Sides of Quadrilateral | PRMO 2017 | Question 20

Join Trial or Access Free Resources

Try this beautiful problem from the Pre-RMO, 2017 based on Sides of Quadrilateral.

Sides of Quadrilateral - PRMO 2017


What is the number of triples (a,b,c) of positive integers such that (i) a<b<c<10 and (ii) a,b,c,10 form the sides of a quadrilateral?

  • is 107
  • is 73
  • is 840
  • cannot be determined from the given information

Key Concepts


Largest number of triples

Quadrilateral

Distance

Check the Answer


Answer: is 73.

PRMO, 2017, Question 20

Geometry Vol I to IV by Hall and Stevens

Try with Hints


a+b+c>10

(a+b+c) can be

a b c

1 2 8,9

1 3 7,8,9

1 4 6 ,7,8,9

1 5 6,7,8,9

1 6 7,8,9

1 7 8,9

1 8 9

2 3 6,7,8,9

2 4 5,6,7,8,9

2 5 6,7,8,9

2 6 7,8,9

2 7 8,9

2 8 9

3 4 5,6,7,8,9

3 5 6,7,8,9

3 6 7,8,9

3 7 8,9

3 8 9

4 5 6,7,8,9

4 6 7,8,9

4 7 8,9

4 8 9

5 6 7,8,9

5 7 8,9

5 8 9

6 7 8,9

6 8 9

7 8 9

Total 73 cases.

Subscribe to Cheenta at Youtube


More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram