New Home Forums Math Olympiad - IOQM Geometry centroid of triangle

Viewing 2 posts - 1 through 2 (of 2 total)
  • Author
    Posts
  • #63769
    Crazy Gamer
    Participant

    Triangle ABC has centroid G.Triangles ABG,BCG, AND CAG have centroids G1,G2,G3 respectively.the value of [G1G2G3]/[ABC] CAN BE represented by p/q for positive integers p,q.

    find p+q
    where[ABCD] denotes the area of ABCD

    #63885

    Let D, E, F be the midpoints of BC, CA, AB respectively.
    Area of $\frac{[DEF]}{[ABC]}$=$\frac{1}{4}$

    we know that any median is divided at the centroid $2:1$
    Now  $G_1$ is the centroid of $\triangle ABG$, then$GG_1=2G1F$
    Similarly,$GG_2 = 2G2D$ and$GG_3 = 2G3E$
    Thus, From  homothetic transformation  $\triangle G_1G_2G_3$ maps to $\triangle FDE$ by a homothety of ratio$\frac{2}{3}$
    Therefore,$\frac{[G_1G_2G_3]}{[DEF]}$ = $(\frac{2}{3})^2$=$\frac{4}{9}$
    Therefore we say that $\frac{[G_1G_2G_3]}{[ABC]}$ = $\frac{[G_1G_2G_3]}{[DEF]}\cdot \frac{[DEF]}{[ABC]} $= $\frac{4}{9}\cdot \frac{1}{4}$=$\frac{1}{9}$=$\frac{p}{q}$

    So $p+q$=9+1=10

Viewing 2 posts - 1 through 2 (of 2 total)
  • You must be logged in to reply to this topic.
linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram