

Let D, E, F be the midpoints of BC, CA, AB respectively.
Area of $\frac{[DEF]}{[ABC]}$=$\frac{1}{4}$
we know that any median is divided at the centroid $2:1$
Now $G_1$ is the centroid of $\triangle ABG$, then$GG_1=2G1F$
Similarly,$GG_2 = 2G2D$ and$GG_3 = 2G3E$
Thus, From homothetic transformation $\triangle G_1G_2G_3$ maps to $\triangle FDE$ by a homothety of ratio$\frac{2}{3}$
Therefore,$\frac{[G_1G_2G_3]}{[DEF]}$ = $(\frac{2}{3})^2$=$\frac{4}{9}$
Therefore we say that $\frac{[G_1G_2G_3]}{[ABC]}$ = $\frac{[G_1G_2G_3]}{[DEF]}\cdot \frac{[DEF]}{[ABC]} $= $\frac{4}{9}\cdot \frac{1}{4}$=$\frac{1}{9}$=$\frac{p}{q}$
So $p+q$=9+1=10