New Home Forums Math Olympiad - IOQM Algebra quadratic equations

Viewing 2 posts - 1 through 2 (of 2 total)
  • Author
    Posts
  • #30854
    Soumyadeep mandal
    Participant

    Find the number of pairs of all the possible natural numbers p, q such that the equation x^2 – pqx + (p + q) = 0 has two integer roots.

    #30861
    Nitin Prasad
    Participant

    Given eqn-
    $$x^2-pq x+(p+q)=0$$
    Consider discriminant of the above equation
    $$D=(pq)^2-(p+q)^2=-(p^2+q^2+pq)=-(p+\frac{q}{2})^2-\frac{3q^2}{4}\leq 0$$

    $$Hence D\leq 0$$

    But for roots to be real, D>=0 and hence  D=0 which is possible only when p=q=0

     

    Hence no pair of natural number (p,q) exists which satisfy the given condition.

Viewing 2 posts - 1 through 2 (of 2 total)
  • You must be logged in to reply to this topic.
linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram