New Home Forums Math Olympiad - IOQM Geometry Ratio of areas of similar triangles

Tagged: 

Viewing 4 posts - 1 through 4 (of 4 total)
  • Author
    Posts
  • #21528

    Suppose triangles ABC and XYZ are similar with AB and XY being corresponding sides. Then show that $$ \frac {[ABC]}{[XYZ]} = \frac{AB^2} {XY^2}  $$

    #21530
    Saarang Srini
    Participant

    ABC ~ A'B'C'

    Draw perpendiculars in both triangles at D and D' from A and A' respectively.

    ABD ~ A'B'D'

    AB/A'B' = AD/A'D' = BD /B'D'

    Ar ABC = 1/2 * AC * BD

    Ar A'B'C' = 1/2 * A'C' * B'D'

    Ar ABC/ Ar A'B'C' = (AC * BD) / (A'C' * B'D') = AC/A'C'  * BD/B'D'

    In similar triangles, ratio of all the sides are equal.

    Therefore ratio of areAs is equal to AC^2/A'C'^2 = BD^2/B'C'^2 = CA^2/C'A'^2

    #21531
    swastik pramanik
    Participant

    in similar triangle the corresponding sides and altitudes are in proportion

    Let height of \(\Delta ABC\) be \(h\) and \(\Delta XYZ\) be \(h_1\)

    Therefore, \(\frac{h}{h_1}=\frac{AB}{XY}\)

    \(\frac{[ABC]}{[XYZ]}=\frac{\frac{1}{2}\times AB\times h}{\frac{1}{2}\times XY\times h_1}\)

    \(\frac{[ABC]}{[XYZ]}=\frac{AB}{XY}\times\frac{h}{h_1}\)

    Therefore\(\frac{[ABC]}{[XYZ]}=\frac{AB}{XY}\times \frac{AB}{XY}=\frac{AB^2}{XY^2}\)

     

    #21532
    Jayanti Deb
    Participant

Viewing 4 posts - 1 through 4 (of 4 total)
  • You must be logged in to reply to this topic.
linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram