So have you tried it?
3rd statement is not true :
$f(x)(1-f(x))=f(x)-f(x)^2$
$=\frac14 -(\frac14 -2.\frac12.f(x)+f(x)^2)$
$=\frac14-(\frac12-f(x)^2)$
Now let $g(x)=(1-f(x))^2\geq 0,$ then $ g$ is positive and continuous :
then $\int_0^1 g(x)=0$ if and only if $g(x)=0$.
Since $g$ is continuous and $g(x)=0$ everywhere then$f(x)=\frac12$
Then $\int_0^1 f(x)(1-f(x)) \mathrm d x$
$=\int_0^1 \frac14 \mathrm d x -\int_0^1 (\frac12 - f(x))^2\mathrm d x$
$=\frac14-\int_0^1 (\frac12 - f(x))^2\mathrm d x$
$=\frac14$ if and only if $f(x)=\frac12$