Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1990 based on Real Numbers.
Find \(ax^{5}+by^{5}\) if real numbers a,b,x,y satisfy the equations
ax+by=3
\(ax^{2}+by^{2}=7\)
\(ax^{3}+by^{3}=16\)
\(ax^{4}+by^{4}=42\)
Integers
Equations
Algebra
Answer: is 20.
AIME I, 1990, Question 15
Elementary Algebra by Hall and Knight
Let S=x+y, P=xy
\((ax^{n}+by^{n})(x+y)\)
\(=(ax^{n+1}+by^{n+1})+(xy)(ax^{n-1}+by^{n-1})\)
or,\( (ax^{2}+by^{2})(x+y)=(ax^{3}+by^{3})+(xy)(ax+by)\) which is first equation
or,\( (ax^{3}+by^{3})(x+y)=(ax^{4}+by^{4})+(xy)(ax^{2}+by^{2})\) which is second equation
or, 7S=16+3P
16S=42+7P
or, S=-14, P=-38
or, \((ax^{4}+by^{4})(x+y)=(ax^{5}+by^{5})+(xy)(ax^{3}+by^{3})\)
or, \(42S=(ax^{5}+by^{5})+P(16)\)
or, \(42(-14)=(ax^{5}+by^{5})+(-38)(16)\)
or, \(ax^{5}+by^{5}=20\).