Let-
- $$A=\{ n : n<10,000 \& n\in \mathbb{N}\}$$
- $$A_3=\{ n :n \in A \& 3|n\}$$
- $$A_5=\{ n :n \in A \& 5|n\}$$
Hence, number of positive integers less than or equal to 10,000 which are divisible by neither 3 nor 5
$$=|A_3^c\bigcap A_5^c|$$
$$=|(A_3\bigcup A_5)^c|$$
$$=10,000-|(A_3\bigcup A_5)|$$
$$=10,000-|(A_3|-|A_5)|+|(A_3\bigcap A_5)|$$
$$=10000-\lfloor\frac{10000}{3}\rfloor-\lfloor\frac{10000}{5}\rfloor+\lfloor\frac{10000}{15}\rfloor=10000-3333-2000+666=5333$$
Yeah, your answer is correct!