Try this beautiful problem from TIFR GS 2018 (Part B) based on Minimal Polynomial of a Matrix. This problem requires knowledge of linear algebra.
The minimal polynomial of $\begin{pmatrix} 2 &1& 0&0 \\ 0 &2&0&0 \\ 0&0&2&0\\ 0&0&1&5\end{pmatrix}$ is
Linear Algebra
Matrix / Vector Space
Characteristic Polynomial
Answer: $(x-2)^2(x-5)$
TIFR GS -2018 (Part- B) | Problem No 10
Graduate Texts in Mathematics : Springer-Verlag
Some Definitions and Results Needed :
So all the ingredients you need to cook the problem are given... Can you make it delicious ?
To find the Characteristic equation of the given matrix :
Let $A= \begin{pmatrix} 2 &1& 0&0 \\ 0 &2&0&0 \\ 0&0&2&0\\ 0&0&1&5\end{pmatrix} $
Then, $|A-\lambda I_4|= \begin{vmatrix} 2-\lambda &1& 0&0 \\ 0 &2-\lambda &0&0 \\ 0&0&2-\lambda &0\\ 0&0&1&5-\lambda \end{vmatrix} $
$\quad = (2-\lambda)^3(5-\lambda) = p(\lambda) $ [say]
then, the characteristic equation of $A$ is $p(x)=(x-2)^3(x-5)=0$
Then By Cayley Hamilton Theorem $(A-2I_4)^2(A-5I_4)=O_{4 \times 4}$ [$O_{4 \times 4}$ is the NULL MATRIX of order $4$]
As minimal polynomial is unique then if minimal polynomial is a polynomial of degree $4$ it is same as the characteristic polynomial by Property 5 in the first hint and if minimal polynomial is less than degree $4$ then it is a factor of characteristic polynomial.
all the factors of characteristic polynomial are :
$p_1(x)=(x-2)(x-5),\quad p_2(x)=(x-2)^2(x-5),\\ \text{ and } p(x)=(x-2)^3(x-5)$
Lets Find $p_1(A)$ i.e., $(A-2I_4)(A-5I_4)$ :
$(A-2I_4)(A-5I_4)=\begin{pmatrix} 0 &1& 0&0 \\ 0 &0&0&0 \\ 0&0&0&0\\ 0&0&1&3\end{pmatrix} \times \begin{pmatrix} -3 &1& 0&0 \\ 0 &-3&0&0 \\ 0&0&-3&0\\ 0&0&1&0\end{pmatrix}$
$\quad\quad= \begin{pmatrix} 0 &-3& 0&0 \\ 0 &0&0&0 \\ 0&0&0&0\\ 0&0&0&0\end{pmatrix} \ne O_{4 \times 4}$
Now, $p_2(A)$ i.e., $(A-2I_4)^2(A-5I_4)$ :
$(A-2I_4)^2(A-5I)=\begin{pmatrix} 2 &1& 0&0 \\ 0 &2&0&0 \\ 0&0&2&0\\ 0&0&1&5\end{pmatrix}^2 \times \begin{pmatrix} -3 &1& 0&0 \\ 0 &-3&0&0 \\ 0&0&-3&0\\ 0&0&1&0\end{pmatrix}$
$\quad\quad= \begin{pmatrix} 0 &0& 0&0 \\ 0 &0&0&0 \\ 0&0&0&0\\ 0&0&3&9\end{pmatrix} \times \begin{pmatrix} -3 &1& 0&0 \\ 0 &-3&0&0 \\ 0&0&-3&0\\ 0&0&1&0\end{pmatrix} = O_{4 \times 4} $
Therefore the lowest degree monic polynomial satisfied by $A$ is $(x-2)^2(x-5)$.
Hence the minimal polynomial is $(x-2)^2(x-5)$