$1$ and $-1$ are the zeros of $f(x)$
Clearly $f(x) \to -\infty$ when $x\to \infty$
Now $f^{\prime}(x)=1-2x-3x^2$ and $f^{\prime\prime}(x)= -2-6x$
Therefore, $f^{\prime}(x)=0 \Rightarrow x= -1, -\frac 13 $
$f^{\prime\prime}(\frac 13)= -2-6(\frac 13)=-4<0$ [maxima]
Hence for $x>0$, $f(x)$ attains maximum value at $\frac 13$
Max Value is : $f(\frac 13)=\frac{32}{27}\approx 1.185$