New Home Forums Math Olympiad - IOQM Geometry Orthocentre

Viewing 2 posts - 1 through 2 (of 2 total)
  • Author
    Posts
  • #66920
    Crazy Gamer
    Participant

    H is the orthocentre of triangle ABC and RR is the circumradius. Prove that, 2R<AH+BH+CH≤3R

    #67254
    Shirsendu Roy
    Spectator

    AH=2RcosA, BH=2RcosB, CH=2RcosC

    (AH+BH+CH)=2R(cosA+cosB+cosC)

    =2R(1+r/R)

    =2(R+r)

    <=2R+R since r<=R/2 for any triangle

    =3R

    2R<=(AH+BH+CH)<=3R

Viewing 2 posts - 1 through 2 (of 2 total)
  • You must be logged in to reply to this topic.
linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram