A variable plane passes through a fixed point ( a, b, c) and cuts the coordinate axes at P, Q, R . Then the coordinates (x , y, z) of the centre of the sphere passing through P, Q, R and the origin satisfy the equation :
a.) $(\frac ax) + (\frac by) +(\frac cz) =2$
b.) $(\frac xa) +(\frac yb) +(\frac zc) =3$
c.) $ax + by + cz =1$
d.) $ax + by + cz = aa + aa + cc $