Tagged: 

Viewing 2 posts - 1 through 2 (of 2 total)
  • Author
    Posts
  • #68159
    Shreya Nair
    Participant

    #68370
    Saumik Karfa
    Participant

    Let $a,b,c$ are the roots of the polynomial $x^3+Ax^2+Bx+C$.

    then by vieta's formula

    $a+b+c=-A \text{>} 0 \Rightarrow A \text{<} 0$

    $ab+bc+ca=B \text{>} 0$

    $abc= -C \text{>} 0 \Rightarrow C \text{<} 0$

    Let $a$ is negative

    $a^3+Aa^2+Ba+C$ is negative, contradiction.

    then $a$ must be positive, similarly $b,c$ are positive.

Viewing 2 posts - 1 through 2 (of 2 total)
  • You must be logged in to reply to this topic.
linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram