ISI MStat PSA 2019 Problem 17 | Limit of a function

Join Trial or Access Free Resources

This is a beautiful problem from ISI Mstat 2019 PSA problem 17 based on limit of a function . We provide sequential hints so that you can try this.

Limit of a function


If \( f(a)=2, f'(a)=1 , g(a)=-1\) and \(g'(a)=2\) , then what is

 \( \lim\limits_{x\to a}\frac{(g(x)f(a) – g(a)f(x))}{(x – a)} \) ?

  • 5
  • 3
  • - 3
  • -5

Key Concepts


Algebraic manipulation

Limit form of the Derivative

Check the Answer


Answer: is 5

ISI MStat 2019 PSA Problem 17

Introduction to real analysis Robert G. Bartle, Donald R., Sherbert.

Try with Hints


Try to manipulate \( \frac{(g(x)f(a) – g(a)f(x))}{(x – a)} \) so that you can use the Limit form of the Derivative . Let's give a try .

\( \frac{(g(x)f(a) – g(a)f(x))}{(x – a)} \) =

\( \frac{(g(x)f(a) –g(a)f(a) +g(a)f(a) - g(a)f(x))}{(x – a)} \) =

\( f(a)\frac{g(x)-g(a)}{(x-a)} - g(a)\frac{f(x)-f(a)}{(x-a)} \) .

Now calculate the limit using Limit form of the Derivative.

So, we have \( \lim\limits_{x\to a}\frac{(g(x)f(a) – g(a)f(x)}{(x – a)} \) =

\( \lim\limits_{x\to a} f(a)\frac{g(x)-g(a)}{(x-a)} - \lim\limits_{x\to a} g(a)\frac{f(x)-f(a)}{(x-a)} \) =

\( f(a) g'(a) - g(a)f'(a)= 2.(2)-1.(-1)=5 \).

Similar Problems and Solutions



Outstanding Statistics Program with Applications

Outstanding Statistics Program with Applications

Subscribe to Cheenta at Youtube


More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram