Compute I = $latex (\int_e^{e^4}\sqrt{\log(x)}dx)$ if it is given that $latex (\int _1^2 e^{t^2} dt = \alpha )$ I = $latex ([x \sqrt{\log(x)}]_e^{e^4} - \int_e^{e^4} x \frac{1}{2 \sqrt{log(x)}} \frac {1}{x} dx )$ = $latex ([e^4 \sqrt {\log_e e^4} - e \sqrt {\log _e e}] - \frac{1}{2} \int_e^{e^4}\frac{1}{\sqrt{log(x)}} dx )$ = $latex (2 e^4 - e […]