$\frac{a^{1+1}+b^{1+1}+c^{1+1}}{3}>\frac{a+b+c}{3}\cdot\frac{a+b+c}{3}\geq \sqrt[3]{abc}\frac{a+b+c}{3}=\frac{a+b+c}{3}[\text{ since }abc=1]$
$\Rightarrow a^2+b^2+c^2\geq a+b+c$
$\Rightarrow a(a-1)+b(b-1)+c(c-1)\geq 0$ [equality occurs when $a,b,c=1$]