New Home Forums Math Olympiad - IOQM Geometry prove that the quardilateral is a rectangle

Viewing 6 post (of 6 total)
  • Author
    Posts
  • #21381
    Pinaki Biswas
    Participant

    Given : AB+AD+AC=AB+BC+BD=BC+CD+AC=BC+AD+BD

    To Prove : Quadrilateral ABCD is a rectangle.

    Construction : None required.

    Proof : We know that AB+AD+AC=AB+BC+BD=BC+CD+AC=CD+AD+BD.

    Thus, AB+AD=BC+CD;                            (1)

    AB+BC=CD+AD.                                        (2)

    From subracting (2) from (1), we get:

    AB-CD=CD-AB.

    So,AB=CD.

    Similarly,BC=AD.

    Thus, ABCD is a parallelogram...  (The proof is not completed yet)

    Since: AB=BC,

    BC is common,

    AC=BD,

    Angles ABC=BCD.

    By proving all the angles equal by the method of congruency above,

    All angles must be right angles.

    Thus, ABCD is a rectangle. (Proved)

     

Viewing 6 post (of 6 total)
  • You must be logged in to reply to this topic.
linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram