TIFR 2013 problem 31 | Inequality problem

Join Trial or Access Free Resources

Let's discuss a problem from TIFR 2013 Problem 31 based on inequality.

Question: TIFR 2013 problem 31

True/False?

The inequality \( \sqrt{n+1}- \sqrt{n} < \frac{1}{ \sqrt{n} } \) is false for all n such that \( 101 \le n \le 2000 \)

Hint:

Simplify the given inequality

Discussion:

\( \sqrt{n+1}- \sqrt{n} =  \frac {n+1- n}{ \sqrt{n+1}+ \sqrt{n} } \)

\(=  \frac {1}{ \sqrt{n+1}+ \sqrt{n}}  < \frac {1}{ \sqrt{n}} \) This holds for any natural number \(n\).

So the inequality is actually true for all natural numbers.

Useful links:

More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram