In mathematics, parity is the property of an integer's inclusion in one of two categories: even or odd. An integer is even if it is divisible by two and odd if it is not even .
Let $( \textbf a, \textbf b, \textbf c, \textbf d)$ be an ordered quadruple of not necessarily distinct integers, each one of them in the set ${0,1,2,3}$ For how many such quadruples is it true that $ \textbf a\cdot \textbf d - \textbf b\cdot \textbf c$ is odd?
2020 AMC 10A Problem-18
Parity
4 out of 10
Mathematics Circle
We need exactly one term to be odd, one term to be even. Because of symmetry,let us set $\textbf a \textbf d$ to be odd and $\textbf b \textbf c$ to be even,then multiple by $2$.
Now can you complete the sum using odd and even property?
See If $\textbf a \textbf d$ is odd, then both $\textbf a$ and $\textbf d$ must be odd, therefore there are $2$.$2$=$4$ possibilities for $\textbf a \textbf d$.
now consider $\textbf b \textbf c$, we can say that $\textbf b \textbf c$ is even,then there are $2$.$4$=$8$ possibilities for $\textbf b \textbf c$ . However, $\textbf b$ can be odd.in that case $2$.$2$=$4$ more possibilities for $\textbf b \textbf c$. Thus there are $8$+$4$=$12$ ways for us to choose $\textbf b \textbf c$ and also $4$ ways are there to choose $\textbf a \textbf d$.
Considering symmetry, to $\textbf a \textbf d $- $\textbf b \textbf c$ be odd,there are $12$.$4$.$2$ = $96$ quadruples .So, the answer is $96$.