Set of real numbers | TOMATO B.Stat Objective 714

Join Trial or Access Free Resources

Try this problem from I.S.I. B.Stat Entrance Objective Problem based on Set of real numbers.

Set of real Numbers (B.Stat Objective Question )


The set of all real numbers x satisfying the inequality \(x^{3}(x+1)(x-2) \geq 0\) can be written as

  • [-1,infinity)
  • none of these
  • [2,infinity)
  • [0,infinity)

Key Concepts


Equation

Roots

Algebra

Check the Answer


Answer:none of these

B.Stat Objective Problem 714

Challenges and Thrills of Pre-College Mathematics by University Press

Try with Hints


\(x^{3}(x+1)(x-2) \geq 0\)

case I \(x^{3}(x+1)(x-2) \geq 0\)

or, \(0 \leq x, -1 \leq x, 2 \leq x\) which is first inequation

case II \(x^{3} \geq 0, (x+1) \leq 0, (x-2) \leq 0\)

or, \(x \geq 0, x \leq -1, x \leq 2\) which is second equation

case III \(x^{3} \leq 0, (x+1) \leq 0, (x-2) \geq 0\)

or, \(x \leq 0 x \leq -1, 2 \leq x\) which is third equation

case IV \(x^{3} \leq 0, (x+1) \geq 0, (x-2) \leq 0\)

or, \(x \leq0, x \geq -1, x \leq 2\) which is fourth equation

Combining we get \(x^{3}(x+1)(x-2) \geq 0\) satisfy if \(x\in\) \([-1,0] \bigcup [2,infinity)\)

or, answer option none of these

Subscribe to Cheenta at Youtube


More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram