Group Theory Problem List

1. (CMI 2017 PartA Problem-4) For a positive integer n, let Sn denote the permutation group on n symbols. Choose the

correct statement(s) from below:

(A) For every positive integer n and for every m with $1 \le m \le n$, Sn has a cyclic subgroup of order m;

(B) For every positive integer n and for every m with n < m < n!, Sn has a cyclic subgroup of order m;

(C) There exist positive integers n and m with n < m < n! such that Sn has a cyclic subgroup of order m;

(D) For every positive integer n and for every group G of order n, G is isomorphic to a subgroup of Sn.

- 2. (CMI 2017 PartB Problem-15) For a group G, let Aut(G) denote the group of group automorphisms of G. (The group operation of Aut(G) is composition.) Let p be prime number. Show that the multiplicative group $\mathbb{F}_p/\{0\}$ is isomorphic to $Aut((\mathbb{F}_p, +))$ under the map $a \mapsto [b \mapsto ab]$ ($a \in \mathbb{F}_p/\{0\}$, $b \in \mathbb{F}_p$).
- 3. (CMI 2016 Part B Problem-17) Let G be a non-trivial subgroup of the group $(\mathbb{R}, +)$. Show that either G is dense in \mathbb{R} or that $G = \mathbb{Z} \cdot l$ where $l = inf\{x \in G | x > 0\}$.
- 4. (CMI 2014 Part A Problem-3) Let G be a finite group. An element a∈G is called a square if there exists x∈G such that x² = a. Which of the following statement(s) is/are true?
 (A) If a, b∈G are not squares, ab is a square.

(B) Suppose that G is cyclic. Then if a, heG are not squares, ab is a square

Consider the map $\phi: G \to G$ given by $\phi(a) = a^2$. Show that ϕ is not surjective.

- 6. (CMI 2013 PartA Problem-1) Pick the correct statement(s) below.
 - (a) There exists a group of order 44 with a subgroup isomorphic to $\mathbb{Z}/2 \oplus \mathbb{Z}/2$.
 - (b) There exists a group of order 44 with a subgroup isomorphic to $\mathbb{Z}/4$.

(c) There exists a group of order 44 with a subgroup isomorphic to $\mathbb{Z}/2 \oplus \mathbb{Z}/2$ and a subgroup isomorphic to $\mathbb{Z}/4$.

(d) There exists a group of order 44 without any subgroup isomorphic to $\mathbb{Z}/2 \oplus \mathbb{Z}/2$ or to $\mathbb{Z}/4$.

- 7. (CMI 2013 PartA Problem-2) Let G be group. The following statements hold.
 - (a) If G has nontrivial centre C, then G/C has trivial centre.
 - (b) If $G \neq 1$, there exists a nontrivial homomorphism $h : \mathbb{Z} \to G$.
 - (c) If $|G| = p^3$, for p a prime, then G is abelian.
 - (d) If G is nonabelian, then it has a nontrivial automorphism.
- 8. (CMI 2013 PartB Problem-1) Let G be a finite group, p the smallest prime divisor of |G|, and $x \in G$ an element of order p. Suppose $h \in G$ is such that $hxh^{-1} = x^{10}$. Show that p = 3.
- 9. (CMI 2012 PartA Problem-11) There are no infinite group with subgroups of index 5.
- 10. (CMI 2012 PartA Problem-12) Every finite group of odd order is isomorphic to a subgroup of A_n , the group of all even permutations.
- 11. (CMI 2011 PartA Problem-3 doubt) There is a continuous bijection from $\mathbb{R}^2 \to \mathbb{R}$.
- 12. (**CMI** 2011 PartA Problem-4 doubt) There is a bijection between \mathbb{Q} and $\mathbb{Q} \times \mathbb{Q}$.
- 13. (CMI 2011 PartB- Problem3 doubt) Let S denote the group of all those permutations of the English alphabet that fix the letters T, E, N, D, U, L, K, A and R. Other letters may or may not be fixed. Show that S has elements σ, τ of order 36 and 39 respectively, but does not have any element of order 37 or 38.
- 14. (CMI 2011 PartB Problem-4 doubt) Show that there are at least two non-isomorphic groups of order 198. Show that in all those groups the number of elements of order 11 is the same.
- 15. (ISI 2017 PMB GroupB Problem-10) Determine all finite groups which have exactly 3 conjugacy classes.
- 16. (**ISI** 2016 **PMB** GroupB Problem-9) Let S_{17} be group of all permutations of 17 distinct symbols. How many subgroups of order 17 does S_{17} have? Justify your answer.
- 17. (ISI 2016 PMB GroupB Problem-10) Suppose that H and K are two subgroups of a group G. Assume that [G : H] = 2 and K is not a subgroup of H. Show that HK = G.
- 18. (**ISI** 2015 **PMB** GroupB Problem-4) Let *G* be a group which has only finitely many subgroups. Prove that *G* must be finite.
- 19. (ISI 2014 PMB GroupB Problem-1) Let $(\mathbb{Q}, +)$ be the group of rational numbers under addition. If G_1, G_2 are nonzero subgroups of $(\mathbb{Q}, +)$, then prove that $G_1 \cap G_2 \neq \{0\}$.
- 20. (ISI 2014 PMB GroupB Problem-2) With proper justifications, examine whether there exists any surjective group homomorphism
 (a) from the group (Q(√2), +) to the group (Q, +),

(b) from the group $(\mathbb{R}, +)$ to the group $(\mathbb{Z}, +)$.

- 23. (TIFR 2018 Part A Problem-17) The multiplicative group F_7^{\times} is isomorphic to a subgroup of the multiplicative group F_{31}^{\times} .
- 24. (TIFR 2018 Part A Problem-21) A countable group can have only countably many distinct subgroups.
- 25. (TIFR 2018 Part A Problem-23) The permutation group S_{10} has an element of order 30.
- 26. (TIFR 2018 Part B Problem-11) Consider a cube *C* centered at the origin in \mathbb{R}^3 . The number of invertible linear transformations of \mathbb{R}^3 which map *C* onto itself is (a) 72.
 - (b) 48.
 - (c) 24.
 - (d) 12.
- 27. (TIFR 2017Part I Problem-12) There exists a finite abelian group G containing exactly 60 elements of order 2.
- 28. (TIFR 2017Part I Problem-23) A p-Sylow subgroup of the underlying additive group of a finite commutative ring R is an ideal in R.
- 29. (TIFR 2017Part I Problem-27) In the symmetric group S_n any two elements of the same order are conjugate.
- 30. (TIFR 2017Part II Problem-3) Prove or disprove: the group of positive rationals under multiplication is isomorphic to its subgroup consisting of rationals which can be expressed as p/q, where both p and q are odd positive integers.
- 31. (TIFR 2017Part II Problem-7) Prove or disprove: If G is a finite group and g, $h \in G$, then g, h have the same order if and only if there exists a group H containing G such that g and h are conjugate in H.
- 32. (TIFR 2016 Part-I Problem-8) The number of group homomorphisms from $\mathbb{Z}/20\mathbb{Z}$ to $\mathbb{Z}/29\mathbb{Z}$ is
 - A.1
 - B.20
 - C.29
 - D.580
- 33. (TIFR 2016 Part-I Problem-20) Let $G = \mathbb{Z}/100\mathbb{Z}$ and let $S = \{h \in G : Order(h) = 50\}$. Then |S| equals
 - A. 20
 - В. 25
 - C. 30
 - D. 50
- 34. (TIFR 2016 Part-II Problem-27) For $n \ge 1$, let S_n denote the group of all permutations on n symbols.

Which of the following statements is true?

- A. S_3 has an element of order 4
- B. S_4 has an element of order 5
- C. S_4 has an element of order 6
- D. S_5 has an element of order 6.

- A. $Aul(\mathbb{Z})$ is isomorphic to \mathbb{Z}_2
- B. If G is cyclic, then Aut(G) is cyclic
- C. If Aut(G) is trivial, then G is trivial
- D. $Aut(\mathbb{Z})$ is isomorphic to \mathbb{Z} .
- 36. (TIFR 2015 Part II Problem-17) In how many ways can the group \mathbb{Z}_5 act on the set

3

- $\{1, 2, 3, 4, 5\}$?
- A. 5
- В. 24
- C. 25
- D. 120.
- 37. (TIFR 2015 Part II Problem-29) let G be a group. Suppose $|G| = p^2 q$, where p and q are distinct prime numbers satisfying $q \not\equiv 1 \mod p$. Which of the following is always true?
 - A. G has more than one p-Sylow subgroup
 - B. G has a normal p-Sylow subgroup
 - C.The number of q-Sylow subgroups of G is divisible by p
 - D. G has a unique q-Sylow subgroup.
- 38. (**NBHM** (PhD) 2017 Section 1 Problem-1.2) Let $n \in \mathbb{N}$, $n \ge 2$. Which of the following statements are true?
 - a. Any finite group G of order n is isomorphic to a subgroup of $GL_n(\mathbb{R})$.
 - b. The group \mathbb{Z}_n is isomorphic to a subgroup of $GL_2(\mathbb{R})$.
 - c. The group \mathbb{Z}_{12} is isomorphic to a subgroup of S_7 .
- 39. (NBHM (PhD) 2016 Section 1 Problem-1.3) Which of the following statements are true? a. Let G be a group of order 99 and let H be a subgroup of order 11. Then H is normal in G.

b. Let *H* be the subgroup of S_3 consisting of the two elements $\{e, a\}$ where *e* is the identity and a = (12). Then *H* is normal in S_3 .

c. Let G be a finite group and let H be a subgroup of G. Define $W = \bigcap_{g \in G} g H g^{-1}$. Then W is a normal subgroup of G.

- 40. (NBHM (PhD) 2015 Section1 Problem-1.2) Which of the following statements are true?
 - a. Every group of order 51 is cyclic.
 - b. Every group of order 151 is cyclic.
 - c. Every group of order $505\ \mbox{is cyclic}$
- 41. (NBHM (PhD) 2015 Section1 Problem-1.4) How many elements of order 7 are there in a group of order 28?
- 42. (**NBHM** (PhD) 2015 Section1 Problem 1.5) Which of the following equations can occur as the class equation of a group of order 10?
 - a. 10 = 1 + 1 + 1 + 2 + 5
 - b. 10 = 1 + 2 + 3 + 4
 - c. $10 = 1 + 1 + \dots + 1(10 \text{ times})$