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1.Let  be three distinct integers ,and let P be a polynomial with integer coe�cients. Show
that in this case the conditions

                             

Cannot be satis�ed simultaneously .

2.Suppose that  is a polynomial of degree  such that

                              for  .

Find the value of .

3.Given a monic polynomial  of degree  over  and , prove that if none of the
numbers  is divisible by  then  has no rational
solution .

4.Show that the polynomial  has no real roots .

5.The polynomial  has integral coe�cients  with  odd and  even
.Show that at least one zero of the polynomial is irrational .

6.Let  be integers .Then show  that  the polynomial  is not the product of
two polynomial with integral coe�cients .

7.Let . Suppose  has no real roots .Show that the equation 
 has no real solutions .

8. Let  be a monic  polynomial with integral coe�cients. If there are four different integers  
, so that , then show that  there is no integer ,so that 
.

9.If  are distinct ,then  is irreducible .
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10.  Find all polynomials  ,for which  .

11.The polynomial  with nonnegative coe�cients 
 has  real roots . Prove that  .

12.A polynomial  over Z has no integer zero if  and  are both odd.

13.I f  is symmetric and  , then  .

14.Three integers   which are all prime are called a prime –triplet .Find �ves sets of
prime –triplets .

15.If  and  are both prime numbers ,prove that  is also prime .

16.Given a positive integer   ,show that there are in�nitely many integers  for which 
, but  at most �nitely many  with  .

17.If  and   are a pair of twin primes ,establish that

                           ; this also holds for  and  .

18.Prove that Goldbach’s  Conjectcture implies that for each even integer  there exist integers 
 and  with  .

19.Show that there are in�nitely many integers   for which  is a perfect square .

20.Prove that the equation  , where  is a prime number and  is composite , is not
solvable .

21. Use Euler’s theorem to con�rm that , for any integer   ,

                                  .

22.Prove that    divides  for any integer  .

23.Prove that every prime other than 2 or 5 divides in�nitely many of the integers  , 1, 11,111,1111, 
 .

24.Show that if  ,then                                                                

   0  .

25.For any integer   ,establish the inequality .

26. Let  be complex number such that

                                     .

Prove that .

27. Prove that for all complex number   with  the following inequalities hold :

                                                    .
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28. Let   be complex number such that

1)  ;

2) ;

3) .

 Prove that for all integers  ,

                                        .

29. Let  be a complex number such that  and both  and   are rational numbers
.Prove that  is rational for all integers  .

30.   Let  be nonzero complex numbers . Prove that  the equation

                                        

 has at least one root with absolute value equal to 1 .

31. Prove that

  .

32.  Let  and let  be the coordinates of the vertices of a regular polygon .
Prove that

                            .

33. (Telescoping product.) Prove that

                                .

34.(Telescoping series.) Let . Then , for  ,

                           .

35. The Fibonacci sequence is de�ned by . Prove that

                                 .

36. Let  .Then  .

37. Let  and  have the same sign , then

                                      .

38.  

39. Let  be positive with .Prove that

                                        .
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