Given, $$ cofactors(b_{ij})= c_{ij} \Rightarrow Adj(B)= C^T $$ \
$$ cofactors(a_{ij})= b_{ij} \Rightarrow Adj(A)= B^T $$ \
$$ det(A) = 2 $$
and the order of the matrices is 3 .
We have to apply the followings :
$$ |Adj(A) = (|A|)^{order(A) - 1} $$
$$ |A| = |A^T| $$
$$ |ABC| = |A| |B| |C| $$
$$ |cA| = c^{order(A)}|A| $$
So now $$ |Adj(A)| = 2^{3-1}=|B^T|=|B| $$ \
$$ |Adj(B)| = (2^{3-1})^{3-1}=|C^T|=|C| = 2^4$$
$$ |2A| = 2^{3}|A| = 2^4 $$
Therefore , $$ \displaystyle |2AB^TC| = |2A| |B^T| |C| = 2^4 . 2^2 . 2^4 = \sum_{r=1}^{11} {10 \choose r-1} $$