venkat jothi

Forum Replies Created

Viewing 5 posts - 1 through 5 (of 9 total)
  • Author
    Posts
  • in reply to: Sets1 #71261
    venkat jothi
    Participant

    SORRY LaTeX  DOES NOT WORK  FOR SOME EQUATIONS IN MY ABOVE SOLUTION

    in reply to: Permutation #71259
    venkat jothi
    Participant

    by using the definition of permutation we can get an equivalent form

    $1+1\times 1!+2\times 2!+3\times 3!+\cdots+n\times n! $

    now , $r\times r! =r\times r! +r!-r!= (r+1)r!-r!$

    now, $1\times 1!=2!-1!,$

    and $2\times 2!=3!-2!$

    and so on

    $n\times n!=(n+1)!-n! $

    the first equation becomes,

    $1+2!-1!+3!-2!+4!-3!+\cdots+(n+1)!-n! = (n+1)!$

    by converting the terms into permutation definition we get above result

    in reply to: Sets1 #71214
    venkat jothi
    Participant

    given that f(x) is a differentiable function.

    $$lim_{\delta \to 0} \big(\frac{f(x+\delta x)}{f(x)}\big)^{\frac{1}{\delta}} ---------(1)$$

    by direct substitution it is in the form of $1^\infty$.

    so we can use this formula

    $$lim_{\delta \to 0} \big(1+g(\delta)\big)^{h(\delta)}=e^{lim_{\delta \to 0} g(\delta).h(\delta)$$

    here , from(1) we get

    $$\displaystyle \Rightarrow lim_{\delta \to 0} \big(1+\frac{f(x+\delta x)}{f(x)} -1\big)^{\frac{1}{\delta}}$$

    $$\displaystyle \Rightarrow lim_{\delta \to 0} \big(1+\frac{f(x+\delta x)-f(x)}{f(x)}\big)^{\frac{1}{\delta}}$$

    here, $g(\delta)=\frac{f(x+\delta x)-f(x)}{f(x)}$ and $h(\delta )= \frac{1}{\delta}$

    $$\displaystyle \Rightarrow e^{lim_{\delta \to 0} g(\delta).h(\delta)$$

    $$\displaystyle \Rightarrow e^{lim_{\delta \to 0}\frac{f(x+\delta x)-f(x)}{f(x)} .\frac{1}{\delta}$$

    by rearranging terms

    $$\Rightarrow e^{lim_{\delta \to 0}\frac{f(x+\delta x)-f(x)}{\delta} .\frac{1}{f(x)}$$

    by replacing the Definition of derivative $lim_{\delta \to 0}\frac{f(x+\delta x)-f(x)}{\delta} =f'(x)$. we get

    $$\Rightarrow e^{\frac{f'(x)}{f(x)}}$$

     

    in reply to: ISI/CMI Entrance #71213
    venkat jothi
    Participant

    in reply to: ISI/CMI Entrance #71212
    venkat jothi
    Participant

Viewing 5 posts - 1 through 5 (of 9 total)