in similar triangle the corresponding sides and altitudes are in proportion
Let height of \(\Delta ABC\) be \(h\) and \(\Delta XYZ\) be \(h_1\)
Therefore, \(\frac{h}{h_1}=\frac{AB}{XY}\)
\(\frac{[ABC]}{[XYZ]}=\frac{\frac{1}{2}\times AB\times h}{\frac{1}{2}\times XY\times h_1}\)
\(\frac{[ABC]}{[XYZ]}=\frac{AB}{XY}\times\frac{h}{h_1}\)
Therefore\(\frac{[ABC]}{[XYZ]}=\frac{AB}{XY}\times \frac{AB}{XY}=\frac{AB^2}{XY^2}\)