 and a median of 18. What is the greatest possible integer in the set?

    Select one:
    a. 35
    b. 25
    c. 20
    d. 60
    e. 63

    How to solve this question ?

    What is a median ?

     

    #29005
    Srijit Mukherjee
    Participant

    The total sum of 5 integers is 100 (20 x 5 =100). Also, the middle number  (the median) is 18.

    Say the numbers are a < b< 18 < c < L, where L is the largest number. Observe that a + b + 18 + c + L = 100.

    So, a + b +c + L = 82. Also, the maximum value of L will be when a,b, c are smallest.

    So, L will be maximum if a = 1, b =2,  and c = 19. i.e. the maximum value of L can be 60.

    #29015
    Aritra
    Moderator

    i think i have already told you tomorrow in class

    #76605
    Madhav Garg
    Participant

    <p>The positive integers x,yx,y and zz satisfy x×y=14,y×z=10x×y=14,y×z=10 and z×x=35z×x=35</p><p><br />What is the value of x+y+z?</p>

    #76671

    <p>@ Madhav</p><p>we know, xy=14 => y=14/x  ; zy=1o => z . 14/x =10 =>z/x = 10/14 =5/7</p><p>=> z=5 ; x=7</p><p>substituting the value of x in xy=14,</p><p>we get y=2</p><p>=> x+y+z= 5+2+7 = 14</p>

Viewing 5 posts - 1 through 5 (of 5 total)
  • You must be logged in to reply to this topic.
linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram