Let (abc) denote the number 100a+10b+c where a,b,c are digits
Now let (abc), (def), (ghi) be the three 3-digit numbers formed using the digits from 1 to 9.
Now observe that-
$$(abc)+(def)+(ghi)
=100a+10b+c+100d+10e+f+100g+10h+i
=99a+9b+99d+9e+99g+9h+a+b+c+d+e+f+g+h+i$$
Since $$a+b+c+d+e+f+g+h+i= 1+2+3+\cdots +9=45$$
Hence (abc)+(def)+(ghi) is divisible by 9