New Home Forums Math Olympiad - IOQM inequality

Viewing 2 posts - 1 through 2 (of 2 total)
  • Author
    Posts
  • #70591
    Raghav Agrawal
    Participant

    proove a(a-1)+b(b-1)+c(c-1)>=0

    when (abc)=1

    #70870
    Saumik Karfa
    Participant

    $\frac{a^{1+1}+b^{1+1}+c^{1+1}}{3}>\frac{a+b+c}{3}\cdot\frac{a+b+c}{3}\geq \sqrt[3]{abc}\frac{a+b+c}{3}=\frac{a+b+c}{3}[\text{ since }abc=1]$

    $\Rightarrow a^2+b^2+c^2\geq a+b+c$

    $\Rightarrow a(a-1)+b(b-1)+c(c-1)\geq 0$ [equality occurs when $a,b,c=1$]

Viewing 2 posts - 1 through 2 (of 2 total)
  • You must be logged in to reply to this topic.
linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram