New Home Forums Math Olympiad - IOQM A problem on Algebra!!

Tagged: 

Viewing 2 posts - 1 through 2 (of 2 total)
  • Author
    Posts
  • #21464
    swastik pramanik
    Participant

    Let \(a\), \(b\) and \(c\) be such that \(a+b+c=0\) and

    \(\begin{align}P=\dfrac{a^{2}}{2a^{2}+bc}+\dfrac{b^{2}}{2b^{2}+ca}+\dfrac{c^{2}}{2c^{2}+ab}\end{align}\)

    is defined. What is the value of \(P\)?

    #21471
    abhishek sinha
    Participant

    Note \(2a^2+bc= a^2-a(b+c)+bc= -(a-b)(c-a)\). Similarly, \(2b^2+ca=-(a-b)(b-c)\) and \(2c^2+ab=-(b-c)(c-a)\). Hence,

    \[ P= - \frac{a^2(b-c)+b^2(c-a)+c^2(a-b)}{(a-b)(b-c)(c-a)}=1.\]

Viewing 2 posts - 1 through 2 (of 2 total)
  • You must be logged in to reply to this topic.
linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram