Nitin Prasad

Forum Replies Created

Viewing 16 post (of 16 total)
  • Author
    Posts
  • in reply to: An inequality #28260
    Nitin Prasad
    Participant

    Define $$\sigma_k=\frac{S_k}{n\choose k}$$. Now we have following two classical result-

    • Newton's inequality- $$\sigma_{k-1}\sigma_{k+1}\leq\sigma_{k}^2$$
    • Maclaurian's inequality- $$(\sigma_{1})^{\frac{1}{1}}\geq(\sigma_{2})^{\frac{1}{2}}\geq\cdots\geq(\sigma_{n})^{\frac{1}{n}}$$

    Now here we shall use second inequality to prove the given inequality which is equivalent to $$\sigma_{k}\sigma_{n-k}\geq \sigma_n$$.  Now observe that-

    $$(\sigma_{k})^{\frac{1}{k}}\geq (\sigma_{n})^{\frac{1}{n}}\Longleftrightarrow(\sigma_k)^n\geq(\sigma_n)^k$$

    $$(\sigma_{n-k})^{\frac{1}{n-k}}\geq (\sigma_{n})^{\frac{1}{n}}\Longleftrightarrow(\sigma_{n-k})^n\geq(\sigma_n)^{n-k}$$

    Hence $$(\sigma_k\sigma_{n-k})^n\geq \sigma_n^k\sigma_n^{n-k}=\sigma_n^n$$

    i.e. $$\sigma_k\sigma_{n-k}\geq\sigma_n$$

Viewing 16 post (of 16 total)