Radius of a Circle - SMO 2013 - Problem 25

Join Trial or Access Free Resources

Try this beautiful problem from Geometry based on the radius and tangent of a circle.

SMO 2013 - Geometry (Problem 25)


As shown in the figure below ,circles $C_1 $and$ C_2$ of radius 360 are tangent to each other , and both tangent to the straight line l.if the circle$ C_3$ is tangent to $C_1$ ,$C_2$ and l ,and circle$ C_4 $is tangent to$ C_1$,$C_3$ and l ,find the radius of$ C_4$

radius of a circle

  • 30
  • 35
  • 40

Key Concepts


Geometry

Pythagoras theorm

Distance Formula

Check the Answer


Answer:40

SMO -Math Olympiad-2013

Pre College Mathematics

Try with Hints


Let R be the radius of $C_3$

$C_2E$ =360-R

$C_3E=360$

$C_2C_3$=360+R

Using pythagoras theorm ....

$ (360-R)^2+360^2=(360+R)^2$

i.e R=90

Can you now finish the problem ..........

Let the radius of$ C_4$ be r

then use the distacce formula and tangent property........

can you finish the problem........

Let r be the radius of $C_4$ (small triangle).

LO+OC=360

$\sqrt{(360+p)^2-(360-p)^2}+\sqrt{(90+r)^2-(90-r)^2}=360$

i.e r=40.

Subscribe to Cheenta at Youtube


More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram