Probability AMC 10B 2019 problem 17

Join Trial or Access Free Resources
[et_pb_section fb_built="1" _builder_version="4.0"][et_pb_row _builder_version="4.2.2" width="100%"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_text _builder_version="4.2.2" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_padding="10px|10px|10px|10px|false|false" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]

What are we learning ?

[/et_pb_text][et_pb_text _builder_version="4.2.2" text_font="Raleway||||||||" text_font_size="20px" text_letter_spacing="1px" text_line_height="1.5em" background_color="#f4f4f4" custom_margin="10px||20px||false|false" custom_padding="10px|20px|10px|20px" box_shadow_style="preset2"]

Competency in Focus: probability

This problem is from American Mathematics Contest 10B (AMC 10B, 2019). It is Question no. 17 of the AMC 10B 2019 Problem series.

[/et_pb_text][et_pb_text _builder_version="4.2.2" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="10px||10px||false|false" custom_padding="10px|10px|10px|10px|false|false" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]

First look at the knowledge graph:-

[/et_pb_text][et_pb_image src="https://www.cheenta.in/wp-content/uploads/2020/02/p17.png" alt="calculation of mean and median- AMC 8 2013 Problem" title_text=" mean and median- AMC 8 2013 Problem" align="center" force_fullwidth="on" _builder_version="4.2.2" min_height="429px" height="189px" max_height="198px" custom_padding="10px|10px|10px|10px|false|false"][/et_pb_image][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]

Next understand the problem

[/et_pb_text][et_pb_text _builder_version="4.2.2" text_font="Raleway||||||||" text_font_size="20px" text_letter_spacing="1px" text_line_height="1.5em" background_color="#f4f4f4" custom_margin="10px||10px" custom_padding="10px|20px|10px|20px" box_shadow_style="preset2"]A red ball and a green ball are randomly and independently tossed into bins numbered with the positive integers so that for each ball, the probability that it is tossed into bin $k$ is $2^{-k}$ for $k = 1,2,3....$ What is the probability that the red ball is tossed into a higher-numbered bin than the green ball?
$\textbf{(A) } \frac{1}{4} \qquad\textbf{(B) } \frac{2}{7} \qquad\textbf{(C) } \frac{1}{3} \qquad\textbf{(D) } \frac{3}{8} \qquad\textbf{(E) } \frac{3}{7}$[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row _builder_version="4.0"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_accordion open_toggle_text_color="#0c71c3" _builder_version="4.2.2" toggle_font="||||||||" body_font="Raleway||||||||" text_orientation="center" custom_margin="10px||10px"][et_pb_accordion_item title="Source of the problem" _builder_version="4.2.2" open="off"]American Mathematical Contest 2019, AMC 10B Problem 17[/et_pb_accordion_item][et_pb_accordion_item title="Key Competency" open="off" _builder_version="4.2.2" inline_fonts="Abhaya Libre"]

Probability

[/et_pb_accordion_item][et_pb_accordion_item title="Difficulty Level" _builder_version="4.2.2" open="off"]4/10[/et_pb_accordion_item][et_pb_accordion_item title="Suggested Book" _builder_version="4.0.9" open="on"]Challenges and Thrills in Pre College MathematicsExcursion Of Mathematics 

[/et_pb_accordion_item][/et_pb_accordion][et_pb_text _builder_version="4.0.9" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="48px||48px" custom_padding="20px|20px|0px|20px||" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]

Start with hints 

[/et_pb_text][et_pb_tabs _builder_version="4.2.2"][et_pb_tab title="HINT 0" _builder_version="4.0.9"]Do you really need a hint? Try it first![/et_pb_tab][et_pb_tab title="HINT 1" _builder_version="4.2.2"]The probability that the two balls will go into adjacent bins is $\frac{1}{2\times4} + \frac{1}{4\times8} + \frac{1}{8 \times 16} + ... = \frac{1}{8} + \frac{1}{32} + \frac{1}{128} + \cdots = \frac{1}{6}$ by the geometric series sum formula.[/et_pb_tab][et_pb_tab title="HINT 2" _builder_version="4.2.2"]the probability that the two balls will go into bins that have a distance of $2$ from each other is $\frac{1}{2 \times 8} + \frac{1}{4 \times 16} + \frac{1}{8 \times 32} + \cdots = \frac{1}{16} + \frac{1}{64} + \frac{1}{256} + \cdots = \frac{1}{12}$[/et_pb_tab][et_pb_tab title="HINT 3" _builder_version="4.2.2"]We can see that each time we add a bin between the two balls, the probability halves.[/et_pb_tab][et_pb_tab title="HINT 4" _builder_version="4.2.2"]Thus, our answer is $\frac{1}{6} + \frac{1}{12} + \frac{1}{24} + \cdots$[/et_pb_tab][/et_pb_tabs][/et_pb_column][/et_pb_row][/et_pb_section][et_pb_section fb_built="1" fullwidth="on" _builder_version="4.2.2" global_module="50833"][et_pb_fullwidth_header title="AMC - AIME Program" button_one_text="Learn More" button_one_url="https://www.cheenta.in/amc-aime-usamo-math-olympiad-program/" header_image_url="https://www.cheenta.in/wp-content/uploads/2018/03/matholympiad.png" _builder_version="4.2.2" title_level="h2" background_color="#00457a" custom_button_one="on" button_one_text_color="#44580e" button_one_bg_color="#ffffff" button_one_border_color="#ffffff" button_one_border_radius="5px"]

AMC - AIME - USAMO Boot Camp for brilliant students. Use our exclusive one-on-one plus group class system to prepare for Math Olympiad

[/et_pb_fullwidth_header][/et_pb_section][et_pb_section fb_built="1" fullwidth="on" _builder_version="4.2.2" global_module="50840" saved_tabs="all"][et_pb_fullwidth_post_slider include_categories="879,878,869" show_arrows="off" show_pagination="off" show_meta="off" image_placement="left" _builder_version="4.2.2" custom_button="on" button_text_color="#0c71c3" button_bg_color="#ffffff" custom_margin="20px||20px||false|false" custom_padding="20px||20px||false|false"][/et_pb_fullwidth_post_slider][/et_pb_section]
More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram