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Preface 

The present book contains 350 problems selected from the ma• 
terial of the mathematical olympiads and school mathematics 
hobby groups in Moscow. About 15 problems have been taken from 
the manuscript of the late D. 0. Shklyarsky (1918-1942), one of the 
founders of the mathematics hobby group for pupils at the State 
University of Moscow. 

It is a great pleasure to thank I. Bernstein, N. Vasilyev, G. Gal· 
perin, Yu. Ionin, A. Leman, A. Savin, A. Tolpygo, A. Toom, V. Gu­
tenmacher, L. Makar-Limanov and L. I. Golovina for valuable 
advice and he! p in the preparation of the book. 

l.M. Yaglom 
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Instructions 

This book contains the conditions of problems, the answers and hints to them 
and the solutions of the problems. The conditions of the most difficult problems. 
are marked by stars. 

We recommend the reader to start with trying to solve without assistance­
the problem he is interested in. In case this attempt fails he can read the hint 
or the answer to the problem, which may facilitate the solution. Finally, if this 
does not help, the solution of the problem given in the book should be studied. 
However, for the starred problems it may turn out to be appropriate to begin 
with reading the hints or the answers before proceeding to solve the problems. 

Most of the problems in the book are independent of one another except 
those in the last two sections ("Complex Numbers" and "Several Problems in­
Number Theory") where the problems are more closely interrelated. 

It is advisable to choose a definite section of the book and to spend some 
time on s0lving the problems of that section. Only after that (this does not of' 
course mean that all the problems or most of the problems must necessarily be 
solved) should the reader pass to another section and so on. However, the or­
der in which the sections are arranged in the book may not be followed. The 
solutions of some problems include indications concerning possible generaliza­
tions of the conditions of the problems. The reader is advised to think of sim· 
ilar generalizations for other problems; it is also interesting to try to state 
new problems akin to those collected in this book. 



Problems 

1. Introductory Problems 
Most of the problems collected in this section are exercises 

meant for logical training and they are not connected with any 
definite division of mathematics. Some of these problems are 
purely arithmetical (for instance, see Problems 25-29) while some 
others can be associated with the graph theory. By a graph is 
meant a system of points (see Fig. la) some of which are con­
nected by lines. Sometimes certain directions of motion are indi· 
cated by arrows on some (or all) of these lines. Then we speak 
of a directed graph (see Fig. lb). For instance, those of the prob­
lems below which are related to transportation systems can be 
stated in terms of the graph theory (and systems of roads with 
one-way traffic should naturally be represented by means of di· 
rected graphs). Similarly, a group of people some of whom are 
acquainted with one another can also be represented as a system 
of points among which those representing the people acquainted 
with one another are connected by lines*. 

Most of the problems of this section do not require any special 
knowledge of mathematics and therefore their solutions can easily 
be understood by junior pupils. However, the solutions of some of 
the problems are based on the method of mathematical induction 
with which usually only senior pupils are familiar. For the solu· 
tion of some other problems Dirichlet's principle** can be of use; 
conditionally, this principle is stated as follows: if there are seven 
rabbits and fi,ve cages (or, generally, m rabbits and n cages 
where n < m) and if it is required to put the rabbits in the cages 
then it is necessary to put two (or more) rabbits in at least one 
.cage. 

1. Two hundred soldiers form a rectangular array with ten sol· 
diers in each line and 20 soldiers in each file. From each line the 
smallest soldier is chosen, after which among the 20 soldiers thu., 
taken the tallest one is chosen. Then from each file of the same 
array of 200 soldiers the tallest soldier is chosen, after which 

* In the problems of the present section an acquaintance relation is always 
assumed to be symmetric in the sense that if a person A is said to be acquaint­
ed with a person B then it is automatically meant that B is acquainted 
with A. If this convention is not introduced then a system of acquaintance rela­
tions should be represented by a directed graph. 

** Peter Gustav Lejeune Dirichlet (1805-1859), a distinguished German 
mathematician. 
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among the I 0 soldiers thus taken the smallest one is chosen. Whichi 
of the two soldiers, that is the smallest among the tallest soldiers­
or the tallest among the smallest soldiers (provided fhat these· 
are different persons), is taller? 

2. Each of the people who has ever lived on the Earth has­
shaken hands with a number of other people. Prove that the· 
number of people each of whom has shaken hands an odd number 
of times is even. 

---~ 

I 

(a) (b) 

Fig. 1 

3. Prove that among any six people there are three people 
pairwise acquainted or three people pairwise not acquainted. 

4. Several people take part in a meeting (it is of course meant 
that the number of the people exceeds one because, if otherwise,. 
it would be senseless to speak of a "meeting"!). 

(a) Is it possible that among them there are not two persons. 
who are acquainted with the same number of people present ::it 
the meeting? 

(b) Prove that there can be the case when for any number of 
the participants of the meeting there are not three people each 
of whom is acquainted with the same number of people present 
at the meeting. 

5. 2n people take part in a meeting and each of them is ac­
quainted with not less than n people present. Prove that among 
these people there are four persons who can be seated at a round 
table so that each of them is acquainted with the neighbours sit­
ting on his left and on his right. 

6. A number of scientists took part in a congress. Some of them 
had been acquainted with some other participants of the congress. 
before and some were not. It turned out that among the scientists. 
there were not two persons who were acquainted with the same 
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number of participants and who had a mutual acquaintance. Prove 
that among the scientists who attended the congress there was 
a person who was acquainted with only one of the participants. 

7. At a congress there are 1000 delegates from various coun­
-tries. It is known that every three delegates can speak with one 
another without the help of the rest (but it may happen that one 
of the three persons has to serve as an interpreter for the other 
two). Prove that all the participants of the congress can be put 
up at a hotel with double rooms so that in each room there are 
two delegates who can speak with each other. 

8. Seventeen scientists take part in an international conference. 
There are three languages such that each of the 17 scientists 
knows at least one of them. It is known that every two partici­
pants of the conference can speak with each other in at least one 
of the three languages. Prove that among the participants of the 
conference there are three persons who can speak with one 
another in one and the same language. 

9. There are n people at a meeting. It is known that every two 
of the participants of the meeting who are acquainted with each 
other have no mutual acquaintances and that every two partici­
pants who are not acquainted with each other have exactly two 
mutual acquaintances. 

(a) Prove that all the participants have the same number of 
acquaintances. 

(b) For what n can the conditions of the problem be fulfilled? 
JO. In the town of "Manifold" there are 10 000 inhabitants and 

every two of them are either friends or enemies. Every day not 
more than one of the inhabitants of the town can quarrel with all 
his friends and, simultaneously, make friends with all his enemies; 
besides, any three inhabitants can make friends with one another. 
Prove that in a number of days all the inhabitants without ex­
~ception can make friends with one another. What is the least 
number of days sufficient for it? 

11*. In the State of Oz there are several castles from each of 
which three mads start. A knight-errant leaves his ancestral castle 
-to travel in the country. The knight is fond of variety and there­
fore when he arrives at a castle he always turns to the left if he 
turned to the right the previous time and turns to the right if he 
-turned to the left the previous time. (When going past the first 
castle on his way the knight may turn in any direction.) Prove 
that eventually the knight will return to his own castle. 

12*. 2n Knights of the Round Table gathered at l\ing Arthur's 
court, each of them having not more than n - I enemies among 
the knights present. Prove that Merlin (l\ing Arthur's Counsellor) 
can seat the knights at the round table so that none of them sib 
next to his enemy. 
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13. (a) Among 80 given coins one coin is known to be false 
(it is also known that the false coin is lighter than a genuine 
coin; all the genuine coins are of the same weight). It is required 
to detect the false coin by means of four weighings using a beam 
balance without weights. 

(b) It is known that among n given coins there is a false one 
which is lighter than a genuine coin; all the genuine coins are 
of the same weight. What is the least number k such that it is 
always possible to detect the false coin by means of k weighings 
using a beam balance without weights? 

14. There are 20 metal cubes of the same size and look some of 
which are made of aluminium while the others are made of du­
ralumin, the latter being heavier. How can we determine the num­
ber of the cubes made of duralumin with the aid of not more than 
11 weighings using a beam balance without weights? 

Remark. In this problem we assume that it is possible that all the cubes are 
made of aluminium and that they cannot be all made of duralumin (because 
without this assumption it would be impossible to find whether the cubes are 
made of aluminium or of duralumin in case all the cubes turn out to be of the 
same weight). 

15*. There is a false coin among 12 given coins. It is known 
that the false coin differs in its weight from a genuine coin but 
it is unkown whether it is lighter or heavier. All the genuine coins 
are of the same weight. It is required to detect the false coin with 
the aid of three weighings using a beam balance without weights 
and, simultaneously, to find whether that coin is lighter or heavier 
than the other coins. 

Remark. Under the conditions given in Problem 15 it is possible, using three 
weighings, to detect the false coin not only among 12 but also among 13 giv­
en coins; however, in the latter case it is impossble to find whether the false 
coin is lighter or heavier than a genuine coin. It turns out that 14 coins need 
four weighings. 

It can also be proved (although the proof is rather intricate!) that if we 
are given an arbitrary N of coins one of which is false and differs in its. 
weight from a genuine coin (all the genuine coins are of the same weight) then 
the least number k of weighings with the aid of a beam balance without weights 
making it possible to detect the false coin and simultaneously, to find whether 
it is lighter or heavier than a genuine coin is equal to log3 (2N + 3) in case­
the number 2N + 3 is equal to an integral power of the number 3 and is equal 
to [log3 (2N + 3) + I] in case 2N + 3 is not equal to an integral power of 3 
(that is in case the number log3(2N + 3) is not integral). Here the square brack­
ets denote the integral part of a number (see page 36). For N = 12 this ge­
neral statement implies that k = 3. For the general case of N coins it would 
also be interesting to determine the least number k1 of weighings making it 
possible to detect the false coin without finding whether it is lighter or heavier 
than a genuine coin (for N = 12 or N = 13 we have k1 = 3 while for N = 14 
we have k1 = 4; so far as we know the general expression k1 = k1 (N) has. 
not yet been determined). 
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16. (a) Once a man entered an inn. He had no money but he 
had a silver chain consisting of seven links. He was put up at the 
inn and it was agreed that every day he would give the innkeeper 
one of the links of the chain. What is the least number of the links 
of the chain that must be cut so that the man can pay the inn­
keeper for seven days (if necessary, the man can take back from 
the innkeeper some of the links he has alreaoy given to him and 
give him some other links in exchange)? 

(b) A chain consists of 2000 links. What is the least number 
of the links of the chain that should be cut so that it is possible 
to take any number of links ranging from 1 to 2000 by using 
the parts of the chain thus obtained? 

17. In the town of Liss all the underground stations are con­
nected so that it is possible to go from any station to any other 
(if necessary, the passengers are allowed to change trains). Prove 
that in these conditions there is an underground station such that 
when it is closed (the trains are not allowed to go past the sta­
tion which is closed) it is still possible to go from any of the 
remaining stations to any other. 

18*. There was two-way traffic in all the streets of the town of 
Zurbagan. When it was necessary to have all the roads repaired 
the municipal authorities had to introduce temporarily one-way 
traffic in some of the streets, two-way traffic remaining in the 
rest of the streets. After part of the streets were repaired two-way 
traffic was restored in them and in the others one-ray traffic was 
introduced. During both periods of the repairs it was possible to 
go from any place of Zurbagan to any other place. Prove that 
one-way traffic can be introduced in all the streets of the town 
in such a way that it is possible to go from any place to any 
other. 

19*. There are n towns in the state of Dolphinia every two of 
which are connected by a road, the traffic in the roads being 
one-way. Prove that if n =I= 2 or n =I= 4 then the direction of the 
movement along the roads can be chosen so that one can go from 
any town to any other town without going through more than one 
town. Also prove that for the case n = 2 or n = 4 such organiza­
tion of traffic is impossible. 

20*. In the state of Shvambrania there are 100 towns. It is 
known that if two towns A and B have no direct telephone com­
munication then there are air routes from A to B and from B to 
A and that if there is direct telephone communication between A 
and B then there are no such routes. It is also known that any 
two towns in Shvambrania can have telephone communication 
(possibly with the aid of several intermediate telephone ex­
changes) and that it is possible to go by air from any town to 
any other town (possibly with several landings). Prove that there 
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are four towns in Shvambrania such that there can be telephone 
communication between any two of them and one can fly froni 
any of these towns to any other using, if necessary, only two of 
these four towns as intermediate points. 

21. Can a knight move from the left lower corner of an ordinary 
chess-board to the right upper corner passing through each of the 
squares of the chess-board exactly once? 

22. A king's suicide problem. On a chess-board of 1000 X 1000 
squares there are 499 black rooks and a white king. Prove that 
for arbitrary initial positions of all these chessmen and for an 
arbitrary strategy of the black the king can "play at give-away", 
that is arrive in several moves at a square where it must be taken 
by one of the rooks. (The chessmen on the chess-board are sup­
posed to move according to the ordinary rules.) 

23. Twelve squares are arranged in a circular order and four 
neighbouring squares are occupied by four counters of different 
colour: red, yellow, green and blue. 

Any counter can be moved from the square it occupies across 
any four squares to the fifth one (provided that the latter is not 
occupied) in any of the two possible directions. After a number 
of such moves the counters may again occupy the four initial 
squares. What permutations of the counters can we have in this 
case? 

24. The students admitted to a university include exactly 
50 speaking English, exactly 50 speaking French and exactly 50 
speaking German. Of course, some of the students may speak two 
or three of the languages and therefore, in the general case, the 
total number of the students (each of whom speaks at least one 
of the languages) may be less than 3·50 = 150. Prove that all 
the students can be divided into 5 groups (generally consisting 
of a different number of students) so that each group contains 
exactly 10 people speaking English, exactly 10 people speaking 
French and exactly 10 people speaking German. 

25. (a) Twenty athletes took part in a contest, and there were 
9 referees. According to his judgement on the achievements of 
the athletes every referee made a list in which he arranged the 
athletes from the 1st to the 20th place. It turned out that there 
was no considerable difference in the judgment of all the referees: 
the places which each of the athletes was given by any two of the 
referees differed by not more than three. The final distribution of 
the places was done by determining the "average place" of every 
athlete, that is by dividing by 9 the sum of the places he was 
given by all the nine referees. What is the greatest possible value 
of the "average place" of the best of the 20 athletes? 

(b) The Tennis Federation gave qualification numbers to all 
the tennis-players of the country: the best player received the 1st 
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number, the next received the 2nd number and so on. It is known 
that in a game of any two of the tennis-players whose numbers 
differ by more than 2 the one having a smaller number always 
wins. 

In the Olympic games the 1024 tennis-players of the country 
take part (this means that after every round of the contest all the 
losers leave and the rest of the participants are divided into con­
testing pairs in a random way and then take part in the next 
round). What is the greatest value of the qualification number 
the winner of such games can have? 

26*. The Games lasted n days and N sets of medals were 
awarded to the winners during the Games: one set of medals and 
1/7 of the remaining medals on the lst day, 2 sets of medals and 
1/7 of the remaining part on the 2nd day, ... , (n - 1) sets of med­
als and 1/7 of the rest on the (n - 1) th day (the last but one 
day) and, finally, all the n remaining sets of medals on the last 
day. How many days did the Games last and how many sets of 
medals were awarded to the winners? 

27. There were five friends one of whom had a monkey. Once 
they bought a bag of nuts and decided to share the nuts among 
themselves the next morning. At night one of them woke up. He 
divided the nuts into five equal parts, found that one extra nut 
remained after the division, gave it to the monkey, ate his part 
of the nuts and fell asleep again. After that another owner of the 
nuts woke up. He did not know that some of the nuts had been 
taken and therefore he divided all the nuts remaining in the bag 
into five equal parts. He also found that there remained one nut 
after the division which he gave to the monkey. He ate one of 
these five parts and fell asleep. Then the three remaining friends 
performed, in succession, the same operations, that is, each of 
them divided the rest of the nuts into five parts not knowing what 
his friends had done, found that there remained one nut after the 
division, gave it to the monkey and ate one of the five parts. Fi­
nally, in the morning all the five friends divided the remaining 
nuts into five parts, saw that there remained one nut after the 
sharing and gave it to the monkey. It is required to determine the 
least possible number of the nuts in the bag for such a sharing 
to be possible. 

28. Two brothers had a flock of sheep. They sold the flock and 
got as many rubles for every sheep as was the number of the sheep 
in the flock. The money was shared in the following way: first the 
elder brother took ten rubles from the cash, then the younger 
brother took ten rubles, after which the elder brother took ten 
rubles again and so on. Finally, it turned out that at the last 
stage when it was the younger brother's turn to take money there 
remained less than ten rubles. Therefore the younger brother took 
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the rest of the money and the elder brother gave him his knife for 
the sharing to be fair. How much did the knife cost? 

29. (a) Which of the two days, Saturday or Sunday, happens 
to be more frequently a New Year's Day? 

(b) What day of the week happens to be most frequently the 
30th day of a month? · 

2. Permutation of Digits in a Number 
30. A whole number decreases an integral number of times 

when its last digit is deleted. Find all such numbers. 
31. (a) Find all whole numbers which begin with the digit 6 

and decrease 25 times when this digit is deleted. 
(b) Prove that there is no whole number which decreases 

35 times when its initial digit is deleted. 
32*. A whole number decreases 9 times when one of its digits 

is deleted, and the resultant number is divisible by 9. 
(a) Prove that in order to divide the resultant number by 9 it 

is also sufficient to delete one of its digits. 
(b) Find all the whole numbers satisfying the condition of the 

problem. 
33. (a) Find all whole numbers which decrease an integral 

number of times when their third digits are deleted. 
(b)* Find all whole numbers which decrease an integral num­

ber of times when their second digits are deleted. 
34. (a) Find the least whole number which begins with the 

digit 1 and increases 3 times when this digit is carried to the end 
of the number. Find all the numbers possessing this property. 

(b) What digits can stand at the beginning of the whole num­
bers which increase three times when these initial digits are car­
ried to the end of the numbers? Find all such numbers. 

35. Find the least natural number whose last digit is 6 such 
that it increases 4 times when this last digit is carried to the 
beginning of the number. 

36. Prove that there are no positive integral numbers which 
increase 5 or 6 or 8 times when their initial digits are carried to 
the end of the numbers. 

37. Prove that there are no positive integral numbers which in­
crease twice when their initial digits are carried to the end of 
the numbers. 

38. (a) Prove that there are no positive integral numbers which 
increase 7 or 9 times when their initial digits are carried to the 
end. 

(b) Prove that there are no positive integral numbers which 
increase 4 times when their initial digits are carried to the end 
of the numbers. 
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39. Find the least whole number whose initial digit is 7 which 
decreases 3 times when this digit is carried to the end of the 
number. Find all such numbers. 

40. (a) Prove that a positive integer cannot be 2, 3, 5, 6, 7 or 
8 times as small as its "reversion", that is as the number consist· 
ing of the same digits written in the reverse order. 

(b)*. Find all positive integers which are 4 or 9 times as small 
as their reversions. 

41. (a) Find a 6-digit number which increases 6 times when 
its three last digits are carried to the beginning of the number 
without their order being changed. 

(b) Prove that there exists no 8-digit number which increases 
,6 times when its last four digits are carried to the beginning of 
the number with the preservation of their order. 

42. Find a 6-digit number whose products by 2, 3, 4, 5 and 6 
are written with the aid of the same digits as the original number 
but in some other order. 

43. A whole number is equal to the arithmetic mean of all the 
numbers obtained from the given number with the aid of all the 
possible permutations of its digits (including, of course, the "iden­
tity permutation" under which all the digits retain their places). 
Find all whole numbers possessing this property. 

44. Let A be a positive integer and A' be a number written 
with the aid of the same digits which are arranged in some other 
order. Prove that if A +A'= 1010 then A is divisible by 10. 

45. Let M be a 17-digit number and N be the number obtained 
from M by writing the same digits in the reverse order. Prove 
that at least one digit in the decimal representation of the number 
M + N is even. 

3. Problems in Divisibility of Numbers 

Most of the topics whose study is started in this section 
are related to "higher arithmetic", that is to number theory. The 
study is in some way continued in the following sections and first 
Qf all in Secs. 4, 5 and 11. 

4'. Prove that for any integer n 
(a) n3 

- n is divisible by 3; 

(b) n5 - n is divisible by 5; 

(c) n7 - n is divisible by 7; 

(d) n 11 - n is divisible by 11; 

(e) n 13 - n is divisible by 13. 
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Remark. Note that n9 - n must not necessarily be divisible by 9 (for in­
stance, 29 - 2 = 510 is not divisible by 9). 

Problems (a)-(e) deal with special cases of a more general theorem; see 
Problem 340 (page 67). 

47. Prove that for any integer n 
(a) 3an - 2an is divisible by 35 (here n;;;::::: 0); 
(b) n5 - 5n3 + 4n is divisible by 120; 
(c) n2 + 3n + 5 is not divisible by 121. 
48. Prove that for any integers m and n 
(a)* mn (m 60 - n60 ) is divisible by 56 786 730; 
(b) m5 + 3m4n - 5m3n2 - 15m2n3 + 4mn4 + 12n5 is not equal 

to 33. 
49. For what positive integers n the number 2on + J6n - 3n - 1 

is divisible by 323? 
50. Is there a natural number n such that n2 + n + 1 is di­

visible by 1955? 
51. What number can be obtained in the remainder when the 

hundredth power of a whole number is divided by 125? 
52. Prove that if a whole number N is relatively prime to 10 

then the 10 Ith power of the number N has the same last three 
digits as N (for instance, the last three digits of 1233101 are 233 
and those of 37101 are 037). 

53. Find a three-digit number which, when raised to any inte· 
gral power, gives a number whose last three digits form the 
original number. 

54*. Let N be an even number not divisible by 10. What digit 
is in the tens place of the number N20? What digit is in the 
hundreds place of the number N200? 

55. Prove that a sum of the form 

lk+2k+3~+ ... +nk 

where n is an arbitrary positive integer and k is odd, is divisible 
by 1 + 2 + 3 + ... + n. 

56. Derive the test for divisibility of whole numbers by 11. 
57. The number 123456789(10)(11)(12)(13)(14) is written in 

the number system to base 15, that is this number is equal to 
(14) + (13)-15 + (12)-152 + (11) · 153 + ... + 2· 1512 + 1513• What 
number is obtained in the remainder when the given number is 
divided by 7? 

58. Let us consider all numbers K such that if a number N is 
divisible by K then every number obtained from the number N 
by any permutation of its digits is also divisible by K. Prove 
that K can only be equal to 1, 3 and 9. (For K = 1 the indicated 
property is quite obvious and for K = 3 and K = 9 it follows 
from the well-known tests for divisibility by 3 and by 9.) 
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59. Find the least whole number whose decimal representation 
consists only of l's which is exactly divisible by the number 
333 ... 33. 
~ 

JOO threes 
60. Let a be the last digit of a whole number N = 2h and A 

be the number obtained by deleting this last digit in N. Prove 
that for all k > 3 the number aA is divisible by 6. 

61. Prove that the expression 27 1958 - 10 8878 + 10 1528 is 
exactly divisible by 26 460. 

62. Prove that 11 10 - I is divisible by I 00. 
63. Prove that 22225555 + 55552222 is divisible by 7. 
64. Prove that any number composed of 3n similar digits is di­

visible by 3n (for example, the number 222 is divisible by 3, the 
number 777 777 777 is divisible by 9 and so on). 

65. Find the remainder which is obtained when the number 

JOIO + 10(102
) + , , . + 1000'°) 

is divided by 7. 
66. (a) Find the last digit of the number 9(99) and of the num-

ber 2(34
). 

(b) Find the last two digits of the numbers 2999 and 3999. 

( c) * Find the last two digits of the number 14(14!
4
). 

67. Prove that 

(a) the decimal representations of the numbers 999 and 99
99 

(where, for instance, 999 means 9(99)) have the same last two 
digits. 

7 777 
(b)* the decimal representations of the numbers 777 and 777 

have the same last six digits. 
68. (a) What is the last digit of the decimal representation of 

the number 

where the raising to the power 7 is repeated 1000 times? What 
are the last two digits of that number? 

(b) What is the last digit in the decimal representation of the 
number 

( 
... (7(77)) ) 

7 7 ... 

which is written with the aid of 1001 sevens as in Problem (a) 
but the order of the raising to the power is changed? What are 
the last two digits of this number? 
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69*. Let us consider the number 

( 
... (9(99)) ) 

N=9 9 ··• 

written with the aid of 1001 nines by analogy with the number irr 
Problem 68 (b). Find the last five digits of this number. 

70. For what natural numbers n is the sum 5n + ns divisible 
by 13? What is the least number n satisfying this condition? 

71. Find the last two digits of the number 

na + (n + l)a + (n + 2)a + . . . + (n + 99)a 

where n is an arbitrary nonnegative integer and 
(a) a=4; 
(b) a= 8. 
72*. Find the last 1000 digits of the number 

N = 1 + 50 + 502 + 503 + . . . + 50999 

73. A natural number M is divisible by 7; prove that if the 
number of the digits in the decimal representation of the number M 
is divisible by 6 then the number N obtained by carrying the last 
digit of M to its beginning is also divisible by 7. 

74. How many noughts stand at the end of the product of all 
whole numbers from 1 to 100 inclusive? 

We shall use the notation 

I· 2 · 3 · 4 ... (n - I)· n = nl 

(n! is called factorial n). The problem can briefly be stated as follows: how ma­
ny noughts are there at the end of the number 100!? 

75. (a) Prove that a product of n consecutive whole numbers 
is divisible by n!. 

(b) Prove that a fraction of the form a! bl~'.. k! is equal to a 

whole number provided that a+ b + ... + k ~ n. 
(c) Prove that (n!)! is divisible by n!<n-t)r. 
(d)* Prove that a product of n whole numbers forming an 

arithmetic progression whose common difference is relatively 
prime to n! is divisible by n!. 

Remark. Problem 75 (d) is a generalization of Problem 75 (a). 

76. Is the number of combinations of 1000 things taken 500 at 
a time divisible by 7? 

77. (a) Find all those numbers n lying between 1 and 100 for 
which (n - 1) ! is not divisible by n. 
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{b) Find all those numbers n lying between 1 and 100 for 
which (n - 1) I is not divisible by n2• 

78*. Find all whole numbers n divisible by all whole numbers 
not exceeding ,Y n. 

79. (a) Prove that a sum of squares of five consecutive whole 
numbers cannot be a perfect square of a whole number. 

(b) Prove that a sum of powers of three consecutive whole 
numbers with equal even exponents cannot be equal to an even 
power of a whole number. 

(c) Prove that a sum of powers of nine consecutive whole 
numbers with equal even exponents cannot be equal to any power 
(of course, with an exponent exceeding 1) of a whole number. 

80. (a) Let A and B be two different seven-digit numbers each 
of which is composed of all the digits from 1 to 7. Prove that A 
is not divisible by B. 

(b) Using all the digits from 1 to 9 compose three 3-digit 
numbers which are in the ratio 1 : 2 : 3. 

81. A square of a whole number has four equal digits at its 
end. What are these digits? 

82. Prove that if the lengths of two sides of a rectangle and of 
its diagonal are expressed by whole numbers then the area of the 
rectangle is divisible by 12. 

83. Prove that if the coefficients of a quadratic equation 

ax2 +bx+ c=O 

are odd integers then the roots of the equation cannot be rational 
numbers. 

84. Prove that if the sum of fractions 
1 1 1 
n+n+1+n+2 

where n is a whole number, is written in decimal notation then 
the resultant expression is a mixed periodic decimal. 

85. Prove that the expressions 
I 1 1 

(a) M=2+3+ ... +n-: 
1 1 I 1 

(b) N = n + n + I + n + 2 + + n + m ; 

(c) K = ~ + ~ + · .. + 2n ~ I 
where n and m are positive integers, cannot be equal to who!C> 
numbers. 

86. (a) Prove that a fraction of the form 4 ~ t ;a cannot 
a a + 1 

be reduced by a factor for any integral value of a. 
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(b) Find all (natural) numbers by which a fraction :: : ; can 
be reduced for an integral n. 

87. 1953 digits are written in a circular order. Prove that if the 
1953-digit numbers obtained when we read these digits in clock­
wise direction beginning with one of the digits is divisible by 27 
then if we read these digits in the same direction beginning with 
any other digit the new 1953-digit number is also divisible by 27. 

88. Prove that there exists a number divisibt.e by 51000 whose 
decimal representation involves no noughts. 

89. Prove that all numbers of the form 10001; 100010001; 
1000100 010 001, ... are composite. 

90. Prove that any two numbers in the sequence 

2 + 1, 22 + l, 24 + 1, 28 + l, 216 + I, ... , 22n + I, ... 

are relatively prime. 

Remark. In particular, the result cif this problem implies that there are in­
finitely many prime numbers (in this connection also see Problems 234 and 349). 
Indeed, if the set of the prime numbers were finite there could not exist infi­
nitely many numbers among which any two numbers are relatively prime. 

91. Prove that if one of the numbers 2n - I and 2n + I where 
n > 2 is prime then the other number is composite (for n = 2 
both 2n - 1 = 3 and 2n + 1 = 5 are prime numbers). 

92. (a) Prove that if p and 8p - 1 are prime numbers then 
Sp + 1 is a composite number. 

(b) Prove that if p and 8p2 + 1 are prime numbers then 8p2 - I 
is also a prime number. 

93. Prove that when any prime number different from 2 and 3 
is divided by 12 we obtain l in the remainder. 

94. Prove that if three prime numbers exceeding the number a 
form an arithmetic progression then the common differ~nce of 
the progression is divisible by 6. 

95*. (a) Ten prime numbers each of which is less than 3000 
form an arithmetic progression. Find these numbers. 

(b) Prove that there are not 11 prime numbers each of which 
is less than 20 000 such that they form an arithmetic progression. 

96. (a) Prove that from any five consecutive whole numbers it 
is always possible to choose a number which is relatively prime to 
the other four numbers. 

(b) Prove that, given 16 consecutive whole numbers, it is al­
ways pm>sible to choose a number from them which is relatively 
_prime to the other 15 numbers. 
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4. Miscel1aneous Problems in Arithmetic 

97. A number A is written in decimal number system with tl1e 
aid of 666 threes and a number B with the aid of 666 sl~fs·~ Of 
what digits does the decimal representation of the product A· B 
consist? 

98. A decimal representation of a number A consists of 1001 sev­
ens. Find the quotient and the remainder resulting from the di­
vision of A by the number 1001. 

99. Find the least square (of a whole number) whose decimal 
representation starts with six 2's. 

100. Are there whole numbers m and n such that m2 = n2 + 
+ 1954? 

101. Add three digits to 523 so that the resultant six-digit 
number is divisible by 7, by 8 and by 9. 

102. Find a four-digit number whose division by 131 leaves 
a remainder of 112 and whose division by 132 leaves a remainder 
of 98. 

103. (a) Prove that the sum of all n-digit numbers (n > 2) is 
equal to 494 99 ... 9 55 00 ... 0 (for instance, the sum of all 

'--v--../ '--v--../ 
(n-3) times (n-2) times 

three-digit numbers is equal to 494 550 and the sum of all six-digit 
numbers is equal to 494 999 550 000). 

(b) Find the sum of all even four-digit numbers which can be 
written with the aid of the digits 0, 1, 2, 3, 4 and 5 (it is allowable 
to repeat any digit in a number). 

104. How many digits and what digits are needed to write all 
whole numbers from 1 to 100 000 000 inclusive? 

105. Suppose that all whole numbers are consecutively written 
down from left to right. Find the 206 788th digit in this infinite 
sequence. 

106. Let us consider an infinite decimal of the form 
0.1234567891011121314 ... where all the whole numbers are con­
secutively written after the decimal point. Is this decimal pe­
riodic? 

107. Each of the whole numbers from 1 to 1 000 000 000 inclu­
sive is replaced by the sum of the digits forming the number (of 
course, under this operation I-digit numbers do not change where­
as all the other numbers decrease). Then each of the resultant 
numbers is again replaced by the sum of its digits, and the op­
eration is performed repeatedly until we obtain a sequence of 
I-digit numbers containing 1000000 000 members. Is the number 
of 1 's in this sequence greater than the number of 2's or not? 

108. (a) A decimal representation of a whole number involves 
only a number of sixes and a number of noughts. Can this num­
ber be a perfect square? 
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(b) Answer the same question for a whole number in whose 
decimal representation the digits 1, 2, 3, 4, 5, 6, 7, 8 and 9 are 
present, each of the digits is used only once, and the digit 5 stands 
at the end of the number. 

109. Each of the five digit numbers from 11 111 to 99 999 inclu· 
sive is written on a separate card (the number of these cards is 
obviously equal to 88 889). Then the cards are arranged in an 
arbitrary manner to form a chain. Prove that the 444 445-digit 
number obtained in this way ( 444 445 = 88 889 · 5) is not equal 
to a power of two. 

110. In the decimal representation of a 10-digit number the ini· 
tial digit is equal to the number of noughts in the representation, 
the next digit is equal to the number of ones and so on (accord­
ingly, the last digit is equal to the number of nines in the repre­
sentation). Find all such 10-digit numbers. 

111. By what factor should the number 999 999 999 be mul­
tiplied in order to obtain a number consisting only of ones? 

112. Let A be a natural number. Prove that there exist infi­
nitely many (natural) numbers N whose decimal representations 
involve only the digits 1, 2, ... , 9 (and do not involve noughts!) 
such that the sums of the digits in the decimal representations of 
the numbers N and AN are equal*. 

113. Let a1, a2, ... be all nonnegative integers with not more 
·than n(n ~ 2) decimal places for which the sums of their digits 
are even and let b1, b2, ... be all non-negative integers with not 
more than n decimal places for which the sums of their digits 
.are odd. Prove that 

a;11 + a;i + .. . = b;11 + b~ + ... 
for all (natural) m < n. Does this assertion remain true tor 
.m ~ n? 

114. In the triangular number array 

1 1 1 

123 2 1 

1367631 

*The stipulation that the decimal representations of the numbers N do not 
involve noughts is made because if we write any number of noughts at the 
end of the representation of N the sums of the digits in the (new) number N 
and in the number AN -do not of course change, and therefore without this 
stipulation the existence of only one number N satisfying the condition of the 
problem would automatically imply the existence of an infinitude of such num­

Jlers. 
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each of the numbers is equal to the sum of the three numbers 
written in the preceding horizontal row above the given number 
and above the numbers standing on the right and on the left of 
this number; in case one of the two such numbers is absent in 
the preceding row they are replaced by zeros. 

Prove that, beginning with the third row, there is an even num­
ber in every row. 

115. Consider the triangular number array 

0 1 2 3 ..•••.••... 1956 1957 1958 

I 3 5 3913 3915 

4 8 ... 7828 

in which every number except those in the upper horizontal row 
is equal to the sum of the two numbers standing above this num­
ber in the preceding row. Prove that the last number standing in 
the lowermost row is divisible by 1958. 

116. The distance between two stations A and B is equal to 
999 km. Kilometre poles along the railway connecting A and B 
show the distances from the poles to A and to B. They read thus: 

01999; 11 998; 21 997; ... ; 9991 0 

How many of these poles are such that there are only two different: 
digits on them? 

117. A boy passing by the cinema on a bus could notice only· 
the hours (but not the minutes!) when four (of the eight) shows 
began: 

!st show -12 (hours). , • (minutes) 

2nd show -13 (hours), •• (minutes) 

7th show -23 (hours) ••• (minutes) 

8th show -24 (hours) ••• (minutes) 

It is required to restore from these data the exact time of the· 
beginning of all the shows (it is implied that the duration of all 
the eight shows is the same). 

118. A highway with round-the-clock bus service crosses a rail-­
way. Every hour two trains run along the railway and approacrr 
ihe level crossing exactly at n hours and at n hours 38 minutes 
sespectively where n assumes the values from 0 to 23. When a 
train passes the crossing the lifting gate stops the road traffic for 
~ minutes. Is it possible to work out a timetable for the buses so,, 
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that they go with an interval of T minutes and so that no bus 
stops at the crossing? For what intervals T between the buses not 
exceeding half an hour is it possible to schedule the bus service 
in the required manner? 

119. Find the greatest possible value of the ratio of a three-digit 
number to the sum of its digits. 

120. Delete 100 digits in the number 

12345678910111213 ... 979899100 

so that the resultant number has 
(a) the greatest possible value; 
(b) the least possible value. 
121. Using all the digits from 1 to 9 compose three 3-digit 

numbers so that their product has 
(a) the least possible value; 
( b) the greatest possible value. 
122. A sum of several consecutive positive integers is equal to 

1000. Find these integers. 
123. (a) Prove that every whole number which is not equal to 

a power of two can be represented in the form of a sum of at least 
two consecutive positive integers and that for the powers of two 
such a representation is impossible. 

(b) Prove that every odd composite number can be represented 
as a sum of at least two consecutive odd numbers and that no 
prime number can be represented in that way. What even numbers 
can be represented in the form of a sum of several consecutive 
odd numbers? 

( c) Prove that every power of a positive integer n (with the 
exponent greater than 1) can be represented as a sum of n con­
secutive odd numbers. 

124. Prove that every sum of 1 and a product of four con­
secutive whole numbers is a perfect square. 

125. Let us consider a collection of 4n positive numbers such 
that its any four pairwise different members can be arranged as 
a geometric progression. Prove that there are n equal numbers 
among the given collection of numbers. 

126. There are 27 weights of magnitudes 12, 22, 32, ... , 272 re­
spectively. ll is required to divide them into three groups of equal 
weight. 

127. There are 13 weights, each weighing an integral number 
of grams. It is known that any 12 of the weights can be divided 
into two groups of 6 weights balancing each other when put on 
the scales. Prove that all the weights are identical. 
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128*. Four (arbitrary) numbers a, b, c and d are written in a 
line. Another 4-tuple consisting of the numbers a1 = ab, b1 = be, 
c1 = cd and d1 = da is written under these numbers. Then under 
the numbers ai, bi. c1 and d1 a new 4-tuple a2 = a1b1, b2 = b1c1, 
c2 = c2d1 and d2 = d1a1 is written and so on. Prove that all the 
4-tuples thus formed either are pairwise different or, beginning 
with one of them, become identical. 

129. There is an arbitrary set of N numbers a1, a2, ... , aN 
(where N is an exact power of two: N = 2k) each of which is 
equal to + 1 or to -1. Starting with this set, a new number set is 
formed according to the formulas a(= a1a2, a2 = a2a:i • ... , a!v-1 = 
=aN-taN, a/J = aNa1, each of the new numbers being again equal 
to + 1 or to -1. Then, using the numbers af. a2, ... , a!v, a new 
N-tuple of numbers a'{, a2, ... , a'N is formed in accordance 
with the above rule, and so on. Prove that proceeding in this way 
we eventually arrive at an N-tuple consisting only of the numbers 
+i. 

130*. Let al> a2 , ••• , an where n > 2 be integers. Using these 
numbers a new sequence consisting of the numbers al= ai t a2 

, 

, a 2 + a3 1 Gn-1 +an 1 an+ a1 • f d Th a2 = 2 , ••• , an-1 = 2 , an= 2 ts orme . en, 
proceeding from the numbers al, a2, ... , a~. new numbers a'{, 
df, ... , a~ are formed in accordance with the same rule (that is 

I I 

a'{= a1 ~ a2 
, a2, ... , a~, etc.), and so on. Prove that if all the 

numbers thus obtained are integers then a1 = a2 = ... =an. 
131. Let x = 1 and let y and z be arbitrary numbers. We shall 

denote the absolute values Ix - y j, I y - z I and I z - x I of the 
pairwise differences of the three original numbers as x1, y1 and Z; 

respectively. Similarly, we shall denote the absolute values of the 
pairwise differences of the numbers x1, y1, and zi, that is the quan­
tities I.ti -yd, IY1 - zd and lz1 - xij, as X2, Y2 and z2 respec­
tively, the absolute values of the differences of the numbers x2, y2 
and Z2 as xa, Ya and z3 respectively, and so on. It is known that 
for some n the triple of the numbers x,,, Yn and z,, coincides with 
the original triple of the numbers x, y and z. Find the numbers y 
antd z. 

132*. (a) There are four arbitrary positive integers A, B, C 
and D. Lef us denote by Ar, B1, C1 and D1 the differences between 
A and B, B and C, C and D and D and A (it is meant that every 
time we subtract a smaller number from a greater one). Then, 
proceeding from the numbers Ai. Bi. C1 and Di. we similarly form 
a 4-tuple of numbers A2, B2, C2, and D2, and so on. Prove that 
after the procedure has been repeated several times we must ne­
cessarily arrive at a 4-tuple of zeros. 
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For instance, starting with the numbers 32, l, 110 and 7 we ob· 
iain, in succession, 

32, 1, 110, 7 

31, 109, 103, 25 

78, 6, 78, 6 
72, 72, 72, 72 

0, 0, 0, 0 

(b) Does the assertion stated in Problem (a) remain true 
-when A, B, C and D are positive rational numbers and not neces· 
·sarily integers? What is the answer to the same question when A, 
B, C and D are irrational numbers? 

133*. (a) Arrange the numbers from 1 to 1000 as a sequence 
·such that any 11 numbers (not necessarily consecutive members 
of the sequence) arbitrarily chosen from it do not form an in· 
creasing or a decreasing sequence. 

(b) Prove that from any sequence formed by arranging in a 
certain way the numbers from 1 to 101 it is always possible to 
-choose 11 numbers (which must not necessarily be consecutive 
members of the sequence) which form an increasing or a decreas­
ing number sequence. 

134. (a) Let there be 101 numbers arbitrarily chosen from the 
first 200 whole numbers 1, 2, ... , 200. Prove that among the 
chosen numbers there is a pair of numbers such that one of them 
is divisible by the other. 

(b) Choose 100 numbers from the first 200 whole numbers so 
that none of them is divisible by any other. 

(c) Prove that if at least one of 100 whole numbers not exceed­
ing 200 is less than 16 then one of these numbers must necessarily 
be divisible by some other. 

135. Prove that 
(a) from any 52 integers it is always possible to choose two 

numbers such that their sum or difference is divisible by 100; 
(b) from any 100 integers it is always possible to choose sev­

-eral numbers (or, perhaps, one number) whose sum is divisible 
by 100; 

(c) if the numbers in Problem (b) are positive and do not ex· 
-ceed 100 and their sum is equal to 200 then it is possible to choose 
'Several numbers from them such that their sum is equal to 100; 

(d)* from any 200 integers it is possible to choose 100 numbers 
whose sum is divisible by 100. 

136. Let there be a nonincreasing sequence ai. a2, ... , an of 
positive numbers whose sum is equal to 1, the greatest number 
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in the sequence being equal to 2
1
k where k is a whole number: 

-
1
- = a1 ~ a2 ~ aa ~ ... ~an > 0, a1 + a2 + . . . +an= 1 

2k 

Prove that it is possible to chose k numbers from this sequence 
.such that the smallest of them exceeds half the greatest number. 

137. Let there be p crosses and q noughts written in a circular 
order. Let a denote the number of pairs of crosses standing side 
by side and b denote the number of pairs of noughts standing side 
bv side. Prove that a - b = p - q. 

• 138. Let i1, i2, ••• , in be a sequence of numbers 1, 2, ... , n 
which, in the general case, are arranged in some new order. Prove 
that for even n the product (1 - i1) (2 - i2) (3 - i3) ... (n - in) 

can be even and can be odd and that for an odd n this product 
must necessarily be even. 

139. Given n numbers Xi, X2, X3, •.• , Xn each of which is equal 
to +1 or to -1, prove that if X1X2 + X2X3 + ... + Xn-iXn + XnX1=0 

then n is divisible by 4. 
140. Prove that the set of all whole numbers whose decim:Jl 

representations involve only the digits 1 and 2 can be divided 
into two groups such that the decimal representation of the sum 
of any two numbers which belong to any of the groups involves 
not less than two digits 3. 

141. There are five 100-digit numbers whose decimal represen· 
tations involve only the digits 1 and 2. It is known that any two 
of the numbers have the same digits in exactly r of the 100 dec­
imal places and that in no decimal place the corresponding five 
digits of the given five numbers coincide. Prove that this is only 
possible when r lies within the limits from 40 to 60: 40 ~ r ~ 60. 

142. There are two sets of the signs "+" and "-" each of 
which contains 1958 signs. It is allowed to perform repeatedly the 
operation of changing eleven signs arbitrarily chosen from the 
first set to the opposite. Prove that after a number of such ope­
rations it is possible to transform the first set into the second. 
(The sets are considered identical when they contain similar 
signs in the same places.) 

143*. When training a chess-player plays at least one game of 
chess a day but in order to avoid overstrain he plays not more 
than 12 games a week. Prove that there must be a period of sev· 
era! consecutive days during which he plays exactly 20 games. 

144. Let N be an arbitrary positive integer. Prove that there is 
a whole number multiple of N whose decimal representation is 
~ormed only of the digits 0 and 1. Besides, for the case when N 
is relative prime to 10 (that is when N is divisible neither by 2 
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nor by 5) prove that there exists a multiple of N whose decimal 
representation consists only of ones (if N is not relatively prime 
to 10 then, obviously, no number of the form 11 ... I can be di-

~ 
n times 

visible by N). 
145. Construct a system of line segments lying on the number 

line and not overlapping one another (that is, having no common 
internal points and no common end points) each of which is of 
length I such that any (infinite) arithmetic progression (with an 

0 

7 7 
4 3 

2 

14 
4 

Fig. 2 

4 

f4 21 
3 4 

5 6 7 

arbitrary first term and an arbitrary common difference!) con­
tains at least one number failing inside one of the segments be­
longing to this system. 

146. Let m and n be two relatively prime positive integers. 
Prove that if the fractions 

m + n 2 (m + n) 3 (m + n) (m - I) (m + n) 

and 
m 

m+n 
n 

m 

2 (m + n)' 
n 

m 

3 (m + n) 
n 

' ... , 

, ... , 

m 

(n- l)(m+n) 
n 

are represented by points on the number line then each of the in­
tervals (I, 2), (2, 3), (3, 4), ... , (m + n - 2, m + n- 1) con­
tains exactly one representing point (see Fig. 2 demonstrating the 
case when m = 3 and n = 4). 

147*. Let 01, 02, 03, ... , On be arbitrary positiv·e integers each 
of which is less than 1000. Let the least common multiple of any 
two of them be greater than 1000. Prove that the sum of the reci­
procals of the numbers 01, 02, a3, ... , On is less than two. 

148*. A fraction of the form q/p whose denominator is an odd 
prime number p =I= 5 is represented as an infinite repeating de­
cimal. Prove that if the number of the digits in the period of the 
decimal is even then the arithmetic mean of all the digits form­
ing the period is equal to 4.5' (this arithmetic mean thus coincides 
with the arithmetic mean of all the digits 0, 1, 2, ... , 9). This 
allows us to say that the "great" and the "small" digits are en­
countered in the period "equally frequently". Also prove that if 
the number of the digits forming the period is odd then the arith-
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metic mean of all these digits must necessarily be different 
from 4.5. 

149*. Let fractions of the form 

{where p is a prime number different from 2 and 5 and a 1, a2, ... 
• . . , an are arbitrary whole numbers relatively prime to p) be re­
presented as infinite repeating decimals. Prove that the first sev­
eral fractions (or, perhaps, one fracion) have the same number 
of digits in their periods and that for the other fractions the 
number of digits in the period of every decimal is p times as 
great as the number of digits in the period of the preceding dec­
imal. 

. 1 -4 -10 -80 
For instance, 3 = 0.3, 9 = 0.4, 27 = 0.370, 81 =0.987654320, 

~!~ has 27 digits iri the period, ~;~ has 81 digits in the period 
and so on. 

5. Finding Integral Solutions 
of Equations* 

150. (a) Find a -four-digit number which is a perfect square 
such that its first two digits are equal to each other and its last 
two digits are equal to each other. 

(b) A sum of a two-digit number and a number represented 
with the aid of the same digits but written in the reverse order is 
a perfect square. Find all such numbers. 

151. Find a 4-digit number which is equal to the square of the 
sum of two 2-digit numbers formed of the first two and the last 
two digits of the given number. 

152. Find all 4-digit numbers which are perfect squares and 
whose decimal representations contain 

(a) four even digits; 
(b) four odd digits. 

153. (a) Find all three-digit numbers equal to the sums of the 
factorials of their digits. 

(b) Find all whole numbers equal to the sums of the squares 
of their digits. 

* A method of finding integral solutions of certain algebraic equations is 
referred to as Diophantine analysis and the equations are termed Diophantine 
equations after Diophantus of Alexandria (c. 250 A. D.), a Greek algebraist. -
Tr. 
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154. Find all whole numbers which are equal to 

(a) the squares of the sums of their digits; 
(b) the sums of the digits in the decimal representations of 

their cubes. 

155. Find the integral solutions of the equations 

(a) 11 + 2! + 3! + ... +xi= y2; 
(b) l! + 21 + 3! + ... + xi= y2

, 

156. In how many ways is it possible to represent 2n as a sum 
of four squares of positive integers? 

157. (a) Prove that the equality 

x2 + y2 + z2 = 2xyz 

can hold for whole numbers x, y and z only when x = y = z = o. 
(b) Find the whole numbers x, y, z and v such that 

x2 + y2 + z2 + v2 = 2xyzv 

158*. (a) For what integral values of k can the equality 

x2 + y2 + z2 = kxyz 
hold where x, y and z are positive integers? 

(b) Among the first thousand whole numbers find the possible 
triples of numbers for which the sums of their squares are divis~ 
ible by their products. 

159. Find the integral solutions of the equation 

x3 
- 2y3 - 4z·3 = 0 

160. Find the integral solutions of the equation 

x2+x=y4+y:1+Y2+Y 

161. Find the positive integral solutions of the equation 

x2Y + (x + l)~Y = (x + 2)2
Y 

162. Find the integral solutions of the equation 

'\fx+-../x+ ... -t.!=z 
11 square roots 

163*. Prove that the equation x2 + x + 1 = py where the coef. 
ficient p is a prime number possesses integral solutions x, y for 
infinitely many values of p. 

164*. Find four positive integers such that the sum of the 
square of each of them and the remaining three numbers is a per· 
feet square. 
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165. Find all the pairs of integers whose sums are equal to their 
products. 

166. The sum of the reciprocals of three positive integers is 
equal to I. Find these integers. 

167. (a) Prove that the equation ..!.. + _!_ = ..!.. where n > 1 
x y n 

is a natural number has exactly three solutions x, y (where x and 
y are natural numbers) for any prime number n (solutions of the 
form x = a, y = b and x = b, y = a are considered to be differ· 
ent when a:/= b) and more than three such solutions for any com· 
posite number n. 

(b) Find all integral solutions of Problem 167 (a) for n = 1 ~. 
( c)* Find the integral solutions of the equation _!_ + ...!.. = ..!.. x y z 

in x, y, z {derive the general formula expressing all the sol u · 
tions). 

168. (a) Find all pairs of positive integers x and y not equal 
to each other which satisfy the equation 

xY=yx. 

(b) Find all pairs of positive rational numbers x and y not 
coinciding with each other which satisfy the equation 

xY=yx. 

(derive the general formula expressing all such solutions). 
169. Two pupils of the 5th form and several pupils of the 6th 

form participated in a chess tournament. Each pupil played once 
with every other participant. The two pupils of the 5th form to­
gether had 8 points; each of the pupils of the 6th form had one 
and the same number of points (in the tournament a winner re­
ceives 1 point, a loser receives 0 and for a drawn game each of 
the participants receives 1/2). How many pupils of the 6th form 
participated in the fournament? 

170. Pupils of the 5th and of the 6th form took part in a chess 
tournament. Each participant played once with every other partic­
ipant. The number of the pupils of the 6th form was 10 times 
that of the pupils of the 5th form and the number of points the 
former had together was 4.5 times that the pupils of the 5th form 
had. How many pupils of the 5th form participated in the tourna­
ment and how many points had they together? 

171*. By an integer triangle we shall simply mean a triangle 
f.he lengths of whose sides are expressed by whole numbers. Find 
all integer triangles each of which has a perimeter equal to its 
area. 

2 -60 
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Problem 171 belongs to an important division of the theory of 
integral solutions of equations, and we do not go into detail here 
because this topic is very extensive. For instance, there are very 
interesting problems on integer triangles whose angles are com­
mensurable with an angle of 360°. It can be proved that an in­
teger triangle can have no angles commensurable with an angle 
of 360° which are different from 60°, go0 and 120°, and it is not 
difficult to derive formulas expressing the lengths of the sides of 
all integer triangles with a given angle a where a is equal to 60" 
or go0 or 120° (right integer triangles are often called Pythago­
rean triangles). It is also interesting to consider the problem of 
finding integer triangles whose two angles are in a given ratio, 
say one of them is twice or three times or five times or six times 
as great as the other. For instance, it can readily be proved that 
the smallest integer triangle one of whose angles is twice as great 
as some other of its angles has sides of lengths 4, 5 and 6 and 
that the least possible lengths of the sides of an integer triangle 
one of whose angles is six times as great as some other of its 
angles are 30 421; 46 656 and 72 g3o. Further, it is interesting to 
impose some definite conditions on the angles and on the sides of 
an integer triangle. For example, we can easily find infinitely 
many Pythagorean triangles each of which has a hypotenuse or 
one of the legs expressed by perfect squares whereas there is no 
Pythagorean triangle the lengths of whose two sides are simulta­
neously perfect squares. Besides, among the Pythagorean trian­
gles each of which has a hypotenuse expressed by a perfect square 
there are infinitely many triangles the sum of whose legs is also 
a perfect square. The sides of all such triangles are very large: 
as early as 1643 P. Fermat* showed that the smallest of the 
Pythagorean triangles satisfying the above conditions has sides 
whose lengths are 

and 

a= 1 0616522g3 520 

b = 4 565 486 027 761 

c = 4 687 2g8 610 289 

6. Matrices, Sequences and Functions 

An m X n matrix (also called an m-by-n matrix) is simply a 
rectangular array of numbers having m horizontal rows and n 
columns. As examples, below are written a 2 X 4 matrix, a 3 X 3 

* Pierre de Fermat (1602-1665). the great French mathematician, one of the 
founders of the number theory. 
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matrix (which is a square matrix of the 3rd order), a 3 X 1 ma­
trix and a 1 X 5 matrix ( 1 X n matrices and m X l matrices are 
also called vectors, the former being ref erred to as row vectors 
and the latter as column vectors): 

[ 
1/2 - 1/2 1/3 1/7]. [ 

3 
-

2 0
] -11 0 7 ; 

2/7 - 4/3 3/ 4 0 ' 
12 

I _ I 

[10 -9 8 -7 6] 

By an integer matrix we shall mean a matrix whose all elements 
are integers. For instance, such are the second and the fourth (but 
not the first and the third) of the matrices written above. We men­
tion here the notion of a matrix because it plays an important 
role in mathematics. 

A number sequence is a set of numbers ordered as are the posi­
tive integers: 

(more often we deal with infinite sequences). To specify a se­
quence it is necessary to state a rule according to which its 
members (elements) a1, a2, ... are formed. Such a rule can be ex­
pressed by a formula showing how an arbitrary element an can 
be computed for any given index n or by an algorithm which indi­
cates some method with the aid of which an can be found for any 
concrete value of n. For instance, in several problems in the 
present section we shall encounter the Fibonacci* sequence 

I, I, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . . (*) 

(its members are the Fibonacci numbers). An algorithm deter­
mining this sequence** is specified by the following rules: 

a1=a2 =1; an=an-1 + a,n-2 for n > 2 (**) 

By the way, in mathematics we also encounter the so-called "ran­
dom sequences" the formation of whose members is regulated by 
no strict rules (cf. Problem 192). 

* Leonardo Fibonacci (Leonardo de Pisa) (1180-1240), a distinguished me­
dieval European mathematician. 

** There exist some other algorithms describing the Fibonacci numbers (*); 
for instance, rule (**) implies the formula 

expressing the Fibonacci number Un directly in terms of n. 

2* 



'.36 Problems 

By a function y = f(x) is meant a law f: x ~ y specifying a 
mapping of a set X of "admissible" values of the argument x onto 
a set Y of the values y of the function; to each value x EX there 
must correspond a single value y = f (x). 

y !J 

y~ [x] Y=-(:c) -
-ii>-· ~ 

__,.. -+-

I ......,... I -+-

x i: 
~ 

~ 

(il) (b) 

y ~I~ 

y= {x}~x-[x] 

/ 
:r 

(c) (d) 

Fig. 3 

In number theory those functions are most important which are 
connected with integers, that is those whose domain X and range 
Y consist of integers. When the domain X = {I, 2, 3, ... } is the 
set of all natural numbers the argument x is more often denoted 
by the letter n; in this case a function n 1---7 y(n) or n 1---7 an simply 
reduces to a number sequence {ai, a2, a3, ... }. A typical (and fre· 
quently encountered) example of a function whose range Y con· 
sists of integers is the so-called integral part [ x] of a number x 
which is defined as the largest integer not exceeding x (for in· 
stance, [2.5] = 2, [ 4] = 4 and [-3.2] = - 4). Another function 
similar to [x] is the one which we denote as (x): it is equal to the 
nearest integer to x, that is to the integer for which the absolute 
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value of the difference between this integer and x assumes the 
smallest possible value (in case there are two such integers (x) 
.is taken to be equal to the greatest of them; for instance, (2.5) =3, 
(4) = 4 and (-3.2) = - 3; compare the graphs of [x] and of (x) 

shown in Fig. 3, a and b). In some mathematical problems we 
.also deal with the function {x} = x -[x] which is called the frac­
tional part of the number x (see Fig. 3c). (For the sake of visua· 
lity, Fig. 3d shows the graph of the deviation of x from its nearest 
intrger.) However, the most important role is played in the 
number theory by some "purely arithmetic" functions for which 
both the domains X and the ranges Y consist of integers. As exam· 
ples we can mention some of such functions which are encountered 
in the problems below: the number of the divisors i-(n) = 'tn of a 
(natural) number n, the sum a(n) =Un of the divisors of n and 

the Mobius* function µ(n) defined by the rule: µ(I)= 1, µ(n)= 
= (-1) k if n = P1P2 ... Pk where p,, P2, ... , Pk are pairwise dis­
tinct positive prime numbers and µ(n) = 0 for all the other posi· 
tive integers n multiple of at least one square of a natural num­
ber; the Mobius function implicitly takes part in the solution of 
Problem 197. (It should be noted that all the three functions i-(n), 
cr(n) and µ(n) possess the so-called "multiplication property": if 
<p(n) is any of these functions then <p(n1n2) = <p(n1)<p(n2 ) for any 
relatively prime natural numbers n, and n2.) 

The problems collected in this section are rather versatile both 
in their content and in the methods of their solution. In particular, 
in many of the problems the set of all points in the plane with in· 
tegral coordinates is used; its application to number-theoretic prob­
lems was initiated in the works of H. Minkowski ** and G.F. Vo­
ronoi ***. 

172. The numbers 1, 2, 3, ... , n2 are arranged as a square table 
()f the form 

n+l 

2n+ 1 

2 

n+2 
2n+2 

3 

n+3 
2n+3 

n 
2n 
3n 

_(n- l)n+ 1 (n- l)n+2 (n- l)n+3 n2 

"' Augustus Ferdinand Mobius (1790-1868), a distinguished German ma­
thematician whose primary field of interest was geometry. 

** Hermann Minkowski ( 1864-1906), a distinguished German mathemati· 
dan who contributed much to geometry, physics (relativity theory) and num­
ber theory; he was one of the founders of the "geometrical theory of numbers". 

*** G. F. Voronoi (1868-1908), a distinguished Russian mathematician, one 
()f the founders of the "geometrical theory of numbers", 
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From this table a number is chosen and the row and the co­
lumn containing this number are deleted. Then from the remain­
ing number array one more number is chosen and again the row 
and the column containing this number are deleted and so forth 
until there remains only one number in the table which is automat­
ically added to the set of the numbers chosen previously. Find· 
the sum of all the numbers thus chosen. 

173. A square table with n2 cells is filled with integers assum­
ing the values from 1 to n so that in each row and in each column 
there are all numbers from 1 to n. Prove that if the original table· 
is symmetric about the diagonal joining its left upper corner and 
its right lower corner and if the number n is odd then there are 
all numbers from 1 to n on this diagonal. Does this assertion 
remain true for the case when n is an even number? 

174. There are n2 numbers from 1 to n2 which are arranged to 
form a square table of dimension n X n so that the number 1 occu­
pies an arbitrary place, the number 2 belongs to the row with 
serial number equal to that of the column containing the number I, 
the number 3 belongs to the row with serial number coinciding 
with that of the column containing the number 2 and so on. What 
is the difference between the sum of the numbers belonging to the 
row containing the number 1 and the sum of the numbers belong-­
ing to the column containing the number n2? 

175. There is a rectangular table of dimension m X n in whose 
all cells some numbers are written. We are allowed to change tcr 
the opposite the signs of all numbers belonging to one row or of 
all numbers belonging to one column. Prove that on repeating­
these admissible operations several times we can always arrive 
at a table for which the sum of the numbers in each row and the 
sum of the numbers in each column are nonnegative. 

176. 800 numbers are written to form a rectangular table of-
100 rows and 80 columns so that the product of all numbers­
belonging to any column by the sum of all numbers belonging to, 
any row is equal to the number standing at the intersection of this 
row and this column. It is known that the number standing in the 
right upper corner of the table is positive. Find the sum of all the­
numbers the table is formed of. 

177. Sixty-four nonnegative numbers whose sum is equal te> 
1956 are written in the 64 squares of a chess-board. It is known 
that the sum of the numbers belonging to each of the two diag­
onals of the board is equal to 112 and that the numbers occupy­
ing any two squares symmetric about any of the diagonals are 
equal to each other. Prove that the sum of the numbers belonging 
to any row or to any column of the board is less than 518. 

178. In the squares of a board (resembling a chess-board) of 
dimension nXn some numbers are written so that for any arrange-
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ment of n rooks on the board satisfying the condition that any 
two rooks cannot take each other the sum of the numbers stand­
ing in the squares occupied by the rooks is one and the same. Let 
a;i denote the number placed at the intersection of the ith row of 
the board and the jth column. Prove that there exist two sets of 
numbers Xi. X2, ••• , Xn and y1, Yz, ... , Yn such that a;1 = X; + YI· 

179. Some numbers are written in the squares of a chess-board 
of dimension n X n. Let Xpq denote the number in the intersection 
of the pth row and the qth column. Prove that if for any i, j and k 
(where l ~ i, j, k ~ n) there holds the identity Xii+ Xfk + Xk;=O 
then there exist n numbers ti. t 2, ... , tn such that Xii = t; - ti. 

180. Stars are written in some of the squares of a chess-board 
-0f dimension n X n. It is known that after an arbitrary number 
of rows of the board have been deleted (but, of course, not all the 
rows!) there remains a column containing exactly one star that 
has not been deleted. (In particular, if none of the rows is deleted 
then there is also a column containing exactly one star.) Prove 
that if an arbitrary number of columns has been deleted (but not 
all of them) then there remains a row containing exactly one 
.star that has not been deleted. 

181*. In all the squares of a chess-board of dimension n X n 
except one of them the signs "+" are written and the exceptional 
.square contains the sign "-". Let us consider two cases when it 
is known that 

(a) n = 4 and the sign "-" stands on a side of the board but 
not in its corner; 

(b) n = 8 and the sign "-" is not placed in a corner of the 
board. 

We are allowed to change simultaneously to the opposite all 
signs belonging to one (arbitrarily chosen) column or to one (also 
.arbitrarily chosen) row or to one (arbitrarily chosen) "inclined 
!line" parallel to one of the two diagonals of the board (in partic­
ular, as such an "inclined line" we can take one of the diagonals 
·of the board or any corner square). Prove that we cannot get rid 
of the sign "-" by repeating these "admissible" changes of signs 
any number of times, that is we cannot arrive at the case when 
there are only the signs "+" in all the squares of the board. 

182. (a) In all the squares of an ordinary chess-board of di­
mension 8 X 8 the signs "+" or "-" are placed. We are allowed 
fo choose an arbitrary smaller quadratic array of squares of the 
board of dimension 3 X 3 or 4 X 4 with sides parallel to the sides 
.of the board and to change to the opposite all the signs in the 
squares of such a rectangle. We can try to perform such opera· 
tions repeatedly a number of times in order to arrive at an 
arrangement of signs on the board involving the signs "+" solely. 
:Is it always possible? 
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(b) Some natural numbers are written in all the squares of an; 
ordinary chess-board. We are allowed to increase by unity all 
numbers placed in the squares forming a smaller quadratic array 
consisting of four squares of the board adjoining one another or 
all numbers placed in (any) two neighbouring rows of the board 
or all numbers in (any) two neighbouring columns of the board. 
Is it always possible to perform a number of such operations in 
such a way that we arrive at the case when all the numbers on 
the board are divisible by 10? 

183. (a) There are three sets of balls. We are allowed to take 
simultaneously one ball from each of the three sets or to duplicate 
the number of the balls in one (arbitrary) set. Is it possible to 
perform such operations several times so that all the balls are 
taken from all the three sets? 

(b) In all the cells in a rectangular table of 8 rows and 5 columns. 
some natural numbers are written. We are allowed to duplicate 
any number in any column or to subtract unity from all numbers 
of one (arbitrary) row. Prove that it is possible to perform a 
number of these "admissible" operations on the table in such a 
way that all the numbers in all the places of the table become 
equal to zero. 

184. A table of positive integers having two columns and a 
number of rows is formed according to the following rule. In the­
upper row we write two arbitrary positive integers a and b, then 
under a we write a (positive) integer ai which is equal to a/2 if 
the number a is even and to (a - 1) /2 if a is odd and under b 
we write bi = 2b. Next we perform on the numbers ai and bi the 
same operations as those performed on a and b, that is under ai 
we write a number a2 equal to ai/2 for an even ai and to 
(a 1 - 1) /2 for an odd ai and under bi we write b2 = 2b1• Further, 
under the numbers a2 and b2 we write new numbers a 3 and b:!. 
which are obtained from a2 and b2 in the way in which a 2 and bi­
were obtained from a1 and bi. etc. This process of repeated opera• 
tions is stopped when we arrive at a number an = 1 (to which a 
number bn = 2bn-I corresponds). Prove that the sum of all num+ 
bers bi in the right column to which odd numbers ai correspond is 
equal to the product ab (here i can assume any value from 0 to n~ 
by a0 and b0 are meant the original numbers a and b respecti .. 
vely). 

185. Prove that every natural number is either a Fibonacci 
number (that is a member of the Fibonacci sequence (*); see 
page 35) or can be represented in the form of a sum of several 
(distinct) Fibonacci numbers. 

186. Prove that there are not eight consecutive Fibonacci num .. 
bers (see Problem 185) whose sum is not a Fibonacci number. 
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187. Prove that if a natural number n is divisible by 5 then the 
nth member Un of the Fibonacci sequence (see Problem 185) is 
also divisible by 5. 

188. Is there a number among the first 100 000 001 Fibonacci 
numbers (see Problem 185) whose decimal representation has four 
noughts at the end? 

189. Let us consider a number sequence a1, a2, a3 ••• constructed 

according to the following rule: a, = 1 and an = an-I +-1- for 
lln-1 

n > l. Prove that 14 < a100 < 18. 
190. A number sequence a,, a2, a3, ... , an is such that a1 = 0, 

I a2 I= I a, + 11, I a3 I= I a2 + 11, ... , I an I= I an-1 + 11. Prove that 
the arithmetic mean (a1 + a2 + ... + an)/n of these numbers is 
not less than -1/2. 

191*. A sequence of natural numbers ao, a1, a2, a3, ••• is formed 
according to the following rule: 

aoa1a2=I ao-a1 I, a3=1 a, -a2 I •... 
(generally, an =I an-2 - an-1 I for all n ;;;::::: 2). The elements of 
the sequence are computed until the first zero has been obtained. 
It is known that each of the numbers contained in the sequence 
does not exceed 1967. What is the greatest number of terms which 
such a sequence may contain? 

192. Given an infinite sequence of digits cx. 1cx2cx.3cx4 ••• in which 
each of the digits can be equal to an arbitrary decimal digit ex-
cept nine. Prove that among the numbers a 1; a 1a2; a 1a2a3; a 1a2a3a4; 

... (here by a1a2 is meant the number cx.1 ·IO + ct2 and the like) 
there are infinitely many composite numbers. 

193. In a sequence 1975 ... each of the numbers, beginning with 
the fifth one, is equal to the last digit of the decimal representa­
tion of the sum of the four foregoing digits. Is it possible that 

(a) the sequence contains a group of the four consecutive 
<ligits 1234? 

(b) the four-tuple 1975 of the digits is again repeated in the 
-sequence? 

194. All the integer multiples of 9 are written as a sequence of 
the form 

9: 18; 27; 36; 45; 54; 63; 72; 81; 90; 99; 108; 117; ... (*) 
,and for each of these numbers the sum of its digits is found: 

9; 9; 9; 9; 9; 9; 9; 9; 9; 9; 18; 9; 9; . . . (u) 
In what place in sequence (**) does the number 81 first appear? 

What is the number following the first number 81? What occurs 
-earlier in the sequence: the appearance of 4 consecutive numbers 
27 or the appearance of 3 consecutive numbers 36? What else can 
you say about the alternation of the numbers in sequence (**)? 
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195. Let us consider the following sequence of collections of 
(natural) numbers. The initial collection / 0 consists of two unities: 
1 and I. Then, to obtain the following collection Ii, we insert be­
tween the numbers forming the initial collection their sum 
1 + 1 = 2, i.e. 11 consists of the numbers 1, 2 and I. Next we 
insert between every two numbers belonging to the collection Ii 
their sum to obtain the collection / 2 consisting of the numbers 1. 
3, 2, 3 and I. Further, on performing the same operation on the 
collection / 2 we arrive at the collection fr 1, 4, 3, 5, 2, 5, 3, 4 and 
1, etc. How many times is the number 1973 repeated in the mil­
lionth collection 11 ooo ooo? 

196. There is a (finite) sequence of noughts and ones such that 
all the 5-tuples of consecutive digits which can be selected from 
the sequence are distinct (the 5-tuples can, of course, overlap; for 
instance, they can be like the 5-tuples 01011 and 01101 placed as. 

,---, 
... 0101101 ... ) . Prove that if the sequence cannot be continued 

L.....-.J 
with the preservation of the indicated property then the first four 
digits of the given sequence coincide with its last four digits. 

197. All the divisors of the number N=2·3·5·7·11·13·17·19· 
· 23 · 29 · 31·37 are written in one row. Under the divisor 1 and 
under those divisors which are products of an even number of 
prime factors the numbers + 1 are written and under the divisors 
which are products of an odd number of prime factors the num­
bers -1 are written. Prove that the sum of all the numbers. 
written in the lower row is equal to zero. 

198. Let p and q be two relatively prime natural numbers. We 
shall call a natural number n "good" if it can be represented in 
the form px + qy where x and y are nonnegative integers and 
"bad" if otherwise. 

(a) Prove that there exists a number A such that if a sum of 
two integers is equal to A then one of them is necessarily "good" 
whereas the other is "bad". 

(b) Given two relatively prime natural numbers p and q, it is 
required to determine the number of all the possible "bad" natural 
numbers corresponding to p and q. 

199. Prove that if n is a nonnegative integer then it can be 
uniquely represented in the form n = [ (x + y) 2 + 3x + y] /2 
where x and y are nonnegative integers. 

200. Let t be an arbitrary positive number and let d (t) denote 
the number of irreducible fractions p/q whose numerators p and 
denominators q do not exceed t. Find the sum 

. S = d ( 1~0) + d ( l~O) + d ( 1~0) + ... + d ( 19090) + d ·( :~~) 
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201. Prove the following properties of the integral part of a 
11umber (see page 36): 

(1) [x + y] ~ [x] + [y]; 

(2) [[~I ] = [ ~] where n is a whole number; 

(3) [ x + ~] = [2x] - [x]; 

-(4) [xJ+[x+~]+[x+ !]+ +[x+ n;l]=[nx]. 
202. Simplify the expression 

[ n ~ 1 ] + [ n ~ 2] + [ n ~ 4 ] + . . . + [ n 2t+~k ] + . , . 
whefe n is a positive integer. 

203*. Prove that if p and q are relatively prime whole numbers 
then 

I~J+r2:J+[3;J+ ... +[<q~l)p]= 
= [ *] + [ 2:] + [ ~q] + .. • -j- [ (p ~I) q] = (p -1~ (q - 1) 

204. Prove that 

(a) i-1+•2+•3+ ... +•n=[~]+[~]+[~]+ ··· +[~] 
where n is a natural number and 'tn is the number of the divisors 
of n. 

(b) CJ1 + CJ2 + 0"3 + ... + 0"11 = [1-] + 2 [ i] + 3 [-}] + ... + n [:] 

where n is a natural number and On is the sum of the divisors 
of n. 

205. Is there a positive integer n such that the fractional part 
,of the number (2 + -v'2t (see page 37) exceeds 0.999999, that is 

{ c2 + -v2r} = (2 + -v2r - [ (2 + -v2-rJ > o. 999999? 

206*. (a) Prove that for any positive integer n the number 
{ (2 + -v'3tJ is odd. 

(b) Find the highest power of 2 by which the number 
'(( l + ,Y3tJ is divisible. 

207. Prove that if p is a prime number greater than 2 then the 
<liffe.rence 

is divisible by p. 
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208*. Prove that if p is a prime number then the difference 

C(n, p)-[%] 
is divisible by p where n is an arbitrary positive integer not less. 
than p and C(n, p) is the number of combinations of n things 

taken p at a time (C(n, p) is also denoted as c; or nCp or (;) 

and is called a binomial coefficient). 
11·10·9·8·7 

For instance, C (11, 5) = 1 • 2 • 3 • 
4

• 5 = 462, and the number 

C(ll, 5)-[ll/5] = 462-2 = 460 is divisible by 5. 
209. Find all numbers a such that the numbers [a]. [2~j, 

[3a], ... , [Na] where N is a fixed natural number are all distinct 
and the numbers [1/a], [2/cx], [3/a], ... , [Nia] are also all 
distinct. 

In Problem 209 it is required to find a number a such that the· 
numbers [ex], [2cx], [3cx], ... , [Na] are distinct and the numbers 
[P], [2P], [3p], ... , [Np] are distinct where p = 1/a. A more in­
tricate problem of this kind is to find two numbers a and p (it is. 
no longer required that P = 1/a) such that the infinite sequences. 
[ex], [2cx], [3cx], ... and [p], [2p], [3p], ... consist of pairwise 
distinct numbers. It can be proved that these sequences contain 
all the natural numbers and that each natural number is involved' 
exactly once in them if and only if a is an irrational number and 
1/a + 1/P = 1. 

210*. Prove that in the equality 

N N N N 
N=2+-:r+a+ ··· +¥+ ··· 

where N is an arbitrary positive integer it is possible to replace 
all the fractions by their nearest integers: 

N = (N/2) + (N/4) + (N/8) + ... + (N/2n) + 
(on the terminolo.;;y and notation see page 36). 

7. Estimating Sums and Products 

211. How many digits does the decimal representation of the 
number 2100 contain? 

212. (a) Prove that 

l 1 135 99 l 
15 < 10 -v'2 < 2 . 4 . 6 . . . 100 < 10 
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(b*) Prove that 
I 3 5 99 I 
2·4·5 ... 100 <12 

Remark. The result established In Problem 212 (b) obviously strengthens the 
result of Problem 212 (a). 

213. Which of the two numbers 31 11 and 1714 is greater? 
214. Which of the two numbers l>elow is greater? 

2 3 

(a) A = 222 
• and B = 33

3 
•• where the expression of A 

involves 1001 twos and the expression of B involves 1000 threes; 
4 

(b) B (see Problem 214 (a)) and C = 44 
4 • 

sion of C involves 999 fours. 
where the expres-

an 
.··an-I 

In this problem by an expression of the form af'a, is c C, _.. (an~1))) 
always meant the number a1 ' • 

215. Prove that in the decimal number system the representa· 
tions of the numbers 1974n and 1974n + 2n contain the same num­
ber of digits for any natural number n. 

216. Among all the differences of the form 35m - 5n where m 
and n are natural numbers find the one having the smallest ab­
solute value. 

217. Prove that 
2100 2100 

--:p < C(IOO, 50) <-
10.,2 10 

where C(IOO, 50) is the number of combinations of 100 things 
taken 50 at a time. 

218. Which of the two numbers 99n + 10on and 101 n is greater 
(here n is a positive integer)? 

219. Which of the two numbers 100300 and 300! is greater? 
220. Prove that for any positive integer n we have 

2:<(1+~f <3 
221. Which of the two numbers (1.000001)' oooooo and 2 is 

greater? 
222. Which of the two numbers 10001000 and 1001 999 is greater? 
223. Prove that for any integer n > 6 we have 

( n )" ( n )n 2 >nl > 3 
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224'~. Prove that for any m > n where m and n are positive 
integers we have 

(a) ( 1 + ~ ) m > ( 1 + ! r. 
For instance, (1 + 1/2)2 = 9/4 = 2 ! and (1 + 1/3)3 = 64/27 = 

10 I 
=227>24. 

(b) (1 + ~)m+I < (1 + !r+l for n~2. 
3 

For example, (1+1/2)3 =27/8=3s and (1+1/3)4 =256/81 == 

13 3 
=381<38. 

Remark. As it follows from Problem 224 (a), every number in the sequence 
(1 + l/J)l, (1+1/2) 2, (I+ 1/3) 3

, ••• , (I+ 1/n)", ... is greater than the pre­
ceding one. On the other hand, none of these numbers exceeds 3 (see Problem 
220), and therefore the expression (I+ l/n)n tends to a definite limit as n-+ oo 
(it is evident that this limit lies between 2 and 3). This limit is denoted as e; 
the approximate value of the number e accurate to 15 decimal places is 
2.718281828459045. 

Analogously, Problem 224 (b) implies that in the number sequence (I+ 1/2) 3, 

(1+1/3)4, (I+ 1/4) 5, ••• , (I+ 1/n)n+I every term is less than the foregoing 
one, and since all the terms are greater than I it follows that for n increasing 
indefinitely the expression (I + l/n) n+i tends to a definite limit. At the same 
time, the terms of the former sequence (I+ 1/2) 2, (I+ 1/3) 3, ••• , (I+ + l/n) ", ... tend to the corresponding terms of the latter sequence for n-+ 0 
because the difference between the ratio (I + I/n)"+ 1/(I + l/n)n = I + 1/n 
and 1 is equal to 1/n and it decreases indefinitely as n-+ oo. Consequently, the 
limit of the latter sequence must be equal to the same number e. The number e 
plays an extremely important role in mathematics and is encountered in 
various problems (for instance, see Problem 225 or the remarks to Problems 
231 and 234). 

225. Prove that for any integer n exceeding six there hold the 
inequalities 

where e = 2.71828 ... is the limit of the expression (1 + 1/n)" 
for n-+ oo. 

This assertion strengthens the result established in Problem 223. 
In particular, it implies that, given any two numbers a1 and a2 
such that a1 < e < a2 (for instance, a1 = 2.7 and a2 = 2.8 or 
a1 = 2.71 and a2 = 2.72 or a1 = 2.718 and a2 = 2.719 etc.), we 
have the inequality 

(_!!__)n > n! > (_!!__)n 
a1 a2 · 

for all values of n exceeding a definite number (this number is 
different for different values of a 1). 
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Thus, the number e serves as the "boundary" which separates 
the numbers a such that (n/a) n increases "faster" than n! for 
n-+ oo from the numbers a such that (n/a)n increases "slower" 
than n! (the existence of this boundary follows from Problem 223). 

Indeed, (n/a2 )n < n! for any n exceeding 6 (because a2 > e 
and, according to Problem 225, n! > (n/e) n for n > 6). Further, 
from the results established in Problems 220 and 224 it follows 
that for n ;;:::: 3 there hold the inequalities 

I n (n + l)n n _ n+I __ 
n>e>(I +n-) = nn , nn+ 1 >(n+1r and -Vn>-Vn+l 

n 

and hence for n ;;:::: 3 the expression ,Yfi decreases as n grows. It 
can readily be seen that for sufficiently large values of n the ex-

n 

pression ,Yfi becomes arbitrarily close to unity; for instance, this 
!Ok 

follows from the fact that log ,YIOk = k/lOk becomes arbitrarily 
small for sufficiently large k. Now let us choose N so that the 

N 

inequality ,Y N < ...!!_ holds; from this inequality it follows that 
a1 

n 

for n > N we must have ,Yn < ...!!._. By the result established in 
a1 

Problem 225, the last inequality implies that n! < ( ~; r < (n/a1t. 

The inequality of Problem 225 can be made considerably more 
precise. Namely, it can be shown that for large values of n the 
number n! is approximately equal to C ,Yn(n/et where C is a con­
stant number equal to ,Y2n: 

n!~,Y2nn(:r 

(more precisely, it is possible to prove that the ratio 

nt/[ ,Y2nn (: rJ 
tends to unity as n increases indefinitely). 

226. Prove that 

I ( I )k+l I , 
k + 1 nk+1 < Ik + 2k + 3k + ... + n" < 1 + n k+T n-<+1 

where n and k are arbitrary positive integers. 
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Remark. In particular, from the result established in Problem 226 it follows 
that 

lim 1k+2k+3k+ ... +nk =-1-
n~oo nk+I k + I 

227. Prove that for any integer n > 1 we have 

(a) 

(b) 

I I I 1 3 
2 < n +I + n + 2 + '' · + 2n" < 4: 

I I I 
I < n + I + n + 2 + ' ' ' + 3n + I < 2• 

228*. (a) Find the integral part of the number 

1 + J2 + J3 + ~ + + -y'100~000 
(b) Compute the sum 

I I I 
-y'10000 + ,yro0oT + -y' I 0 002 

1 
+ ... + -Vt 000 000 

to an accuracy of 1/50. 
229*. Find the integral part of the number 

-+- + +- + -3
1
- + + ""'"3 __ _ 

,y4 -y'5 ,Y6 ,YI 000 000 

230. (a) Compute the sum 

I I I I w+ w+ 122 + ··· + 10002 

to an accuracy of 0.006. 
(b) Compute the sum 

I 1 I I 
WI + lIT + l2T + · · · + 10001 

to an accuracy of 0.000 000 015. 
231. Prove that the sum 

1 +_!_+_!_+_!_+ +..!.. 
2 3 4 n 

becomes greater than any given number N when the value of n 
is sufficiently large. 

Remark. The result established in Problem 231 can be made considerably 
more precise. Namely, it is possible to show that for large n the sum 1 + 1/2 + 
+ 1/3 + 1/4 + ... + l/n differs very slightly from log.n {where e = 2.718 ... ,; 
see the remark after Problem 224 *. The logarithm log.a of a number a is usual· 
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1y denoted In a"'). More precisely, it can be proved that the difference 

l I I I 1+2+3+4+ ... +n--lnn 

(here In n = log.n) does not exceed unity for any n. 

232. Prove that if we delete from the sum 
I I I I 1 +2+3+4+ ... +n 

all the terms the decimal representation of whose denominators 
contains the digit 9 then, for any n, the sum of the remaining 
terms will be less than 80. 

233. (a) Prove that 
I I I I I 

1 +4+9+15+25 + ... +-;JT< 2 

for any n. 
(b) Prove that 

I I l I 3 
1 +4+9+15+ ... fi2< 1 4 

for any n. 
It is evident that the result established in Problem 233 (b) is 

stronger than the one expressed by the inequality in Problem 
233 (a). A still stronger result is established in Problem 332. 
Namely, as follows from Problem 332, the sum 

I I I 1 +4+9+ ... +-;JT 
is Jess than rr.2/6 = 1.6449340668 ... for any n (but, at the same 
time, for any N less than n2/6, say for N = 1.64 or N = 1.644934, 
it is possible to indicate a number n such that the sum 1 + 1/4 +. 
+ 1 /9 + ... + 1 /n2 is greater than N). 

234*. Let us consider the sum 
I I I I I I I l I 

1 +2+3+5+1+u+IT+17+19+ ... + -p 
where the denominators of the fractions are all prime numbers 
from 2 to some prime number p inclusive. Prove that this sum can 
be made to exceed any preassigned number N (to this end it is 
only necessary to choose a sufficiently large prime number p). 

Remark. The result established in Problem 234 can be considerably strength­
ened. Namely, it can be shown that for large p the difference between the 
sum I + 1/2 + 1/3 + 1/5 + 1/7 + 1/11 + ... + l/p and In In p is comparatively 
small (as was mentioned, In means the logarithm to base e = 2.718 ... ). More 

* In a = log.a is called the natural logarithm of a or the Napierian loga­
rithm of a after J. Napier (1550-1617), the Scottish inventor of such loga­
rithms. - Tr. 
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precisely, it is possible to prove that the difference 

I I 1 I 1 I 
1 +2+3+5+7+11+ ... +p--ln In p 

(In In p = log,log.p) does not exceed the number 15. 
It should also be noted that the comparison of. the result established in Prob­

lem 234 with the results of Problems 232 and 233 allows us to say that there· 
are "rather many" prime numbers in the sequence of all natural numbers (in 
particular, as follows from Problem 234, there is an infinitude of prime num­
bers). We can say that the prime numbers are encountered in the sequence of 
natural numbers "more frequently" than perfect squares or than those num­
bers whose decimal representations do not contain the digit 9 because, for in­
stance, the sum of the reciprocals of all the squares of all natural numbers and 
the sum of the reciprocals of all natural numbers whose decimal representations 
do not involve the digit nine are bounded whereas the sum of the reciprocals. 
of prime numbers can be made arbitrarily large. 

8. Miscellaneous Problems in Algebra 

Most of the problems collected in this book deal with arith-· 
metical questions (and with some ideas of "higher arithmetic",. 
that is number theory) but the problems in Secs. 8-10 are related 
to algebra and trigonometry. The solutions of some of these prob­
lems involve a number of rather important general notions. For 
instance, such are the so-called fundamental theorem of algebra 
asserting that every polynomial (algebraic) equation of degree n 
(with arbitrary real or complex coefficients) has exactly n roots 
(these roots can be real or complex numbers and must not nec­
essarily be all pairwise distinct), Vieta's * formulas expressing 
the coefficients of an arbitrary algebraic equation in terms of its. 
roots, the rule for long division of polynomials and geometrical 
representation of complex numbers. 

235. Prove that 
(a+ b + c)333 _ a333 _ b333 _ c333 

is divisible by 
(a + b + c )3 

- a3 
- b3 

- c3 

236. Factor the expression 

a 10 + a5 + 1 
237. Prove that the polynomial 

x9ggg + xssss + xm1 + x6666 + x5555 + x4444 + x3333 + x2222 + x' 111 + I 
is divisible by 

~+~+~+~+~+~+~+~+! 

* Francois Vieta (1540-1603), a distinguished French mathematician, one of 
the creators of algebra and of modern algebraic notation. 
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238. (a) Factor the expression 

a·3 + b3 + c3 
- 3abc 

(b) Using the result established in Problem 238 (a) derive the 
general formula for the solutions of the cubic equation 

x3 +px+q=0 
Remark. It should be noted that, proceeding from the result established in 

Problem 238, we can solve any equation of the third degree. Indeed, let 

x 3 + Ax2 +Bx+ C=O 

be an arbitrary cubic equation (given any algebraic equation of the third degree 
with an arbitrary nonzero coefficient in x3, we can always bring it to the form 
in which the coefficient in x3 ;s equal to l; to this end we simply divide the 
whole equation by that leading coefficient). Let us make the substitution x = 
= y + c in the given equation. This yields 

y3 + 3cy2 + 3c2y + c'' +A (y2 + 2cy + c2) + B (y + c) + C = 0 

whence 

y3 + (3c + A) y 2 + (3c2 + 2Ac + B) y + (c 3 + Ac2 +Be+ C) = 0 

A 
Now we put c = - 3 (that is x = y - A/3) and thus arrive at an equation 

of the form 

y3 + ( 3A
2 

- 2A
2 + B) y + (- ~ + A

3 
- AB + c) = 0 

9 3 27 9 3 

which belongs to the type of the equations considered in Problem 238: 

y3 +PY+ q=O 

A2 2A3 AB 
where p = - 3 + B and q = 27 - - 3- + C. 

239. Solve the equation 

--Ja-,Ya+x =x 

240*. Find the real roots of the equation 

x2 + 2ax + 1
1
6 = - a + ~ a2 + x - -k­

where 0 < a < 1/4. 
241. Find the real roots of the equation 

~x+2Vx+2Vx+ ... +2-Vx+ 2 ,Y3x=x 
- ---;;-;~gns 

(all the square roots involved in the equation are meant to be 
positive). 
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242. Solve the equation 

1+--1 
I+ I 

I 
1+1+ 

I 1-1--
x 

=x 

where in the expression on the left-hand side the sign of a fraction 
is repeated n times. 

243. Find the real roots of the equation 

'\fx+3-4-../x- l +'\fx +s-6,Yx-1=1 

(all the square roots are assumed to be positive). 
244. Solve the equation 

Ix+ 11-lxl+31x- l l-21x-2 l=x+2 
245. Solve the equation 

1 _ .!_ + x (x - I) _ x (x - I) (x - 2) + 
I 1·2 1·2·3 "' 

... +(-Ir x(x-l)(x-2~1 ... (x-n+I) =O 

246. Solve the equation x3 - [x] = 3 where, as usual, [x] de­
notes the integral part of the number x (see page 36). 

247. In the general case the system of equations 

x2-y2=0} 
(x - a)2 + y2 = 1 

possesses four solutions. For what values of a does the number of 
the solutions of this system reduce to three or to two? 

248. (a) Solve the system of equations 

ax+ y=a2
} 

x+ay= 1 

For what values of a does the system have no solutions at all? 
For what values o.f a does it have infinitely many solutions? 

(b) Solve the same problem for the sy.stem 

ax+ y=a3
} 

x+ay= 1 
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(c) Solve the same problem for the system 

ax+y+z= I } 
x+ay+z=a 
x+ y+az=a2 

249. Find the conditions which shoula be satisfied by numbers" 
ai, a2, aa and a4 so that the system of six equations with four­
unknowns of the form 

x1 +x2=a1a2 

Xi +x3 =aia3 

Xi+ X4=aia4 
x2 +x3 =a2a3 
x2 + x4=a2a4 
x3 + x4=a3a4 

is solvable. Find the values of the unknowns Xi, X2, x3 and x4 for 
the case when these conditions (imposed on the numbers ai, a2, a3 
and a4) hold. 

250. Determine the number of real solutions of the system of 
equations 

x+y=2} 
xy-z2 = I 

251. Find all real solutions of the system 

xa+ya=I} 
x4+y4=J 

252. Find all the possible solutions x, Xi, x2, x3, x4, x5 of the­
simultaneous equations 

Xi+ X3=XX2, X2 + X4=XX3, X3 + X5=XX4, 
X4 +Xi =XX5, X5 + X2= XXi 

253. A 4-tuple of real numbers is such that the sum formed 
by each of the four numbers and the product of the other three 
numbers is equal to 2. Find all such 4-tuples. 

254. Solve the following system of four equations with four 
unknowns: 

I a-b ly +I a-c lz +la-d It= I} 
lb-a Ix +lb-clz+lb-dlt=I 
lc-alx+lc-bly +lc-dl/=I 
ld-alx+ld-bly+ld-clz -=l 
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Here a, b, c, and d are some arbitrary pairwise distinct real num· 
bers. 

255. Consider the following system of n equations with the n 
unknowns X1, x2, ••• , X11: 

.axi + bx1 + c = x2, ax~ + bx2 + c = x3, ••• 

. . • , ax~_,+ bx11 _ 1 + c = x
11

, ax~+ bx11 + c = x 

where a =F 0. Prove that this system possesses no solutions when 
(b - 1) 2 - 4ac < 0, has a single solution for (b - 1) 2 - 4ac = 0 
and has more than one solution for ( b - 1) 2 - 4ac > 0. 

256. Let a1, a2 ••• , an (where n ~ 2) be positive numbers. De­
termine the number of real solutions of the system of equations 

257. (a) Determine the number of roots of the equation 
• x 

sm x = 100 

(b) Determine the number of roots of the equation 

sin x= logx 

258. It is known that 
a1 - 4a2 + 3a3;;;;:: 0, 

a2 - 4a3 + 3a4 ;;;;:: 0, 

aga - 4a99 + 3a100;;;;:: 0, 
agg - 4a 10o + 3a1 ;;;;:: 0, 

a100 - 4a, + 3a2;;;;:: 0. 

Let a1 = I; find the numbers a2, a3, ... , aioo-
259. Let a, b, c and d be four arbitrary positive numbers. Prove 

that the three inequalities 
a+b<c+d 

(a+ b)(c + d) <ab+ cd 
(a+ b) cd < (c + d) ab 

cannot hold simultaneously. 
260. Prove that the fraction 

2--V2+-V2+-V2+ ... +.Y2 
2--V2+-V2+ ... +-v'2 
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involving n radical signs in the numerator and n - 1 radical signs. 
in the denominator is greater than 1/4 for any n ~ 1. 

261. The product of three given positive numbers is equal to 1; 
the sum of these numbers exceeds the sum of their reciprocals. 
Prove that one of the three numbers is greater than unity while 
the other two numbers are less than unity. 

262. The sum of 1959 given positive numbers a1, a2, as, ... , a 1gs9 
is equal to 1. Prove that the sum of all the possible products of 
1000 different factors chosen from the set of these numbers is less 
than 1. (The set of the products under consideration includes all 
products which differ from one another in at least one factor; the 
products differing from one another only in the order in which the 
factors are multiplied are identified and only one of them is in­
cluded in the sum in question.) 

263. Let N ~· 2 be a natural number. Find the sum of all frac­
tions of the form 1/mn where m and n are relatively prime 
natural numbers such that 1 ~ m < n ~ N and m + n > N. 

264. Let 1973 positive numbers ai, a2, as, ... , a1973 satisfy the 
condition 

aa, - aa1 - a" - - ( )Q1971 - ( )a' 
1 - 2 - as - · • · - a1g72 - a1973 

Prove that a1 = a197s. 
265*. Prove that if x 1 and x2 are the roots of the equation 

x2 - 6x + 1 = 0 then, for any integral n, the number x? + xg is 
an integer divisible by 5. 

266. Let us consider the expression 

(a1 + a2 + . . . + aggg + a1000)
2 == 

= ar +a~ + . . . + a~gg + arooo + 2ala2 + 2alaS + . . . + 2a9gga1ooe>-

where some of the numbers a1, a2, ... , ag9g, a1000 are positive while 
the others are negative. Is it possible that the number of positive 
pairwise products of different numbers in this expression is equal 
to the number of negative pairwise products? 

Answer the same question for the expression 

(a1 + a2 + . . . + ag999 + a10 000)
2 

267. Prove that any integral power of the number ,Y2 - I 
can be represented in the form "\/' N - "\/' N - 1 where N is a whole 
number (for instance, ("\/'2- 1)2 = 3 - 2 ,Y2 = ,Y9 - ,Y8 and 
("\/'2 - 1)s = 5 ,Y2 - 7 = ,Y5o - ,Y 49). 

268. Prove that the number 99 999 + 111 111 "\/'3 cannot be 
represented in the form (A+ B "\/'3)2 where A and B are whole: 
numbers. 
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269. Prove that 42 cannot be written as 42 = p + q -v'""'f 
where p, q, and r are rational numbers. 

270. It is known that a number A can be written in the form 

A = ( n + ~n2=4 )m where m and n ~ 2 are natural numbers. 

' k+,Yk2 -4 Prove that A can also be represented as A= 
2 

where k 
is a natural number. 

271. Are there rational numbers x, y, z and t such that 

(x + y ,Y2)2
n + (z + t '\/2) 2

n = 5 + 4 ,Y2 
.for some natural number n? 

272. Suppose that there are two barrels of infinite volumes 
filled with water. Is it possible to pour exactly one litre of water 
from one of them into the other using two scoops of volumes 
-'\/2 and 2 - ,Y2 litres respectively? 

273. For what rational values of x is the expression 3x2 - 5x + 9 
·equal to the square of a rational number? 

274. The magnitude of the discriminant ~ = p2 - 4q of a qua­
dratic equation x2 + px + q = 0 is of the order of 10. Prove that 
when the coefficient q of the equation is rounded so that its 
variation is of the order of 0.01 the increments of the values of the 
roots of the equation are of the order of 0.001. 

275. Let us agree to round numbers by replacing them by in­
tegers differing from the original numbers by less than 1. Prove 
that any n positive numbers can be rounded in this way so that 
the sum of any of these numbers differs from the sum of the cor· 
responding rounded numbers by not more than (n + 1) /4. 

276. Let a be a positive number. This number is replaced by a 
number ao obtained by discarding all the digits in the decimal re· 
presentation of a beginning with the fourth digit, that is the 
number a is rounded to its minor decimal approximation with an 
accuracy of 0.001. The number ao thus obtained is then divided by 
the number a itself and the quotient is again rounded in the same 
way to the same accuracy. Find all the numbers that can be ob· 
tained in this manner. 

277*. Let a be an arbitrary nonnegative irrational number and 
.n > 0 be an arbitrary integer. Then in the sequence 0/n, 1/n, 2/n, 
3/n, ... there is a fraction which is the closest to a, the absolute 
value of the difference between a and that fraction obviously being 
not greater than half the fraction l/n. Prove that there exists n 
such that the fraction with the denominator n which is the closest 
to a differs from a by less than 0.001· (l/n). 

278. (a) Prove that if a number a has a decimal representa­
tion of the form 0.999 ... where there are 100 consecutive 9's after 



Miscellaneous Problems in Algebra 57 

the decimal point then the decimal representation of ,Ya has the 
form ,Ya= 0.999 . . . where there are also 100 consecutive 9's 
after the decimal point. 

(b*) Find the value of the root ,Y 0.1111 ... 111 to an accuracy ___ .,,.,_, 

100 ones 
of (1) 100; (2) 101; (3) 200 and (4) 300 decimal places after the 
decimal point. 

279. (a) Which of the two numbers 

2.00000000004 
(1.00000000004) 2 + 2.00000000004 

and 
2.00000000002 

(1.00000000002) 2 + 2.00000000002 

is greater? 
(b) Let a > b > 0. Which of the two numbers 

I + a + a2 + . . . + an- I 

I + a + a2 + . .. + an 

is greater? 

and 
I+ b + b2 + ... + bn-1 

I + b + b2 + . . . + bn 

280. Given n numbers a,, a2, aa, ... , an, find the number x such­
that the sum 

(x - a 1)
2 + (x - a2)2 + . . . + (x - an)2 

assumes the least possible value. 
281. (a) Given four real pairwise distinct numbers a 1 < a 2 < 

< aa < a4, it is required to arrange them in a certain order as 
a 1', a1,, a1,, a1, (where ii. i2, ia and i4 are the same indices 1, 2, 3 
and 4 but possibly rearranged in some way) so that the sum 

<D = (a1, - a1,)
2 + (a1, - a1 )

2 + (a 1, - a1,)2 + (a1, - a1,)
2 

takes on the minimum possible value. 
(b*) Given n pairwise distinct numbers ai, a2, a3, ••• , an, it is 

required to arrange them in a certain order as a1 , a1 , a1 , .•. , a1 I 2 3 n. 
to make the sum 

<D = (a1 1 - a12)
2 + (a1 2 - 01 3)2 + ... + (a1n-• - a1n)2 + (a1n - a, 1)2 

assume the least possible value. 
282. (a) Prove that for arbitrary real numbers ai, a2, ••• , an 

and b,, b2, ••• , bn we always have 

,Y ai + bi + ,Ya~ + b~ + .. . + ,Ya~ + b~ > 
> ,Y(a, + a2 + ... + an)2 + (b1 + b2 + ... + bnf' 
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Under what conditions does an exact equality take place here? 
(b) A pyramid is said to be right if it is possible to inscribe 

a circle in the base of the pyramid and if the centre of the circle 
coincides with the foot of the altitude of the pyramid. Prove that 
a right pyramid has a smaller lateral area than any other pyramid 
-of the same altitude the area and the perimeter of whose base 
coincide with those of the base of the former pyramid. 

Remark. The inequality established in Problem 282 (a) is a special case of 
Minkowski's inequality which is written as 

,Y aT + bi + .. . + ti + ,Ya~ + b~ + .. . + l~ + ... 

.. . + ,Ya~ + b~ + . .. + l~ ;;;,. 

;;;;. v(a1 + ... + an) 2 + (b1 + ... + bn) 2 + ... + (!1 + ... + ln) 2 

283*. Prove that for any real numbers ai, a2 , ••• , an there holds 
the inequality 

,Ya~ + ( l - a2)
2 + ,Ya~ + ( l - a3)2 + ... 
• • • +,Ya~_ 1 + (l -an)2 +,Ya~ + (1-a1)2~.n~'2 

For what values of these numbers is the left-hand member of 
the inequality exactly equal to its right-hand member? 

284. Prove that if the absolute values of two numbers x1 and 
x2 do not exceed unity then 

,y l - XT + ,y l - X~ ~ 2 ~ l - ( X1. ~ X2 ) 2 

For what values of x1 and x2 are the right-hand and the left. 
hand members of this inequality exactly equal to each other? 

285. Which of the two expressions cos sin x and sin cos x has a 
greater value? 

286. Prove without using a table of logarithms that 

( ) I + I > 2. a log2 1t logs 1t , 

(b) -
1
- + - 1

- 2 log2 n logrr 2 > · 
287. Prove that if a and ~ are acute angles and a < ~ then 

(a) a - sin a < ~ - sin~; (b) tan a - a< tan~ - ~-

288*. Prove that if a and ~ are acute angles and a < ~ then 
tan a/a< tan M~-

289. Find the relation between arcsin cos arcsin x and 
arccos sin arccos x. 
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290. Prove that it is impossible for the sum 

cos 32x + a31 cos3Ix + a30 cos 30x + ... + a2 cos 2x + a1 cos x 

to take on only positive values for all x whatever the coefficients. 
aa1, aao, ... , a2, a,. 

291. Let some (or all) of numbers a,, a2, ... , an be equal to + 1 
and the rest of them be equal to -1. Prove that 

2 sin (a, + a1a2 + a1a2as + ... + a1a2 •• ; an ) 450 = 
2 4 2"-

=a1 -V2 + a2 ,Y2 + a3 '\/2 + ... +an ,Y2 

For instance, for a1=a2= ... =an=l we obtain 

( 
I I · 2 ) 0 45° 

2 sin 1 + 2 + 4 + ... + 2n-l 45 = 2 cos 2n-J = 

=-V2 +'\/2+ ... + ,y2 
n radical signs 

9. Algebra of Polynomials 

292. Find the sum of the coefficients of the polynomial obtained 
after parentheses have been removed and like terms have been 
collected in the product 

( 1 - 3x + 3x2)743 
( 1 + 3x - 3x2

)
744 

293. In which of the two polynomials obtained after parentheses 
have been removed and like terms have been collected in the ex-
press ions 

(1 + x2 _ xa)1000 and (1 _ x2 + x3)10oo 

is the coefficient in x20 greater? 
294. Prove that the polynomial obtained after parentheses have 

been removed and like terms have been collected in the product 
(1 _ x + x2 _ x3 + ... _ x99 + x'oo). (1 + x + x2 + ... + x99 + x100) 

does not involve terms with odd powers of x. 
295. Find the coefficients in x50 in the polynomials obtained 

after parentheses have been removed and like terms have been 
collected in the expressions 

(a) (1 + x)tooo + x (1 + x)999 + x2 (1 + x)99B + ... + xiow; 

(b) (1 + x) + 2 (1 + x)2 + 3 (1 + x)3 + ... + 1000 (1 + x) 1000
• 

296*. Determine the coefficient in x2 appearing after parentheses 
have been removed and like terms have been collected in the ex-
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pression 
( ..• (((x - 2)2 

- 2)2 
- 2)2 

- • • • - 2)2 

k times 

297. Find the remainder obtained when the polynomial 

x + x3 + x9 + x21 + xsi + x243 

is divided 
( a) by x - I ; ( b) by x2 - I. 
298. When an unknown polynomial is divided by x - I and by 

x - 2 we obtain in the remainder 2 and I respectively. Find the 
remainder resulting from the division of this polynomial by 
(x - 1) (x - 2). 

299. When the polynomial x1951 - 1 is divided by x4 + x3 +: 
+ 2x2 + x + 1 we obtain a quotient and a remainder. Find the 
coefficient in x 14 in the quotient. 

300. Find all polynomials P(x) for which the identity 

xP (x - 1) == (x - 26) P (x) 
holds. 

301. Let us consider a polynomial P(x) = u0xn + u1xn-I +: 
+ ... + Un-1X +Un whose coefficients Uo, U1i ••• , Un are 

(a) some natural numbers; (b) arbitrary integers. 
Let us denote by s(n) the sum of the digits in the decimal re· 

presentation of the number P(n) (it is clear that the sum s(n) 
only makes sense when P (n) is a natural number; if otherwise, 
u(n) simply does not exist). 

Prove that if the sequence s ( 1), s (2), s (3), ... contains infinitely 
many different numbers then it also contains infinitely many equal 
numbers. 

302. Prove that the polynomial x200y200 + 1 in variables x and y 
cannot be written as a product f (x) g (y) of two polynomials f (x) 
and g (y) depending solely on x and solely on y respectively. 

303. A quadratic trinomial p (x) = ux2 + bx + c is such that 
the equation p (x) = x has no real roots. Prove that in this case 
the equation p (p (x)) = x has no real roots either. 

304. A quadratic trinomial p (x) = ux2 + bx+ c is such that 

I
p (x) I ~ 1 for Ix I~ 1. Prove that in this case from the condition 
x I ~ 1 it also follows that I Pi (x) I ~ 2 where Pi (x) = cx2 + 

+bx+ u. 
305. Prove that if x1 is a root of an equation of the form 

ux2 +bx+c=O 

and X2 is a root of the equation 

- ux2 + bx+ c = 0 

(1) 

(2) 
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-then there is a root x3 of the equation 

~ x2 +bx+ c = 0 (3) 
2 

lying between x1 and X2, that is x, ~ xa ~ x2 or x, ~ xa ~ x2. 
306. Let a and ~ be the roots of an equation 

x2 + px+q=O 

and let y and ~ be the roots of an equation 

x2 +Px+Q=O 
Express the product 

(a - V) (~ - V) (a - ~) (~ - 6) 

in terms of the coefficients of the given equations. 
307. For the two equations 

x2 + ax + 1 = 0 and x2 + x + a= 0 

determine all the values of the coefficient a for which these equa· 
tions have at least one common root. 

308. (a) Find an integer a such that 

(x - a)(x - 10) + 1 

can be factored as a product (x + b) (x + c) of two factors in· 
volving integral numbers b and c. 

(b) Find all nonzero and pairwise different integers a, b and c 
such that the polynomial 

x (x - a)(x - b) (x - c) + 1 

of the fourth degree with integral coefficients can be represented 
as a product of two polynomials with integral coefficients. 

309. For what pairwise distinct integral coefficients ai, a2, ••• 

. . . , an can the polynomials 

(a) (x - a1) (x - a2) (x - a3) ••• (x - an) - 1 
and 

(b) (x - a 1) (x - a2) (x - a3) ... (x - an)+ 1 
be represented as products of some other polynomials? 

310*. Prove that for any pairwise distinct integers ai, a2, ••• , an 
the polynomial 

(x - a1)2 (x - a2)2 ••• (x - an)2 + 1 

cannot be represented as a product of two other polynomials with 
integral coefficients. 

311. Prove that if a polynomial 

P (x) = a0xn + a,xn-t + ... + an-1X +an 
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with integral coefficients assumes the value 7 for four integral 
values of x then it cannot take the value 14 for any integral value 
of x. 

312. Prove that if a polynomial of the 7th degree 

a0x7 + a1x6 + a2x5 + a3x4 + a4x3 + a5x2 + a6x + a1 

takes on the values + 1 and -1 for 7 integral values of x then it 
cannot be represented as a product of two polynomials with in­
tegral coefficients. 

313. Prove that if a polynomial 

P (x) = aoxn + a1xn-I + ... + an-1X +an 

with integral coefficients assumes odd values for x = 0 and x = I 
then the equation P (x) = 0 possesses no integral roots. 

314*. Prove that if the absolute value of a polynomial 

P (x) = aoxn + a1xn-I + a2xn-2 + ... + an-1X +an 

with integral coefficients is equal to I for two integral values 
x = p and x = q (p > q) of the argument and if the equation 
P(x) = 0 has a rational root a, then p - q is equal to I or 2 and 
a= (p + q)/2. 

315*. Prove that the polynomials 

(a) x2222 + 2x2220 + 4x221s + 6x221G + sx2214 + 
. . . + 22 l 8x4 + 2220x2 + 2222; 

and 
(b) x250 + x249 + x24s + x241 + x246 + ... + x2 + x + I 

cannot be represented as products of polynomials with integral 
coefficients. 

316. Prove that if a product of two polynomials with integral 
coefficients is equal to a polynomial with even coefficients which 
are not all divisible by 4 then all coefficients of one of the original 
polynomials are even whereas not all coefficients of the other 
polynomial are even. 

317. Prove that all rational roots of a polynomial 

p (X) = Xn + a1xn-I + a2xn-2 + • • • +an-IX+ an 

with integral coefficients (the coefficient in the highest power of x 
is equal to I) are integers. 

318*. Prove that there exists no polynomial of the form 

P (x) = aoxn + a1xn-I + ... +an-IX+ an 

for which all the values P(O), P(l), P(2) ... are prime numbers. 
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Remark. L. Euler• was the first to prove the assertion stated in this problem. 
He also constructed examples of polynomials whose values corresponding lo 
many consecutive integers x are prime numbers (for instance, in the case of the 
polynomial P(x) = xz- 79x + 1601 the 80 values P(O) = 1601, P(l) = 1523, 
P(2), P(3), ... , P(79) are prime numbers). 

319. Prove that if a polynomial 

P (x) = xn + A1xn-l + A2xn-2 + ... +An-IX+ An 

possesses the property that it assumes integral values for all in­
tegral values of x, then it can be represented in the form of a sum 
of the polynomials 

x (x- I) 
P 0 (x)=l, Pi(x)=x, P2(x)= 1 . 2 , ••• 

Pn(X)= x(x-l)(x-2) ... (x-n+I) 
• • ·' l · 2 · 3 ... n 

multiplied by some integral factors. (According to Problem 75 (a), 
each of the polynomials Po (x), ... , Pn (x) possesses the same pro­
perty.) 

320. (a) Prove that if a polynomial P(x) of the nth degree as­
.sumes integral values for x = 0, 1, 2, ... , n then it also assumes 
.integral values for all the other integral values of x. 

(b) Prove that every polynomial of degree n which taken on 
integral values for some n + 1 consecutive integral values of x 
assumes an integral value for any arbitrary integer x as well. 

( c) Prove that if a polynomial P (x) of the nth degree assumes 
integral values for x = 0, 1, 4, 9, 16, ... , n2 then it assumes an 
integral value for any integral value of x which is a perfect square 
(but such a polynomial must not necessarily assume integral 
values for all integers x). 

Give an example of a polynomial which assumes an integral 
value for every integral value of x which is a perfect square and 
at the same time assumes fractional values for some other integral 
values of x. 

10. Complex Numbers 

321. (a) Prove that 

cos 5a = cos5 a - 10 cos3 a sin 2 a+ 5 cos a sin 4 a 
:and 

sin 5a = sin 5 a - 10 sin3 a cos2 a+ 5 sin a cos4 a 

* Leonard Euler (1707-1783), a Swiss mathematician who spent most of his 
life in Russ:a was undoubtedly one of the greatest mathematicians of the 18th 
<:entury. He contributed many outstanding results to various divisions of 
mathematics, mechanics and physics. 
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(b) Prove that for natural n we have 

cos na = cosn a - C (n, 2) cosn-2 a sin2 a+ C (n, 4) cosn-4 a sin 4 a -
- C (n, 6) cosn-6 a sin6 a + 

and 

sin na = C (n, 1) cosn- 1 a sin a - C (n, 3) cosn-3 a sin-3 a+ 
+ C (n, 5) cosn-5 a sin5 a -

where C(n, k) is the number of combinations of n things, taken k 
at a time and the dots designate the other terms the general rule 
for whose construction can easily be guessed and which can be 
written, in succession, as long as the binomial coefficients C(n, k) 
make sense. 

Remark. Problem 321 (b) is obviously a generalization of Problem 321 (a). 

322. Express tan 6a in terms of tan a. 

323. Prove that if x + l/x = 2 cos a then xn + ~ = 2 cos na. x 
324. Prove that 

sin cp + sin (cp +a)+ sin (cp + 2a) + ... 
. (n + 1) a . ( + na) sm 2 sm cp 2 

+ sin (cp + na) = -------'-----. a 
sm~ 

and 

cos cp +cos (cp +a)+ cos (cp + 2a) + 
. (n + I) a ( na ) sm 2 cos cp + 2 

... +cos(cp+na)=---------

325. Simplify the expressions 

cos2 a + cos2 2a + . . . + cos2 na 
and 

sin2 a + sin2 2a + ... + sin2 na 

326. Simplify the expressions 

cos a+ C (n, 1) cos 2a + C (n, 2) cos 3a + 

. a 
sm 2 

. . . + C (n, n - 1) cos na + cos (n + I) a 
and 

sin a+ C (n, I) sin 2a + C (n, 2) sin 3a + ... 
.. . +c(n, n-1) sinna+ sin(n+ l)a 
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327. Prove that if m, n and p are arbitrary integers then the ex­
pression 

. mn . mt + . 2mn . 2nn + . 3mn . 3nn + sm-sm- sm--sm-- sm--sm-- .. p p p p p p • 

+ . (p-l)mn . (p-l)nn . . . sm sm -'---'---
P p 

is equal to -p /2 when m + n is divisible by 2p and m - n is not, 
is equal to p/2 when m - n is divisible by 2p and m + n is not 
and is equal to zero when both m + n and m - n are divisible 
by 2p or not divisible by 2p. 

328. Prove that 

2rt 4n 6n 2nn I 
cos 2n + I + cos 2n + 2 + cos 2n + I + . , . + cos 2n + I = - 2 

329. Write equations whose roots are equal to the numbers 

( ) . 2 n: • 2 2rt . 2 3rt 
a sm 2n + I sm 2n + I sm 2n + I ' • • ·' 

• 2 nn 
sm 2n +I 

t2 Jt t2 2rt t2 3rt 
(b) co 2n + I , co 2n + I ' co 2n + I ' ••• ' t2 nn 

co 2n +I 
330. Simplify the expressions of the sums 

(a) cot2 2n ~ I + cot2 2n2~ I + cot2 2n3~ I + ... + cot2 2nn~ I 

(b) 2 rt + 2 2n + 2 3rt + + 2 nn csc 2n + I csc -2n + I csc 2n + I . . . csc 2n + I . 

331. Simplify the expressions of the products 

(a) 

and 

. rt . 2rt . 3rt . nn 
sm 2n + I sm 2n + I sm 2n + I · · · sm 2n + I 

. rt . 2n . 3rt . ( n - I ) rt 
sm 2n sm 2n sm 2n ... sm 2n 

rt ~ ~ ~ 
(b) cos 2n + 1 cos 2n + 1 cos 2n + 1 ••• cos 2n + 1 

and 
rt 2rt 3rt (n - I) rt 

cos 2n cos 2n cos 2n . . . cos 2n 

332. Show that from the results established in Problems 330 (a) 
and (b) it follows that for any positive integer n the value of the 
sum 

3 ...... 60 



66 Problems 

lies between ( 1 - 2n ~ 1 ) (I - 2n ! 1 ) ~
2 

and (I - 2n ~ 1 )X 
X ( 1 + 2n ~ I ) ~2 • 

Remark. In particular, the assertion stated in Problem 332 implies that 

I I I rt2 

1 +22+32+42+ ... =5 

where the sum of the infinite series I + ~ + ~ + * + . • . is under­

stood as the limit to which the finite sum I+ ~2 +v + ... + ~2 tends as n-+ 

-+oo. 

333. (a) A point M lies on a circle circumscribed about a reg­
ular n-gon A1A2 ••• An. Prove that the sum of the squares of the 
distances from that point to all the vertices of the n-gon is inde­
pendent of the position the point occupies on the circle and is 
equal to 2nR2 where R is the radius of the circle. 

(b) Prove that the sum of the squares Qf the distances from an 
arbitrary point M lying in the plane of a regular n-gon A1A2 ... An 
to all the vertices of the n-gon is dependent solely on the distance 
l between M and the centre 0 of the n-gon and is equal to 
n (R 2 + 12 ) where R is the radius of the circle circumscribed about 
the n-gon. 

(c) Prove that the assertion stated in Problem 333 (b) remains 
true for the case when the point M does not lie in the plane of 
the n-gon A 1A2 ... An. 

334. Let M be a point lying on an arc A1An of a circle circum­
scribed about a regular n-gon A1A2 ... An. Prove that 

(a) if n is even then the sum of the squares of the distances 
from the point M to the vertices of the n-gon with even indices 
is equal to the sum of the squares of the distances from M to the 
vertices with odd indices; 

(b) if n is odd then the sum of the distances from the point J\:l 
to the vertices of the n-gon with even indices is equal to the sum 
of the distances from M to the vertices with odd indices. 

Remark. For a geometrical proof of the theorem stated in Problem 334 (b) 
see the solution of Problem 137 in book [8]. 

335. The radius of the circle circumscribed about a regular 
n-gon A1A2 ... An is equal to R. Prove that 

(a) the sum of the squares· of all sides and of the squares of all 
diagonals of the n-gon is equal to n2R2 ; 

(b) the sum of all sides and of all diagonals of the n-gon is 
equal to n cot (rr.R/2n); 

(c) the product of all sides and of all diagonals of the n-gon 
is equal to nnt2Rn(n-1J12• 
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336*. Find the sum of the 50th powers of all the sides and of 
all the diagonals of a regular 100-gon inscribed in a circle of ra­
dius R. 

337. It is known that lz + ! j =a where z is a complex 

number. What are the greatest and the least possible values of 
the modulus I z I of the complex number z? 

338. Let a sum of n complex numbers be equal to zero. Prove 
that among them there are two numbers whose arguments differ 
by not less than 120°. 

Is it possible to replace in this problem the angle of 120° by a 
smaller angle? 

339. Let c1, c2, ••• , Cn and z be complex numbers such that 

I 1 I --+--+ ... +--=0 
Z - C1 Z - C2 Z - Cn 

Prove that if- the numbers Ci, c2, ••• , Cn are represented in the 
complex plane by the vertices of a convex n-gon then the number z 
is represented by a point lying inside that n-gon. 

I I. Several Problems in Number Theory 

340. Fermat's theorem. Prove that if p is a prime number then 
for any whole number a the difference aP - a is divisible by p. 

Remark. The assertions proved in Problems 46 (a)-(e) are special cases of 
this theorem. 

341. Euler's theorem. Let N be a whole number and r be the 
number of integers belonging to the sequence I, 2, 3, ... , N - I 
which are relatively prime to N. Prove that if a is an arbitrary 
whole number relatively prime to N then the difference a' - I is 
divisible by N. 

Remark. If N is a prime number then all the numbers in the sequence I, 2, 
3, ... , N - I are relatively prime to N, that is r = N - I. In this case Eµler's 
theorem reduces to the following theorem: the difference aN-i - I where N is 
a pr:me number is divisible by N. We thus see that Fermat's theorem (Problem 
340) can obviously be regarded as a special case of Euler's theorem. 

If N = pn where the number p is prime then among the N - I = pn - l 
numbers I, 2, 3, ... , N - I only the numbers p, 2p, 3p, ... , N - p = (pn-i -
- I) p are not relatively prime to N = pn. In this case r = (pn - I) - (pn-1 -
- I) = pn - pn-1, and hence Euler's theorem reduces to the following theorem:: 

n n-1 
the difference aP -p - I where the number p is prime and a is not dr-
visible by p must necessarily be divisible by p". 

If N al a2 ak h · · d' t' t · =Pt P2 .• • Pk w ere Pi. p2, ... , Pk are pairw;se 1s me pnme 
numbers then the number r of positive integers which are less than N and are 

3* 
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relatively prime to N is given by the formula 

If N is a power of a prime number p, that is N = pn, then this formula yields 

n (1 1 ) n n-1 r=p -P =p -p 

The last formula coincides with the result established above. 

342*. According to Euler's theorem, the difference 2k - 1 where 
k = 5n - 5n-I is divisible by 5n (see Problem 341 and, in partic­
ular, the remark to it). Prove that the difference 2k - 1 cannot 
be divisible by 5n for any k less than 5n - 5n-1• 

343. Let us write consecutively the powers of the number 2: 

2; 4; 8; 16; 32; 64; 128; 256; 512; I 024; 2048; 4096; ... 

It can easily be noticed that the last digits of the numbers form­
ing this sequence repeat periodically with period of length 4: 

2; 4; 8; 6; 2; 4; 8; 6; 2; 4; 8; 6; ... 

. Prove that, beginning with some number belonging to the se­
quence of the powers of 2, the last 10 digits of the numbers form­
ing that sequence also repeat periodically. Find the length of the 
period and the number in the sequence beginning with which this 
periodicity takes place. 

344*. Prove that there exists a power of the number 2 such 
that the last 1000 digits in its decimal representation are all ones 
and twos. 

345. We shall call a pair of (different) natural numbers m and 
n "good" if they contain the same prime factors (ih the general 
case raised to different powers). For example, such are the num­
bers 90 = 2·32 ·5 and 150 = 2·3·52. Further, we shall call such 
a pair "very good" in case both m, n and m + 1, n + 1 are "good 
pairs" (for example, the numbers 6 = 2·3 and 48 =" 24 ·3 form a 
"very good" pair because 6 + 1 = 7 and 48 + 1 = 49 = 72). ls 
the set of all "very good" pairs of natural numbers finite or not? 

346. Let a, a+ d, a+ 2d, a+ 3d, ... be an arbitrary (infinite) 
arithmetic progression whose first term a and common difference 
d are natural numbers. Prove that the progression contains infi­
nitely many terms whose factorizations contain the same prime 
factors (of course, in the general case, the exponents of their 
powers contained in the factorizations may be different). 
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347. Wilson's * theorem. Prove that if p is a prime number then 
the number (p - 1) I+ l is divisible by p and if p is a composite 
number then (p - 1) I + 1 is not divisible by p. 

348. Prove that 
(a) for any prime number p there are integers x and y such 

that x2 + y2 + 1 is divisible by p; 
(b*) if the division of a prime number p by 4 leaves a re· 

mainder of 1 then there exists an integer x such that x2 + 1 is 
.divisible by p (in case the prime number p is odd the condition 
imposed on p is necessary and sufficient for the existence of 
-such x). 

Problem 348 is related to the part of number theory studying the represen­
tation of natural numbers as sums of powers (with equal exponents n > I) 
of some other natural numbers. For example, from the result established in 
Problem 348 (b) we can draw the conclusion that a natural number N can be 
represented in the form of a sum of squares of two natural numbers if and 
only if the factorization of N as a product of prime factors contains even 
powers of prime factors of the form 4n + 3 (that is of all prime factors 
whose division by 4 leaves a remainder of 3). 

From the result established in Problem 348 (a) it is possible to deduce an 
interesting theorem asserting that all the natural numbers without exception 
.can be represented as sums of squates of four natural numbers (or of a smal­
ler number of squares). In its turn, this theorem makes it possible to prove that 
.each natural number can be represented in the form of a sum of a bounded 
number of fourth powers of natural numbers, say as a sum of 53 (or less) 
.exact four th powers of natural numbers. (More intricate methods make it pos­
sible to replace 53 by 21; the last result can probably be made more precise: 
some considerations indicate that every natural number can probably be repre­
sented as a sum of not more than 19 exact fourth powers of integers.) It is 
also proved that every natural number can be represented as a sum of not more 
than nine cubes of integers (in this case the number 9 cannot be replaced by a 
smaller number!). 

All these assertions are special cases of the following remarkable theoreml 
for any positive integer k there is an integer N (which, of course, depends on 
k) such that any positive integer can be represented in the form of a sum of 
not more than N summands each of which is the kth power of an integer**. 
There exist several different proofs of the last theorem but in the proofs that 
were known until recent years extremely intricate mathematical methods (relat­
ed to higher mathematics) were used. It was only in 1942 that the Soviet math­
ematician Yu. V. Linnik constructed a purely arithmetical proof of the theo­
rem which however is very complicated. It was also established that each ratio­
nal number can be represented as a sum of not more than three cubes of ratio­
nal numbers; in this connection it is interesting to note that the number I can­
not be represented in the form of a sum of cubes of two rational numbers. 

349. Prove that there are infinitely many prime numbers., 
350. (a) Prove that among the terms of the arithmetic progres• 

sions 3; 7; 11; 15; 19; 23; ... and 5; 11; 17; 23; 29; 35; ... there 
.are infinitely many prime numbers. 

* John Wilson (1714-1793}. a Scottish astronomer and mathematician. 
** This -theorem is often referred to as Waring's problem after Edward Wa­

ring ( 1734-1798), an English mathematician who posed this problem, - Tr. 



70 Problems 

(b*) Prove that among the terms of the arithmetic progression; 

11; 21; 31; 41; 51; 61; 

there are infinitely many prime numbers. 
By analogy with the solutions of Problems 350 (a)~(b), but in a more com­

plex manner, it can be proved that among the terms of the arithmetic progres­
sion 5; 9; 13; 17; 21; 25; ... there are also infinitely many prime numbers. There 
also holds a more general assertion: any arithmetic progression whose first' 
term is relatively prime to its common difference contains an infinitude of prime 
numbers. This assertion is proved in an extremely difficult way. It is interesting 
to mention that a proof of this classical theorem of number theory in which the 
methods of higher mathematics are not used was for the first time elaborated1 
in 1950 by the Danish mathematician A. Selberg (this proof is however very 
complicated). Before that only proofs based on higher mathematics were known~ 
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1. Let A be the first of the chosen soldiers and B the second 
-0ne. If A and B are in one line then B is taller than A because A 
is the smallest soldier in his line; if A and B are in one file then 
B is also taller than A because B is the tallest soldier in that file. 
Finally, if A and B are in different lines and in different files, and 
if C, another soldier, is in one line with A and in one file with B, 
then B is taller than A since B is taller than C while A is smaller 
than C. 

2. Let us consider the sum of the numbers of times each person 
has ever shaken hands. The sum must necessarily be even because 
when two persons A and B shake hands the number of times A 
has shook hands increases by I and the number of times B has 
ever shook hands also increases by I, and hence this adds the 
number 2 to the total sum of the numbers of the handshakes. 
Since this sum consists of the numbers of times each person has 
shaken hands and the sum is even, it follows that the number of 
.odd addends in this sum is even, which is what we intended to 
prove. 

3. Let A be one of the six people. It is clear that 
1° either A has three acquaintances Bi, B2, and Ba among the 

-other five persons or 
2° there are three persons Ci, C2 and Ca with neither of whom 

A is acquainted (because A is either acquainted with three of the 
five persons different from A or is not acquainted with three per• 
sons among those five people). 

If case I 0 takes place and among Bi, B2 and Ba there are not 
-two persons who are acquainted with each other then B1, 8 2 and 
Ba form the triple of persons whose existence is asserted in the 
problem; if in case 1° two of the three persons 8 1, B2 and Ba, say 
B 1 and B2, are acquainted with each other then among the three 
persons A, B 1 and B2 any two persons are acquainted with each 
.other. Similarly, if case 2° takes place and any two of the three 
persons C1, C2 and Ca are acquainted with each other then they 
form the triple we are interested in, and if in case 2° there are two 
:persons among Ci, C2 and C3, say C1 and C2, who are not ac· 
.quainted with each other then the triple consisting of A, C1 and Ca 
is the one whose existence we want to prove. 

4. (a) Each of the N persons present at the meeting can have 
!O, I, 2, ... , N - I acquaintances, that is the greatest possible 
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number of his acquaintances is equal to N. However, if somebody 
has 0 acquaintances then nobody has N - 1 acquaintances. On 
the contrary, if somebody has N - 1 acquaintances then nobody 
has 0 acquaintances. It follows that there must necessarily exist 
two people having the same number of acquaintances (cf. what 
was said about Dirichlet's principle on page 9). 

(b) We shall index the people taking part in the meeting with 
the numbers 1, 2, ... , N and consider the following situation: let 
for all the values i = 0, 1, 2, ... where i < N /2 the person with 
the index N - i be acquainted with all the people except the first i 
persons (this means that the Nth person is acquainted with all 
other people without exception, the (N - 1) th person is acquainted 
with all other people except the 1st one, the (N - 2)th person is. 
acquainted with all other people except the 1st and the 2nd, etc.) 
and let all the people with the indices i such that l ~ i ~(N + 1)/Z 
be not acquainted with one another. In this case it is obvious that 
for N = 3 the 1st and the 2nd persons are acquainted only with 
the 3rd one while the 3rd person has two acquaintances. Similarly, 
for N = 4 the 1st person is acquainted only with the 4th one, the 
2nd person with the 4th and the 3rd, the 3rd with the 4th and the 
2nd persons and the 4th person has three acquaintances. In just 
the same manner we can readily show that for an odd number 
N = 2k + 1 the number ni (i = 1, 2, ... , N) of the people the ith 
person is acquainted with takes on the values n 1 = 1, n2 = 2, ... 
. . . , nk = k, nk+1 = k, nk+2 = k + 1, ... , nN = N - l and that 
for an even number N = 2k + 2 we have n1 = 1, n2 = 2, ... 
. . . , nk+1 = k + 1, nk+2 = k + 1, nk+3 = k + 2, ... , nN = N - l. 
Thus, in the case under consideration there are not three persons 
having the same number of acquaintances. 

5. If all the participants of the meeting are acquainted with one 
another then the possibility of seating four people in the required 
manner is quite evident. Now let us suppose that two persons A 
and B are not acquainted with each other. Each of them has not 
less than n acquaintances among the other 2n - 2 participants. 
Since n + n = 2n = (2n - 2) + 2 we conclude that A and B have 
at least two mutual acquaintances C1 and C2, and we can seat A 
and B opposite each other and seat C1 and C2 between them. 

6. Let A be a scientist having the greatest number n of ac­
quaintances among the participants of the congress (there can be 
several such scientists and then by A is meant one of them). It 
is clear that n > 0 since we supposed that some of the partici­
pants of the congress had been acquainted with one another. All 
the acquaintances of A have different numbers of acquaintances 
(because A is a mutual acquaintance of any two of them); besides. 
none of them has more than n acquaintances. Therefore B, one 
of the acquaintances of A, must necessarily have only one ac• 
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quaintance, some other of the acquaintances of A has exactly two 
acquaintances, a third one has three acquaintances, ... , and, 
finally, the last (the nth) of the acquaintances of A has, like A, n 
acquaintances. The existence of person B proves the assertion of 
the problem. 

7. Let us arbitrarily choose three delegates of the congress. 
Among them there must be two persons knowing some one lan­
guage (one of the three languages). We shall lodge them in one 
room. From the remaining 998 delegates of the congress we again 
choose three persons among whom there are two people that can 
be lodged in one room, and so on until there remain only four de· 
legates A, B, C and D. If every two of them can speak with each 
other there are no difficulties in lodging these four people; if A 
and B cannot communicate with each other then both C and D 
can serve as their interpreters (which makes the communication 
in the triples A, B, C and A, B, D possible). Therefore we can, 
for instance, lodge C and A in one room and D and B in another 
room. 

8. Let A be one of the participants of the conference. He can 
speak with each of the other 16 participants in at least one of the 
three languages. It is readily seen that there is a language (we 
shall speak of this language as the first one) among the three 
languages that A can speak in with not less than 6 participants. 
Indeed, if otherwise, A could not speak with more than 5.3 = 15 
scientists whereas, by the condition of the problem, every two 
scientists can speak with each another. Further, if among these 6 
scientists there are two who speak with each other in this lan­
guage the assertion of the problem turns out to be true. If other­
wise, these 6 participants can speak with one another using only 
two languages. 

Now, let B be an arbitrary scientist among the 6 chosen scien­
tists. It is clear that among the other 5 scientists there are 3 with 
whom B can speak in one and the same language (we shall call 
it the second language). Indeed, if otherwise, then among these 
5 participants of the conference there would be not more than 
2 · 2 = 4 persons with whom B could communicate. If among these 
three scientists at least two, say C and D, can speak with each 
{)ther in the second language then the three scientists B, C and D 
can speak with one another in one language, and the assertion of 
the problem again turns out to be true. In case these three scien­
tists speak with one another in the third language then it is they 
who form a triple of scientists whose existence we intended to 
prove. 

9. (a) Let us choose one of the participants of the meeting. We 
shall denote him A and all the persons acquainted with him 
A1, A2, ••• , Ak respectively. It is clear that among A1, A2, ••• , A11 
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there are not two persons acquainted with each other and that any 
two of them, say Ai and Ah have two mutual acquaintances. 
namely A and Ail (here i, j = I, 2, ... , k and i =I= j). Besides, it 
is obvious that among the k (k - 1) /2 participants Ail there are 
not two persons coinciding with each other because, if otherwise. 
that person and person A would have not less than three mutual 
acquaintances. On the other hand, since every participant who is 
not acquainted with A and the person A himself have two mutual 
acquaintances (they obviously belong to the set Ai, A2 , ••• , Ak), 
we see that all the participants who are not acquainted with A 
are A 12, A 13, ••• , Ak-I, k, and therefore the total number n of the­
participants of the meeting is expressed as 

n = 1 + k + k (k - 1) (*} 
2 

(here 1 corresponds to A, k corresponds to all persons A; and 
k (k - 1) /2 corresponds to the persons A;i). 

Now we note that by virtue of equality (*) which can also be 
rewritten as 

k2 + k - (2n - 2) = 0 (**} 
it follows that 

k=-~+ v~ +(2n-2)= -v'~-l 
(the other root of quadratic equation (**) is k' = - 1/2 -
- -\!' 1/4 + 2n - 2; it is negative and must therefore be discarded). 
Hence, the number k of the people who are acquainted with an arbit­
rarily chosen person A is uniquely determined by the total num­
ber n of the participants of the meeting, that is k is one and the­
same for all persons A. 

(b) By(*), we have 

n= k (k +I) + l 
2 (***) 

whence it follows that n exceeds by unity the number k (k + 1) /2,. 
the latter being one of the so-called triangular numbers for n ex­
pressed by formula (***) the number of the acquaintances each of 
the participants has is equal to k; here k = 1, 2, 3, ... is an ar-
bitrary natural number. . 

10. Let A, B and C be three arbitrary inhabitants of the town. 
It is evident that there can be the case when all the three people 
are friends; it is also possible that one of them (say A) is neither 
a friend of B nor of C while B and C are friends. Then for A, B 
and C to make friends with one another it is sufficient that A 
should quarrel with all his friends and make friends with all his. 
enemies. It can also be easily seen that the other two cases when 
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all the three inhabitants A, B and C are enemies and when ona 
-0f the inhabitants, say A, is a friend of both B and C while B and 
C are enemies are impossible. Indeed, in both cases among the 
three pairs A, B; A, C and B, C of the inhabitants of the town 
of Manifold there is an odd number c (equal to 3 or 1) of pairs 
of enemies and an even number e (equal to 0 or 2) of pairs of 
friends. In all the cases when A or B or C quarrels with his 
friends and makes friends with his enemies the odd number c and 
the even number e either do not change or are replaced by an odd 
number c' and an even number e' respectively, whence it follows 
that all the three persons A, B and C can never make friends 
with one another (because the number c cannot become equal 
to 0). 

The description of the "friendship relations" between any three 
persons A, B and C shows that for the whole population of the 
town these relations can be described in the following way: there 
are two groups of people in the town (two parties .JI{ and ff) such 
.that each of the inhabitants of the town belongs either to one 
party or to the other (but never to both parties simultaneously), 
every two of the members of one party being friends and any two 
inhabitants belonging to the different parties being enemies. In­
deed, let us add to the above three inhabitants A, B and C an­
·other inhabitant D of the town of the Manifold. If A and B are 
friends and D is a friend of at least one of them, then D is also 
a friend of the other and hence he belongs to the same party as A 
and B; if A and B are enemies then D is a friend of only one of 
them (and must necessarily be a friend of one of them). This 
argument shows that it is possible to divide the four-tuple of th~ 
inhabitants A, B, C and D into two parties .JI{ and ff (however, 
one of the parties may turn out to be "void": this is the case when 
all the inhabitants A, B, C and D are friends). Proceeding in this 
way, that is adding consecutively new persons to the ones we have 
already considered, we prove the possibility of dividing all the 
10 000 inhabitants of the town into the two parties .JI{ and ff. 

Now we can readily prove the assertion stated in the problem. 
If all the inhabitants of the town are friends then no proof is 
needed. If neither of the parties .!ll and ff is "void" then it is 
sufficient that every day one of the members of party .JI{ should 
leave .JI{ and join the other party ff. If the number of the mem­
bers of party .JI{ is k then all the inhabitants of the town can be­
·('.Ome friends in k days. It follows that the period of 5000 days 
(5000 days ~ 14 years) is sufficient for all the inhabitants of the 

town to become friends (because at least one of the parties .;ft and 
..I\° consists of not more than 5000 people). 

11. It is natural to consider a line segment joining two points 
:representing two castles as a "road" connecting these castles 



76 Solutions 

(see Fig. 4). All the castles in the state of Oz are connected by a 
finite number n of roads. If the knight travels in the country 
sufficiently long he goes along sufficiently many roads. If the 
number N of these roads is not less than 4n + I then the knight 
must go along at least one road AB (where A and B are the castles 
connected by that road) not less than 5 times. Besides, not 
less than three times he must go along this road in one and the 
same direction (say, from A to B). Therefore if BC and BD are 
the other two roads starting from castle B then the knight must 
at least twice turn in one and the same direction when he leaves 
B (where both time1> he came from A), say when he leaves B the 

B A 

c 

fig. 4 

ij.h and the jth time, j > i, and goes, say, from B to C. But in 
that case the conditions of the problem imply that the knight not 
only comes to B from one castle (from castle A) the ith and the 
jth time but he also comes to A both times from one and the same 
castle (in Fig. 4 the castle from which the knight both times 
comes to A is denoted as P; for, if the knight turns to road BC 
when he leaves B, that is turns to the left, then he must turn to, 
the right when he leaves A, which means that he comes to A 
from P). We can similarly prove that the routes of the knight 
which brought him to B the ith and the jth time coincide com­
pletely; for instance, he comes to castle P both times from one 
and the same castle (which is denoted as U in Fig. 4), etc. It 
follows that if before his ith visit to B the knight goes past a 
number k of castles after he has left his own castle X then he 
must necessarily be again at X before he goes past k castles to 
visit B the jth time, which concludes the proof of the assertion 
stated in the problem. 

12 ~et us agree to call "friends" any two knights who are not 
enemies. Further, we begin with seating all the knights at the 
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round table in an arbitrary way. Suppose that it turns out that 
knight A sits next to his enemy B. For definiteness, we suppose 
that B sits to the right of A. Now we shall prove that there are 
two seats where two knights A', a friend of A, and B', a friend 
of B, sit next to each other, the knight B' sitting to the right of 
A' (see Fig. 5a). Indeed, A has not less than n friends. The num­
ber of seats to the right of the n friends of A is also equal to n, 
and the number of the enemies of B does not exceed n - 1, 
whence it follows that there is at least one of the seats to the 
right of the knight A', a friend of A, where knight B', a friend of 

(a} ( b) 

Fig. 5 

knight B, sits. Now, let all the knights from B to A' inclusive 
who sit to the right of A change their seats and sit in the reverse 
order (see Fig. 5b). This will obviously change only the pairs A, 
B and A', B' of knights sitting next to each other: they will be re­
placed by the pairs of friends A, A' and B, B' respectively. This 
means that the number of pairs of enemies sitting next to each 
other will decrease by at least 1 (it will even decrease by 2 in 
case knights A' and B' are enemies). Therefore, if Merlin con­
tinues to make the knights change their seats in the same manner 
all the pairs of enemies sitting next to each other will eventually 
be ~eparated. 

13. (a) Let us divide the given coins into three groups so that 
in each of the first two groups there are 27 coins and the third 
group contains 26 coins. In the first weighing let us put on the 
scale pans the groups of 27 coins. If these groups do not balance 
then the false coin is in the lighter group and if these groups 
balance then the false coin is in the group of 26 coins. We see 
that Problem 13 (a) reduces to the following problem: given 
27 coins among which there is a false one, it is required t-o detect 
the false coin by means of three weighings) for the problem of 
detecting a false coin in the group of 26 coins can be reduced to 



78 Solutions 

the former by adding to those 26 coins one more arbitrary coin 
taken from the remaining 54 coins. 

In the .second weighing we take the group of 27 coins contain­
ing the false one and divide it into three groups of 9 coins each. 
On putting two of these groups of 9 coins on the scale pans we 
find the group of 9 coins containing the false coin. 

Next we take the group of 9 coins containing the false one, 
divide it into three groups of 3 coins each and find the triple of 
coins containing the false coin. 

Finally, proceeding in the same manner we detect the false coin 
by means of the fourth weighing. 

(b) Let k be a natural number for which the inequalities 
3k-1 < n ~ 3k hold. We shall show that the number k satisfies 
the conditions of the problem. 

To begin with, we shall prove that it is always possible to de­
tect the false coin by means of k weighings. Let us divide the n 
given coins into three groups so that the first two groups contain 
3k-1 (or less) coins each, the third group containing not more 
than 3k-1 coins (this is possible since n ~ 3k). On putting the 
first two groups on the scale pans we find which of the three 
groups contains the false coin (cf. the solution of Problem 13a). 
Hence, after the first weighing we find a group of 3k-I coins con­
taining the false one (in case the false coin is in the group con­
taining less than 3k-l coins we add to these coins the required 
number of arbitrary coins so that the resultant number of coins 
is equal to 3k-1). In every consecutive weighing we divide the 
group of coins containing the false coin (that is the group which 
was found in the preceding weighing) into three groups of equal 
number of coins in the way described above and find the smaller 
group containing the false coin. Hence, after k weighings we 
arrive at a group of one coin, that is we detect the false coin. 

Now it remains to show that k is the minimum number of 
weighings with the aid of which it is always possible to detect 
the false coin, that is it remains to show that after k - 1 weigh­
ings performed in an arbitrary manner there may occur an unfa­
vourable case when the false coin is not detected. 

In every weighing the remaining coins are divided into three 
groups, namely the two groups which are then put on the scale 
pans and the third group which is not put on either of the pans. 
If the groups put on the scale pans contain the same number of 
coins and if they balance each other then the false coin must be 
in the group which is not put on either of the pans in this weigh­
ing. If one of the groups put on the scale pans turns out to be 
heavier ·and the number of coins in each of these groups is the 
same, then the false coin is in the lighter group. Finally, if we put 
different numbers of coins on the scale pans then in the case 
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when the group containing the greater number of coins turns out 
to be heavier the false coin may be in any of the three groups and 
hence such a weighing gives us no information about the group 
containing the false coin. Now suppose that in a sequence of ar­
bitrary weighings the result of each weighing turns out to be most 
unfavourable, that is every time the false coin is in the group 
which contains the greater number of coins. Then after each 
weighing the number of coins in the group containing the false 
coin decreases not more than 3 times (because when a group of 
a certain number of coins is divided into three groups at least one 
of the smaller groups always contains not less than one third of 
the number of coins in the former group). Consequently, after 
k - 1 weighings the number of coins in the group containing the 
false coin remains not less than n/3k-1, and since n > 3"-1 the 
false coin is not detected after k - I weighings. 

Remark. The answer to Problem 13 (b) can priefly be stated in the following 
way: the minimum n;_m1ber of weighings requi1 ed for detecting the false coin 
in a group of n coins is equal to [Iog3 (n - 1/2)] + I where the square brackets 
denote the integral part of a number (see page 36). 

14. Let us choose two arbitrary cubes and put them on the 
scale pans (the first weighing). Here there can be the following 
two different cases. 

1°. In the first weighing one of the cubes turns out to be heavier. 
Then one of the two cubes we are weighing musi necessarily 
be made of aluminium and the other of duralumin. Next we put 
these two cubes on one of the scale pans and on the other scale 
pan we put, in succession, each of the 9 pairs of cubes into which 
the 18 remaining cubes are divided in an arbitrary way. If one of 
these pairs turns out to be heavier than the initial pair, that 
means that both cubes in the new pair are made of duralumin; if 
the initial pair of cubes is heavier then both cubes in the new pair 
are made of aluminium. Finally, if the two pairs balance, the new 
pair consists of an aluminium cube and a duralumin cube. Thus, 
in case I 0 the number of cubes made of duralumin can be deter­
mined with the aid of 10 weighings (because after the first weigh­
ing we perform 9 more weighings). 

2°. In •the first weighing the first two cubes balance. Then the 
cubes of the first pair are either both made of aluminium or both 
made of duralumin. Next we put these two cubes on one scale 
pan and on the other scale pan we put, in succession, each of the 
9 pairs of cubes into which the remaining 18 cubes are arbitrarily 
divided. Let us suppose that the first k of these pairs turn out to 
have the same weight as the initial pair while the (k + I) th pair 
is of some other weight. (If k = 9 then all the cubes are of the 
same weight and, consequently, there are no duralumin cubes 
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among them at all; the case when k = 0 does not differ from the 
general case.) For definiteness, let us suppose that the (k + 1) th 
pair turns out to be heavier than the initial pair (the argument 
remains almost the same when the (k + 1) th pair turns out to be 
lighter). Then the first two cubes and, consequently, the cubes 
forming the k pairs which have the same weight as the first one 
must necessarily be made of aluminium. Hence, on performing 
1 + (k + 1) = k + 2 weighings we find k + 1 pairs of aluminium 
{'.Ubes. Next we put on the scale pans the two cubes forming the 
last pair we have weighed (this is the (k + 3)th weighing). If 
both cubes turn out to be of one weight then they both are made 
of duralumin; if otherwise, one of them is made of aluminium and 
the other is made of duralumin. In both cases after (k + 3) weigh· 
ings we can find a pair of cubes one of which is made of alumi­
nium while the other is made of duralumin. Using this pair we can 
perform 8 - k weighings to determine the number of duralumin 
cubes among the remaining 20 - 2 (k + 2) = 16 - 2k cubes by 
analogy with what we did in case 1°. We see that in case 2° the 
total number of weighings is equal to k + 3 + (8 - k) = 11. 

t5. Let us divide the given coins into three groups of four coins 
each. In the first weighing on each of the scale pans we put a 
group of four coins. There can be the following two cases here: 

t 0
• The two groups balance. 

2°. One of the groups turns out to be heavier. 
Let us consider separately each of these possibilities. 
t 0

• In the first weighing the two groups of four coins balance. 
This means that the false coin is in the third group while the 8 
coins put on the scale pans are genuine. Let us index the coins 
in the remaining (third) group with the numbers 1, 2, 3 and 4. In 
the second weighing we put coins 1, 2 and 3 on one scale pan 
and three of the 8 coins known to be genuine on the other pan. 
Here the following two sub-cases are possible: 

A. The two groups of 3 coins put on the scale pans balance. 
Then coin 4 is false. On weighing this coin and a genuine one we 
find whether the false coin is lighter or heavier than the genuine 
coin. 

B. One of the two groups of 3 coins turns out to be heavier. 
In this case one of the coins 1, 2 and 3 is false. If the group of 
three genuine coins turns out to be heavier then the false coin is 
lighter than a genuine coin. With the aid of one more weighing 
we easily find the lighter of the three coins 1, 2 and 3 (cf. the so· 
lution of Problem 13a). If the group of coins 1, 2 and 3 is heavier 
then the false coin is heavier than a genuine coin. In that case 
as well we readily detect it by means of one more weighing. 

2°. In the fi.rst weighing one of the groups of four coins turns 
out to be heavier. Then all the coins in the remaining third group 
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are genuine. Let us index the four coins in the heavier group as 
1, 2, 3 and 4 (if one of these coins is false then it is heavier than 
a genuine coin) and let us denote the four coins on the other scale 
pan as l', 2', 3' and 4' (if one of the coins in the latter group is 
false then it is lighter than a genuine coin). In the second weigh­
ing we put coins 1, 2 and l' on one scale pan and coins 3, 4 and 2' 
on the other pan. Here we can have the following three possible 
sub-cases: 

A. The groups of 3 coins put on the scale pans balance. Then 
one of the coins 3' and 4' is false (and it is lighter than a genuine 
coin). In the third weighing we put coin 3' on one scale pan and 
coin 4' on the other scale pan. The coin that turns out to be lighter 
in this weighing is the false one. 

B. The group of coins 1, 2 and 1' turns out to be heavier. In 
this case coins 3, 4 and l' are genuine, for if one of the coins 3 
and 4 were heavier than the others or if coin 1' were lighter than 
the others, the group of coins 3, 4 and 2' would be heavier in the 
second weighing, which is not the case. Thus, either one of coins 
1 and 2 is false (and then the false coin is heavier than a genuine 
coin) or coin 2' is false (in the latter case the false coin is lighter 
than a genuine coin). Let us put, in the third weighing, coin 1 on 
the scale pan and coin 2 on the other. If these coins balance then 
coin 2' is false and if one of the two coins is heavier then it is 
this heavier coin that is false. 

C. The group of coins 3, 4 and 2' turns out to be heavier. Then 
arguing by analogy with the above we conclude that coins 1, 2 
and 2' are genuine and that either one of the coins 3 and 4 is 
false and is heavier than a genuine coin or coin l' is false and is 
lighter than a genuine coin. In the third weighing we put coin 3 
on one scale pan and coin 4 on the other. If these coins balance 
then it is coin 1' that is false. If one of the two coins turns out 
to be heavier then it is the heavier coin that is false. 

16. (a) It is sufficient to cut the third link; then the chain is 
divided into two parts consisting of 2 and 4 links respectively and 
one separate link that was cut. On the first day the man gives the 
innkeeper the link that was cut; on the second day he takes this 
link back from the innkeeper and gives him in exchange the part 
of the chain consisting of two links; on the third day he again 
gives the innkeeper the link that was cut in addition to the links 
already given; on the fourth day he takes back all the links he 
gave before and gives the innkeeper the part of the chain consist­
ing of four links; on the fifth day he once again gives the inn­
keeper the link that was cut; on the sixth day he takes that link 
back and gives the innkeeper the part of the chain consisting of 
two links in exchange; finally, on the seventh day he gives the 
innkeeper the remaining link. 
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(b) We begin with solving the following problem: what must 
be the greatest number n of an n-link chain for which it is suffi­
cient to cut k links so that it is possible to take any number of 
links from 1 to n inclusive using some (or all) of the parts into 
which the chain is divided? To solve this problem let us find what 
is the best arrangement of the k links to be cut. After k links have 
been cut we have these k separate links at our disposal and there­
fore any number of links ranging from 1 to k inclusive can be 
taken by using these k links only. But it is impossible to take 
k + 1 links if we do not have a part of the chain consisting of 
k + 1 links or of a smaller number of links. Clearly, it is best to 
have a part consisting of exactly k + 1 links; in this case we can 
use this part and the k links we have cut to have any number of 
links from 1 to 2k + 1. To take 2k + 2 = 2 (k + 1) links as well 
it is necessary to have a part of the chain consisting of 2 (k + 1) 
links or of a smaller number of links. Clearly, the best case is 
when this part consists of exactly 2 (k + 1) links. Now we can 
take any number of links from 1 to 2k + 1 + 2 (k + 1) = 4k + 3. 
The next part of the chain we need must obviously consist of 
4 (k + 1) links. Continuing to argue in this way we readily show 
that the best case is when the k + 1 parts of the chain obtained 
after k links have been cut (here, when speaking of the parts of 
the chain, we do not regard as parts the k separate links that 
have been cut) consist of the following numbers of links res~ 
pectively: 

k + 1, 2 (k + 1), 4 (k + 1), 8 (k + 1), ... ' 2k (k + 1) 
In this case we can take any number of links from 1 ton inclusive 
where 

n = k + {k + 1+2 (k + 1) + 4 (k + 1) + ... + 2k (k + 1)} = 

= k + (2k+ 1 
- 1) (k + 1) = 2k+ 1 (k + 1) - 1 

by using the parts of the chain and the separate links that have 
been cut. 

Thus, if 2k k ~ n ~ 2k+1 (k + 1 )- 1, it is sufficient to cut k 
links but it is insufficient to cut k - 1 links. In particular, 

k = 1 for 2 ~ n ~ 7 

k=2 for 8~n~23 

k=3 for 24~n~63 

k = 4 for 64 ~ n ~ 159 

k = 5 for 160 ~ n ~ 383 

k = 6 for 384 ~ n ~ 895 

k=7 for 896~n~2047 
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We see that for n = 2000 the smallest number of links that should 
be cut is equal to 7. The conditions of the problem will be fulfilled 
if we choose these links so that the 8 parts obtained after the 
7 links have been cut (here the 7 separate links that have been 
cut are not included into the number of the parts) consist of 8, 16, 
32, 64, 128, 256, 512 and 977 links respectively. 

17. Let S be an arbitrary underground station and T be the 
fart he st station f ram S in the sense that on the shortest way 
from S to T there are more (or at least not fewer) intermediate 
stations than on the shortest way from S to any other station. 
Now suppose that station T is closed. Then we can again go 
from S to any other station U (which is not closed) since the 
shortest way from S to U cannot go through T because, if other­
wise, station U would be farther from S than station T. There­
fore if U and V are two arbitrary underground stations different 
from T, then from one of them we can undoubtedly go to the other 
without passing through T. Indeed, if, for instance, U and V di ff er 
from S, then to go from U to V it is sufficient to go from U to S 
and then from S to V. 

18. We shall prove the assertion of the problem using the me­
thod of mathematical induction. Let us consider the Zurbagan 
cross-roads from which more than two roads start. If there are 
only two cross-roads A and B in Zurbagan then the assertion of 
the problem is obvious: there are not less than two roads con­
necting A and B (if there were only one such road and if one-way 
traffic were introduced, say, in the direction from A to B, we 
would not be able to go from B to A). Consequently, on introduc­
ing one-way traffic from A to B in one of the roads and from B 
to A in the other road we can go from any cross-roads to any 
other cross-roads different from the former. Fortunately, this 
simple argument turns out to be applicable to the general situa­
tion as well. Let us suppose that the assertion stated in the pro­
blem has already been proved for all the towns where the number 
of the cross-roads does not exceed n. Let us consider another town 
(let this town be Zurbagan) having n + 1 cross-roads. Let us 
·consider two neighbouring cross-roads A and B (among these 
n + 1 cross-roads) which are connected by a road AB. Suppose 
that one-way traffic is introduced in road AB (during the repairs), 
say, in the direction from A to B. Since it remains possible to go 
from B to A, it clearly follows that there is a "chain" of roads 
which does not include AB and leads from B to A. (We can as­
sume that this "chain" of roads has no self-intersections because 
if the chain went twice through one and the same cross-roads C, 
the "cycle" of streets starting at C and returning to C again 
could simply be discarded.) Hence, there is a "ring" s, that is a 
closed network of streets in Zurbagan, which starts from A, leads 



84 Solutions 

to B, goes through a number of "intermediate" cross-roads and' 
then leads to A again. Now let us consider a map of a conditional 
town which is obtained from the map of Zurbagan by "sticking 
together" all the cross-roads of ring s to form one cross-road S. 
All the streets which start from S in the conditional town go 
through the cross-roads belonging to ring s in the real town of 
Zurbagan *. The number of cross-roads in such a conditional town 
is less than n + 1; therefore, by the hypothesis, it is possible to 
introduce one-way traffic in the streets of this town so that all the 
conditions of the problem are satisfied. Now it becomes clear that 
if we introduce one-way traffic (in any direction!) in the streets 
included in ring s and leave unchanged one-way traffic that has 
been introduced in the conditional "town" in all the streets of Zur­
bagan which are not contained in ring s, then one-way traffic will 
be introduced in all the streets of Zurbagan so that it will be 
possible to go from any of the cross-roads to any other. 

19. It is clear that if there are two towns in the state of Del phi-
11 ia which are connected by only one road with one-way traffic 
then it is impossible to get from one of these towns to the other. 
If there are four towns we can represent them as four vertices of 
a quadrilateral Ai, A2, As, A4 (see Fig. 6). It is evident that either 
the movement along the sides of the quadrilateral is "cyclic" (as 
shown in Fig. 6a) or there is a vertex, say Ai, such that the two 
sides of the quadrilateral emanating from it correspond to two 
roads with the traffic in the direction from the town represented 
by that vertex (see Fig. 6b). In the former case the vertices of the 
quadrilateral are quite equivalent, and any choice of the directions 
of movement along the diagonals of the quadrilateral does not, in 
principle, differ from any other choice; however, if the situation 
is as shown in Fig. 6a it is impossible to get from As to A2 going 
only through one "intermediate" town. In case the movement 
along roads A iA2 and A iA4 is in the direction from Ai, then, in 
accordance with the requirements stated in the problem, to go 
from A2 and from A4 to Ai it is necessary to choose the directions 
of traffic along roads A2As, A4As and AsAi as is indicated by 
arrows in Fig. 6b. But this again leads to a "symmetric" situation 
for which it is sufficient to consider the organization of traffic 
corresponding to any (quite arbitrary!) choice of the direction of 
traffic along road A2A4, and in the case represented in Fig. 6b it 
is impossible to get from A4 to A2 going only through one town. 

* This "map" of the conditional town can simply be understood as a table 
in which all the streets and all the cross-roads are enumerated and where it 
is indicated which streets lead to each of the cross-roads. It may happen that 
such a map of the "conditional town" cannot be depicted on a plane sheet of 
paper and that for this aim a sphere or some other more complicated surface 
is needed. For the. argument we use here this is of no importance. 
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For n = 3 and n = 6 the choice of the directions of movement 
satisfying all the requirements imposed in the problem is possible 
(see Fig. 7a and b; in Fig. 7b even not all the roads are depicted 
because the situation is quite clear). 

(a) ( b) 

Fig. 6 

Now we shall make use of the method of mathematical induc­
tion. Let us assume that the assertion stated in the problem has 
already been proved for a number n of towns and show that under 

AJ A4 

A2 As 

A, A2 

(a) 
A1 

(b) 
A6 

Fig. 7 

this assumption the assertion must also be true for the number 
n + 2 of towns exceeding the former number by 2. To this end 
let us introduce the directions of traffic along all the roads con­
necting any two of the first n towns A" A2, ... , An in such a way 
that it is possible to get from any of these towns to any other 
going through not more than one intermediate town (according 
to the hypothesis, such a choice is possible). Further, along all 
the roads connecting the (n + I) th town An+1 with towns 
A1, A2, ••• , An we introduce the directions of traffic from An+i to-
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A 1, A2, ... , An and along the roads connecting each of the towns 
A 1, A2, ... , A,, with the (n + 2) th town we introduce the directions 
of traffic from A1, A2, ... , An to An+2 (see Fig. 8). This makes it 
possible to go from A,,+1 to each of the towns Ai. A2, ... , An and 
from each of the towns A1, A2, ••• , A,, to An+2 without going 
through any intermediate town. Finally, let the traffic along the 

roads connecting An+1 and An+2 
An+1 be in the direction from An+2 

to An+I· Then it is possible to 
go from An+2 to An+1 without 
going through an intermediate 
town and to go from An+2 to any 
of towns A1, A2, ... , An and 
from any ot towns Ai. A2, ... 
. . . , A,, to An+1 going through 
one intermediate town (An+I 

A1 and An+2 respectively). 
Since the assertion of the 

problem is true for n = 3 and 
for n = 6 it follows that it is 
also true for all odd n ;;::;;:: 3 and 
for all even n ;;::;;:: 6. 

20. A purely mathematical 
An•2 statement of the problem reads: 

there are 100 points (towns) 
Fig. 8 in the plane (a map of the 

state of Shvambrania), every 
two points are connected either by a continuous line (which means 
that there is direct telephone communication between the corres· 
ponding towns) or by a dotted line (which means that there is an 
air route connecting the towns). Besides, it is known that from 
any of the given points (from any of the towns) it is possible 
to get to any other point by tracing a chain of continuous 
lines (connecting the points) or a chain of dotted lines. \Ve 
have to prove that among the I 00 given points there are four 
points such that from any of these four points it is possible to 
get to any of the other three points by tracing a chain of conti­
nuous lines or a chain of dotted lines using only the lines con­
necting these four points. 

We shall prove the assertion by contradiction. To this end we 
shall assume that there is no such four-tuple of points and then 
show that, under this assumption, it is possible to choose an infi­
nite sequence of different points (representing the corresponding 
towns) from the given 100 points, which of course cannot be true. 

We start with two arbitrary points A1 and A2 connected by a 
continuous line. By the condition of the problem, A1 and A2 can 
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also be connected by a chain of dotted lines. Let A1A3A3A3 .. , .42 

be the shortest of such chains, that is the one passing through the 
smallest number of intermediate points (towns). Then any two 
points belonging to this chain which are not next to each other 
are connected by a continuous line because, if otherwise, we could 
shorten the chain by discarding all the points between those two 
points. It follows that if the chain contained more than one inter­
mediate point (town), say points A3, A3 and A3' (where A3' may 
coincide with A2) then the points Ai. A3, A3 and Ar (see Fig. 9a) 
would form the required four-tuple of towns (points), which con­
tradicts the hypothesis. Therefore A 1 and A2 are connected by the· 
two-link chain A 1A3A2 of dotted lines. 

(a) 

Fig. 9 
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/'' '" 
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(b) 

Now let us consider the points A2 and A3 (which are connected 
by a dotted line). In exactly the same way as above we conclude 
that there exists a two-link continuous line A2A4A 3 which connects 
A2 and A 3• Let us prove that the point A4 is connected with A 1 by 
a continuous line. Indeed, if A4 and A 1 were connected by a dotted 
line then A1, A2, A3 and A4 would form a four-tuple of points 
possessing the required properties, which again contradicts the 
hypothesis (cf. Fig. 9b). 

Thus, we have found 4 points Ai, A2, A3 and A4 such that A2 is 
connected with A1 by a continuous line, A3 is connected with A1 
and A 2 by dotted lines and A4 is connected with A 1, A2 and A3 
by continuous lines. Next we shall use the method of mathematical 
induction. To this end let us assume that we have already found 
points A 1, A2, Aa, ... , A; such that each of the points A3, A5, ••• 

(having odd indices) is connected with all the preceding points 
by dotted lines and each of the points A2, .44, . . . (having even 
indices) is connected with the preceding points by continuous 
lines and show that under this assumption the sequence of the 
points A" ... , A; can be continued. For definiteness, let A;_1Ai 
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be a continuous line. Let us consider the shortest broken line 
A;_1A;+1Ai connecting Ai-I with A;. It is clear that the point A;+1 
does not coincide with any of the points Ai. A2, ••• , Ai-2 (and, of 
course, with A;_1 and A; either) because each of the points pre­
ceding Ai-I is connected by a continuous line with one of the 
points Ai-I and Ai and by a dotted line with the other point while 
Ai+I is connected by dotted lines with both of them. On the other 
hand, the point Ai+I is connected by dotted lines with the points 
A 1, A2 , ••• , Ai-2 (and with Ai-1 and Ai as well) because if the 
line AiAi+t (where j < i - 1) is continuous then Ai, Ai-I, A; and 
A;+1 form a four-tuple of points which, according to the hypothesis, 
cannot exist (Fig. 9b). 

We have thus added one more point to the sequence of points 
(towns) we are constructing and, consequently, the sequence 
A 1, A2, ••• , Ai-I, Ai, Ai+1 • ... can be made infi,nitely long. 

21. In order to move from the left lower corner to the right 
upper corner of a 64-square chess-board and to pass exactly once 
through each of the squares of the chess-board the knight must 
make 63 moves. In each move the knight passes from a white 
square to a black one or from a black square to a white one. There­
fore, after an even number of moves the knight gets to a square 
having the same colour as the initial square and after an odd 
number of moves to a square of the opposite colour. Consequently, 
on making 63 moves the knight cannot get to a square lying on 
the same diagonal as the initial square because all the squares on 
one diagonal are of the same colour. 

22. The king can choose the following "suicidal strategy": it 
first moves to the left lower corner and then moves along the 
diagonal connecting that corner with the right upper corner. After 
the first move along the diagonal the king gets to the square 
marked by the star in Fig. lOa. If after the black's move following 
the last move of the king at least one of the rooks is outside the 
square of dimension 997 X 997 shaded in the figure, then on mak­
ing its next move the king can reach a square where it must be 
taken. It can similarly be shown that after the 998 moves along 
the diagonal when the king reaches the square marked by the 
star in Fig. lOb all the rooks must be within the square of di­
mension 997 X 997 shaded in that figure. If during the king's 
movement at least one of the rooks remains in the same rank or 
in the same file as before then the king crosses that rank or that 
file in its movement and thus can be taken. Therefore, if the black 
do not want to take the king, then during the movement of the 
king from the position in Fig. lOa to the position in Fig. lOb (the 
king makes 997 moves during that period) each of the 499 rooks 
must make at least two moves (in every move a rook changes 
,either its rank or its file but it cannot change both of them simul-
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taneously). Hence, since 2 .499 = 998 > 997, the black cannot 
prevent the king from being taken! 

23. Let us change the order in which the squares are arranged. 
namely, let us rearrange them so that it becomes possible to 
move from any square to the neighbouring ones. In other words. 

* 

* 

(a) (b) 

Fig. 10 

let us place square 6 after square 1 (because, according to the 
conditions of the problem, we are allowed to move a counter from 
square 1 to square 6), square 11 after square 6 (because we are· 
allowed to move a counter from square 6 to square 11), square 4 
after square 11 (because we are allowed to move a counter from 
square 11 to square 4) and so on. Then we arrive at the arrange­
ment of the squares shown in the following scheme: 

R 
1 'OI( )o 6 

t 
8 

---;i ... ,, t( ... 4 I( ... g 
Ye 

---.... 2 

8 -- ;a 3 'I( )lo 10 I{ )lo 5 - 12 t( ... 7 
G 

We can assume that we have the 12 squares arranged in that 
very order and indexed as shown in the scheme (because the posi­
tion which a given square occupies is in fact of no importance). 
We can also assume that the initial positions of the counters are 
as shown in the scheme where R, B, Ye and G denote the red, the 
blue, the yellow and the green counter respectively. For the new 
arrangement of the squares the rules according to which the 
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counters move become quite simple: every counter can move to 
the next square on its right or on its left provided that this square 
is not occupied. 

Now it clearly follows that the only way in which the counters 
can interchange their places is to move along the chain of squares 
in one or in the other direction: none of the counters can "out­
strip" any other because the latter blocks the way. Hence, if coun­
ter R occupies square 4 then counter B must occupy square 2, 
counter Ye must occupy square 3 and counter G must occupy 
square 1. If counter R occupies square 2 then counter B must 
occupy square 3, counter Ye must occupy square 1 and counter G 
must occupy square 4. If counter R occupies square 3 then counter 
B must occupy square 1, counter Ye must occupy square 4 and 
counter G must occupy square 2. 

No other new arrangements of the counters are possible. 
24. First of all, let us prove the following auxiliary assertion: 

if there are a number of students exactly n of whom (n ~ 2) 
speak English (we symbolize this language as e), exactly n speak 
French (f) and exactly n speak German (g) then it is possible to 
form a group of students in which there will be exactly 2 people 
speaking English, 2 people speaking French and 2 people speak­
ing German. It is dear that this auxiliary assertion implies the 
assertion stated in the problem: on forming this group of students 
we see that among the remaining students there are exactly 
50 - 2 = 48 people speaking English, 48 people speaking French 
and 48 people speaking German. From these remaining students 
we can again choose a group in which there are exactly 2 people 
speaking English, 2 people speaking French and 2 people speak­
ing German, and among the remaining students there will be 
exactly 48 - 2 = 46 people speaking English, 46 people speak­
ing French and 46 people speaking German and so on. Then we 
combine five of the smaller groups thus chosen and obtain the 
first group in which exactly 10 people speak English, 10 people 
speak French and 10 people speak German. Further, in just the 
same way we choose smaller groups in each of which exactly 
2 people speak English, 2 people speak French and 2 people speak 
German and then combine them to form the second and the third 
groups satisfying the required conditions (each of them is a com­
bination of 5 smaller groups). 

To prove the auxiliary assertion we can make use of the me­
thod of mathematical induction. Indeed, it is clear that for n = 2 
the auxiliary assertion is true (in this case the group in question 
~onsists of all the students). N6w let us assume that it is true 
for any number of students smaller than a value n > 2 and ~rove 
that under this assumption it is also true for the number of stu­
dents equal to n. Let us denote the number of students who cari 
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speak only English as Ne, the number of students who can speak 
English and French but not German as Net and so on. Further, 
let the symbol e (or e' or e") denote a student who can speak 
only English, the sumbol ef (or (ef)') denote a student who can 
speak English and French but not German, etc. If Ne =I= 0, Nt =I= 0, 
Ng =I= 0 then we exclude three students e, f and g from the stu­
dent body and thus arrive at a group of students for which, by 
the hypothesis, the auxiliary assertion is true. Similarly, if N efg=/=O 
we exclude a student efg and again obtain a group of students 
for which the assertion is true. Further, if Net =I= 0, Neg =I= 0 and 
Nrg =I= 0 then the assertion must also be true because three stu­
dents ef, eg and f g form a group whose existence must be proved. 
Finally, if two of the three numbers Net, Nea and Nrg are different 
from zero while the third one, say Nrg, is equal to zero then the 
numbers Nr and Ng are different from zero (because in the group 
of all the students ef, ( ef)' etc. and of all the students eg, ( eg)' 
etc. the number of the students who can speak language e exceeds 
the number of the students who can speak language f and the 
number of the students who speak language g). Therefore we can 
exclude two students ef and g and again arrive at a group of stu­
dents in which there are exactly n - 1 people speaking English, 
n - 1 people speaking French and n - 1 people speaking Ger­
man, and, according to the hypothesis, it is possible to choose a 
subgroup of students from this group which satisfies the necessary 
requirements. Similarly, if, for instance, only Ner is different from 
zero while Neg= N1g = 0 then obviously Ng =I= 0, and we can 
again exclude students ef and g and use the induction hypothesis. 
(It should be noted that the equalities Net= Neg= Nrg = 0 (and 
N efg = 0) contradict the assumption that at least one of the num­
bers Ne, N1 and Ng is equal to zero.) 

Remark. It is clear that the numbers 10 and 50 in the cond:tion of the prob­
lem are arbitrary: we can similarly prove that if in a student body there are 
exactly n people speaking English, n people speaking French and n people speak­
ing German then, using the "smaller" groups described above, it is possible 
to form groups of students in each of which there are m people speaking English, 
m people speaking French and m people speaking German where m is any even 
number not exceeding n; here the condition that the number m is even is essen­
tial and cannot be discarded (try to prove this!). (By the way, it is also advis­
able to try to replace the number 3, the number of the languages in this prob­
lem, by some other number.) 

25. (a) It is clear that the least possible value of the "average 
place" is equal to 1. This is the case when all the referees give 
the I st place to one and the same athlete. On the other hand, 5 or 
more athletes cannot be given the first place hy different referees. 
Indeed, if this were the case then these n (n ~ 5) athletes would 
be given altogether 9 first places by the nine referees and 
9n - 9 ~ 9 · 5 - 9 = 36 other places (because the total number 
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of places which the 9 referees give these n athletes is equal to 
9n). By the condition of the problem, none of these places can be 
worse than the 4th, which is impossible because the total number 
·of places from the 2nd to the 4th given by the referees to the 
athletes is equal to 3 · 9 = 27. Thus, it only remains to consider the 
cases when the first place is given (by different referees) to 2, .3 
or 4 athletes. 

1°. If the referees give the first place only to two athletes then 
at least one of them is given the first place by not less than five 
referees, and since the places given to that athlete by the other 
referees are not worse than the 4th, the "average place" of that 

athlete is not worse than <
5 

• 
1 ~ 4 

• 
4
l = 

2
9
1 

= 2 +. 
2°. If three athletes are given the first places then these athletes 

are given altogether 9 first places and 3·9 - 9 = 18 other plac~s 
none of which can be worse than the fourth one. Since the 9 re· 
ferees can only give the athletes 9 fourth places, in the "worst:' 
case these athletes are given 9 fourth places and 9 third places. 
Thus, the sum of the values of the places given to the athletes is 
not more than 9 · 1 + 9. 4 + 9. 3 = 72, and, therefore, the sum of 
the places of at least one of them does not exceed 72/3 = 24 and 

his "average place" is not worse than ~4 = 2 ~ . 

3°. Finally, if the referees give the first. place to four athletes 
then these four people are given altogether 9 first places and 
4 · 9 - 9 = 27 other places none of which can be worse than the 
4th. Among these 27 places there can be 9 fourth places, 9 third 
places and 9 second places. Thus, the total sum of the places bf 
these four athletes is equal to 9·1+9·2+9·3+9·4=90 
(90 < 4 · 23); consequently the sum of the places of the best of 
these athletes does not exceed 22 and his "average place" is not 

22 4 2 
worse than 9 = 2 9 < 2 3· 

Hence, the "average place" of the best athlete cannot be worse 

than 2 ~ ; it can be equal to 2 ~ only when each of the three 

best athletes is given the first place by three referees, the third 
place by some other three referees and the fourth place by the last 
three referees (in that case the three athletes become simulta• 
neously the winners of the contest). 

Remark. It is clear that if we replace the kth place in the above argument 
by the (21 - k) th place, it will follow that the value of the "average place" of 

the worst athlete cannot be better than 18 ! (but it can be equal to 18 f). 
(b) It is clear that after every round the number of the best of 

:the remaining tennis-players does not decrease; it is also clear 



Solutions 93 

·that this number can increase by not more than 2 (it can increase 
by 2 in case the best tennis-player accidentally loses a game to 
another tennis-player whose number exceeds by 2 that of the 
former). Since 1024 = 210 and since the number of the partici­
pants of the contest decreases by half after every round the total 
number of the rounds is equal to 10. After the 10th round only 
20 = 1 tennis-player, the winner, remains. Since after every round 
the number of the best tennis-player can increase by 2 it may 
seem that the 21st tennis-player may win. 

But the 21st tennis-player cannot in fact be the winner. Indeed, 
for the 21st tennis-player to win it is necessary that after every 
round the two best tennis-players should leave; in other words, in 
the first round the 1st and the 2nd tennis-players should lose to 
the 3rd and the 4th tennis-players respectively, in the second 
round the 3rd and the 4th tennis-players should lose to the 5th 
and the 6th tennis-players respectively and so on. This means that 
in the semi-finals the 17th and the 18th tennis-players should lose 
to the 19th and the 20th tennis-players respectively. Therefore the 
19th and the 20th tennis-players take part in the finals and hence 
it is one of them that becomes the winner but not the 21st tennis­
:player. 

Finally, ·Jet us show that the 20th tennis-player can be the win­
ner of the games. Indeed, if there are only 21 = 2 tennis-players 
then of course the winner can have the number 2=2·1; if there 
are 22 = 4 tennis-players then the winner can have the number 
2 · 2 = 4 because in the pair of the first two tennis-players the 2nd 
tennis-player can be the winner and in the pair of the other two 
tennis-players the 4th can be the winner, and, in principle, it is 
possible that in the finals the 4th tennis-player defeats the 2nd 
(Jne. Similarly, if there are 23 = 8 tennis-players then the 6th 
tennis-player can be the winner: indeed, if the four best tennis­
players are in one sub-group then in this sub-group the 4th ten­
nis-player can win while in the other sub-group the 6th tennis­
player can defeat the 5th one; in the finals the 6th tennis-player 
can defeat the 4th one. Similarly, using the method of mathema­
tical induction we can easily prove that if 2n tennis-players take 
part in the Olympic games then the (2n) th tennis-player can be­
come the winner: for this to happen it is sufficient that the first 
2n - 2 tennis-players should be in one sub-group of 2n-1 tennis­
players in which (by the induction hypothesis) the (2n - 2) th 
tennis-player can win and that in the other sub-group the (2n) th 
tennis-player should win because, in principle, it is possible that 
in the finals the (2n)th tennis-player defeats the (2n- 2)th ten­
nis-player. 

26. Let Ni denote the number of sets of medals remaining 
after the (i - n) th day, where i = 1, 2, ... , n. By the way, we 
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can also assume that the quantity Ni makes sense for i > n: let 
it be equal to 0 in such cases. The conditions of the problem (and 
the above assumption) imply that N1 = N, Nn = n and Nn+i = 0; 
besides, N; and Ni+i are connected by the relation 

N j +I = N j - i - ~ (NI - i) = ~ (N j - i) 

that is 

N1= ~ Nn 1 +i 
Using (*) we find, in succession, that 

7 
Nn=n=5Nn+1 +n 

7 
Nn-1=5n+(n-l) 

N n-2 = ( ~ r n + { (n - I) + (n - 2) 

Nn_ 3 = ( ~ )
3 

n + ( ~ )
2 
(n - I)+ { (n - 2) + (n - 3) 

(*) 

N; = (~yn-il n+ (~yn-1-1) (n- 1) + ({yn-1-2> (n - 2) + ... + f 
(the general formula can be of course readily proved with the aid· 
of the method of mathematical induction). 

Thus, we obtain: 

( 
7 )n-1 ( 7 )n-2 ( 7 )n-3 N=N1= 6 n+ 6 (n-1)+ 6 (n-2)+ ... 

[( 
7 )n-1 ( 7 )n-2 ( 7 )n-3 ] ... +I =n 6 + 6 + 6 + ... + 1 -

[( 
7 )n-2 1 ( 7 )n-3 7 ] - 6 -i-2 6 + ... +(n-2)5 + (n-1) =S1 ·n-Sz 

where S 1 and S 2 denote the sums in the square brackets. By the 
formula for the sum of the members of a geometric progression, 
we obviously have 

( 
7 )n-1 ( 7 )n-2 ( ~ r -1 

[( 7 )n ] S,= 6 + 6 + ... +l= 7 =6 6 -1 
5-l 

On the other hand, it can readily be seen that 

c~). s2-S2= c~r-I + c~r-
2 

+ ... + ({)-(n-1)= 

=S1 -n=6[(~f-1]-n 
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whence 

S2 = 36 [ ( ~ ) n - 1] - 6n 

and, consequently, 

N = 6[(f r - l]n-36[(~r -1] + 6n=6(n-6)(f r + 36 (**) 

Since N is an integral number, the number 7n (n - 6) /6n-I 
must be integral and therefore so must be the number 
{n - 6) / (6n - I). Therefore n is a multiple of 6. On the other 
hand, it is evident that for all k ;;::::: 2 the inequality 6k - 6 < 66k-I 

holds (why?), that is k - I < 66k-2• It follows that the expression 
(n - 6) /6n-I cannot be an integral number for n > 6. We thus 
arrive at the single solution of the problem: n = 6, and therefore, 
by(**), N = 36. 

27. First solution. Let n denote the number of nuts each of 
the friends got in the morning. Then the number of the nuts in 
the bag the friends found in the morning was equal to Sn + 1. 

The last of the friends who woke up at night obviously took 
5
n

4
+ 1 

Sn+ l 25n + 9 . 
nuts and before that there were 5 · 4 + I = 4 nuts m 

the bag. The one but last of the friends who woke up at night 
l 25n + 9 1 25n + 9 took 4 · 

4 
nuts and before that there were 5 ,4 · 

4 
+I= 

125n + 61 . . . 1 l 25n + 61 = 16 nuts m the bag. The third friend took 4 · 16 
l l25n + 61 625n + 369 

nuts and before that there were 5 · 4 · 16 + I = 64 
. 1 625n + 369 

nuts in the bag. The second friend took 4 · 64 nuts 

and before that there were 5. ! . 625n6~ 369 + l = 
3125~~ 21

oi 
. . l 3125n + 2101 

nuts. Finally, the first friend took 4 • 256 nuts, and 

the original number of the nuts in the bag was equal to 

N = S . _!_ • 3125n + 210 l + I = 15 625n + l l 529 = l S + I l + 265n + 265 
4 256 1024 n 1024 

Since the number N must be integral the number 265 (n + I) 
must be divisible by 1024. The smallest number n satisfying this 
.condition is obviously equal to l 023, and in that case 

N = 15 · 1023 + 11 + 265 = 15 621 

Second solution. This problem can be solved in a simpler way 
:and almost without calculations if we consider the requirements 
which are imposed on the total number N of the nuts by the con­
.ditions of the problem. The first condition of the problem is that 
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when the nuts in the bag are first divided into five parts there re­
mains one nut; hence, the division of N by 5 must leave a remain­
der of 1, that is N = 51 + 1. The difference between any two neigh­
bouring numbers of the form 5/ + 1 is equal to +5 or to -5, and 
knowing one of the numbers we can find infinitely many other 
numbers of this form by adding to that number (or subtracting 
from it) any numbers multiple of 5. The second condition of the 

problem implies that when number k = i (N - 1) = 41 is divided 

by 5 the remainder is equal to 1, that is k = 51 1 + 1. This condi­
tion is equivalent to the requirement that when I is divided by 5 
the remainder should be equal to 4 whence it follows that when 
N = 51 + 1 is divided by 25 the remainder should be equal to 21. 
The difference between any two neighbouring numbers satisfying 
this requirement is equal to +25 or to -25, and knowing one 
such number we can obtain an arbitrary set of these numbers by 
adding to that number (or by subtracting from it) any number 
multiple of 25. Similarly, the third condition of the problem im-

plies that when the number k 1 = i (k - 1) = 4/1 is divided by 5 

the remainder is equal to 1. This condition determines the remain­
der resulting from the division of 11 by 5, the remainders result­
ing from the division of k and I by 25 and the remainder resulting 
from the division of N by 125. All the conditions of the problem 
determine the remainder resulting from the division of N by 
56 = 15 625. The difference between any two neighbouring num­
bers satisfying these conditions is equal to +15 625 or to -15 625. 

It is possible to calculate the remainder resulting from the di­
vision of the number N by 56 but we can do without it. The matter 
is that one of the numbers satisfying all the conditions of the pro­
blem can readily be indicated: it is. the number -4. 

Indeed, when -4 is divided by 5 we obtain -1 in the quotient 
and + 1 in the remainder. Therefore if we subtract the number 
1 from -4 and then take 4/5 of the resultant difference which is 
divisible by 5 we again obtain the same number -4. Similarly, 
all the following divisions by 5 will leave the same remainder + 1. 
However, the number -4 itself cannot be the answer to the pro­
blem because N must be a positive number. But knowing one of 
the numbers satisfying the conditions of the problem we can find 
an arbitrary number of others by adding to that number any 
numbers multiple of 56• The smallest positive integer satisfying 
the conditions is obviously equal to -4 + 56 = 15 625 _,.. 4 = 
= 15 621. 

28. Let n denote the number of the sheep in the flock. Then the 
brothers got n rubles for every sheep and, consequently, the total 
1cash they got was N = n · n - n2 rubles. Let d be the quotient 
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resulting from the division of n by 10 and let e be the digit in 
the ones place of the number n; then n = lOd + e and 

N=(lOd+e)2 = IOOd2 +2ode+e2 

The conditions of the problem imply that the quotient resulting 
from the division by 10 of the number of rubles the elder brother 
got exceeds by unity the quotient resulting from the division by 
IO of the number of rubles the younger brother got, whence it 
follows that the quotient resulting from the division by 10 of the 
number N is odd. The number 100d2 + 20de = 20d(5d + e) is 
divisible by 20 and therefore the quotient resulting from the divi­
sion of this number by 10 is even. Therefore, when the number e2 

is divided by 10 we must obtain an odd number in the quotient. 
Since e is less than IO, the number e2 can only assume one of the 
values 

l; 4; 9; 16; 25; 36; 49; 64 and 81 

Among these numbers only 16 and 36 have odd digits in their 
tens places. Consequently, e2 is equal either to 16 or to 36. Both 
numbers end with 6, and hence when the younger brother's last 
turn to take his money came he got 6 rubles instead of 10 and 
thus the elder brother got 4 rubles more than the younger brother. 
Therefore, for the sharing to be fair the elder brother must pay 
2 rubles to his younger brother, whence it follows that the knife 
cost 2 rubles. 

29. (a) In the Gregorian calendar (which is now in general 
use) every year has 365 days with the exception of the leap years. 
Each leap year has an additional (the 366th) day (the 29th of 
February). The leap years are those divisible by 4 except the 
years divisible by IOO but not divisible by 400. These years (for 
instance, 1800, 1900 and 2100) have 365 (but not 366) days each 
and they are not leap years; for instance, the year 2000 is a leap 
year since the number 2000 is divisible by 400. A New Year's Day 
is on the 1st of January, and so we have to find which of the two 
days, Saturday or Sunday, happens to be more frequently the 1st 
of January. 

The intervals between the days which are the 1st of January arC' 
not always constant but they vary periodically with period of 
400 years. Four hundred years consist of an integral number o[ 
weeks. Indeed, the common year consists of 52 weeks plus one· 
more day and the leap year consists of 52 weeks plus two days. 
A period of four years one of which is a leap year consists of 4 · 52. 
weaks plus 5 more days. Since a period of 400 years includes three· 
years which are divisible by IOO and are not divisible by 400 such 
a period consists of 400·52 weeks plus 5· 100- 3=497 days=7L 

4-60 
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weeks, that is of an integral number of weeks. Therefore it is 
sufficient to find which of the two days, Saturday or Sunday, 
happens te be more frequently the !st af January during any pe­
riod of 400 years; for any other such period the answer to the 
question is the rnme. 

Let us consider the period of 400 years from 1901 to 2301. It 
should be noted that if during a period of 28 years every fourth 
year is a leap year, that is if these 28 years do not contain a year 
which is divisible by 100 and not divisible by 400, then these 
28 years consist of an integral number of weeks because each sub· 
interval of four years consists of an integral number of weeks 
plus 5 days and the whole period of 28 years consists of an in· 
tegral number of weeks plus 5.7 = 35 days= 5 weeks. Now we 
note that the 1st of January of 1952 was Tuesday. Since each com­
mon year consists of an integral number of weeks plus one day 
and the leap year consists of an integral number of weeks plus 
2 days, the 1st of January of 1953 was Thursday (because 1952 
was a leap year), the 1st of January of 1954 was Friday, the 1st 
of January of 1955 was Saturday and so on. We ·similarly find 
that the 1st of January of 1951 was Monday, the 1st of January 
of 1950 was Sunday and so on. In this way we find that during 
the 28 years from 1929 to 1956 the 1st of January happened to be 
e,qually frequently (exactly 4 times) each of the seven days of 
the week. Exactly the same distribution of the days of the week 
which were New Year's Days was during the 28 years from 1901 
to 1928 (we remind the reader that if during a period of 28 years 
every fourth year is a leap year then this period consists of an 
integral number of weeks, and therefore the distribution of the 
days of the week which are New Year's Days during such periods 
of 28 years is one and the same). The same distribution of the 
days of the week which were New Year's Days must have been 
during the periods from 1957 to 1984, from 1985 to 2012 (because 
the year 2000 will be a leap year since the number 2000 is divi­
sible by 400), from 2013 to 2040, from 2041 to 2068 and from 2069 
to 2096. Thus, during the period from 1901 to 2096 the 1st of 
January happens to be equally frequently every day of the week. 

Further, the 1st of January of 2097 will be the same day of the 
week as the 1st of January of 1901 or the 1st of January of 1929, 
that is Tuesday. The 1st of January of 2098 will be Wednesday, 
the 1st of January of 2099 will be Thursday, the 1st of January 
of 2100 will be Friday and the 1s't: of January of 2101 will be 
Saturday (because the year 2100 will not be a leap year). The 
next period of 28 years will differ from the period from 1901 to 
1928; that period will start on Saturday instead of Tuesday; 
however, since during the 28 years from 1901 to 1928 the 1st of 
.January was exactly 4 times every day of the week, during the 
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period from 2101 to 2128 the 1st of January will again be exactly 
4 times every day of the week. What has been said also refers to 
the periods from 2129 to 2156 and from 2157 to 2184; the year 
2185 will begin with the same day as 2101, that is with Saturday. 
This makes it possible to find what days of the week will be the 
1st of January of 2185 and 2201. Simple calculations show that 
during the period from 2185 to 2200 the 1st of January will be 
exactly twice Monday, Wednesday, Thursday, Friday and Satur­
day and exactly 3 times Sunday and Tuesday. The 1st of January 
of 2201 will be Thursday. During 3·28 = 84 years from 2201 to 
2284 the 1st of January will happen to be equally frequently every 
day of the week. The 1st of January of 2285 will be the same day 
as the !st of January of 2201, that is Thursday. This makes it pos­
sible to describe the distribution of the days of the week with 
which the years will begin during the period from 2285 to 2300. 
It turns out that during this period the 1st of January will be 
exactly twice Monday, Tuesday, Wednesday, Thursday and Satur­
day and exactly three times Sunday and Friday. Thus, in addition 
to the periods during which the 1st of January happens to be 
equally frequently every day of the week we have 2 + 2 = 4 Mon­
days, 1 + 3 + 2 = 6 Tuesdays, 1 + 2 + 2 = 5 Wednesdays, 
1 + 2 + 2 = 5 Thursdays, 1 + 2 + 3 = 6 Fridays, 2 + 2 = 4 Sa­
turdays and 3 + 3 = 6 Sundays. It follows that the 1st of January 
is more frequently Sunday than Saturday. 

(b) By analogy with the solution of Problem 29 (a), we can 
show that during any period of 400 years the 30th day of a month 
happens to be Sunday 687 times, Monday 685 times, Tuesday 685 
times, Wednesday 687 times, Thursday 684 times, Friday 688 times 
and Saturday 684 times. Thus, most frequently the 30th day of a 
month happens to be Friday. 

30. It can readily be seen that when the last digit of a number 
is deleted the number decreases not less than 10 times. A number 
which decreases exactly 10 times when its last digit is deleted 
must have nought at the end; consequently all such numbers sa­
tisfy the condition of the problem. 

Now let us suppose that a whole number x decreases more than 
10 times when its last digit is deleted, namely let it decrease 
10 +a times (a~ 1). Let y be the quotient resulting from the 
di.vision of the number x by 10 and let z be the digit in the ones 
place of the number x: x = lOy + z. After the last digit of the 
number x is deleted we obtain the number y; therefore the condi­
tions of the problem imply 

x=(10+a)·y 
that is 

10y+z=(lO+a)·y 

4* 
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whence 
Z=ay 

Since z < 10 we have y < 10 and a< 10. Consequently, the 
numbers possessing the required property have only two digits 
and can decrease not more than 19 times when the last digit is 
deleted. Now it can easily be seen that a number which decreases 
11 times when its last digit is deleted can be equal only to 11; 22; 
33; 44; 55; 66; 77; 88 and 99. Indeed, if 10 + a = 11 then a = I; 
consequently, z = ay = y and x = lOy + z = l ly where y = 
= l, 2, 3, ... , 9. We similarly find that the numbers decreasing 
12 times can only be equal to 12, 24, 36 and 48 and the numbers 
decreasing 13 times are 13, 26 and 39. Analogously, the numbers 
decreasing 14 times are 14 and 28, and the numbers decreasing 
15, 16, 17, 18 and 19 times can only be equal to 15; 16; 17; 18 
and 19 respectively. 

31. (a) Let the sought-for number have k + l digits; then it can 
be written in the form 6 · l Ok + y where y is a k-digit number 
(which may begin with one or several noughts). By the condition 
of the problem, we have 

6· 10k+y=25·y 
whence 

It follows that k cannot be less than 2 (if otherwise, 6· l0k 
would not be divisible by 24). For k ~ 2 the number y is equal to 
25 · 10"-2, that is it has the form 250 ... 0. Therefore all the ..._,_..., 

(k-2) noughts, 
sought-for numbers are of the form 6250 ... 0 (n = 0, 1, 2, ... ) . ..._,_..., 

n noughts 
(b) Let us apply the method used in Problem 31 (a) to the 

problem of finding a number which begins with a given digit a 
and decreases 35 times when this digit is deleted. Then we arrive 
at the equality 

where y is a whole number (see the solution of Problem 31 (a)). 
It now becomes obvious that there are no numbers a :::::;; 9 and k 
for which this equality holds. 

Remark. By complete analogy with the solutions of Problems 31 (a) and 
{b), we can show that a number beginning with a known digit a decreases an 
'integral number of times b when this digit a is deleted only in the case when 
JJ - 1 is a number exceeding a such that all the prime factors of the number 
.b - 1 different from 2 and 5 are also contained in the number a, the exponents 
<0f the powers of these factors being not less than those of the number b - I 
(that is a/(b - 1) is a proper fraction which can be changed to a terminating 
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-decimal). For instance, there is no number which decreases 85 times when its 
1irst digit is deleted (because 85 - 1 = 84 is divisible by 3. 7 whereas there is 
no digit that can be simultaneously divisible by 3 and 7), and a number which 
decreases 15 times when its first digit is deleted must begin with the digit 7 
-(15 - 1 = 14 is div:sible by 7). We can readily derive the general expression 
for the numbers beginning with a known initial digit a which decrease a 
given number of times b when that initial digit is deleted. 

32. (a) First of all let us show that if a number N decreases 9 
times when one of its digits is deleted then this digit must be the 
first or the second one. Indeed, if otherwise, then, on writing 

ao · 10n+a1 · lOn-l + ... +an=N 
where a0, ai, ... , an are the digits of the number N, we conclude 
that N /9 has n digits the first two of which are a0 and ai, that is 

1 n-1 on-z N 
a0 • 0 + a1 • 1 + · · · = 9 

The multiplication of the last equality by 10 and the subtraction 
-0f the first equality from that product obtained yield 

!!.._ < IOn-1 
9 

The last inequality cannot hold because 

N 1on-1 + 2 1on-1 10=ao· ... ~ 

On the other hand, the test for the divisibility by 9 implies that 
1f a number N and the number obtained from N by deleting one 
-of its digits are simultaneously divisible by 9 then this digit is 
either 0 or 9. Thus, in the case under consideration the first or 
the second digit of the number N can only be equal to 0 or 9, 
and the deletion of this digit is equivalent to the division of N 
by 9. However, the initial digit of the number N cannot be equal 
to 0, and if it were equal to 9 the number N /9 would have the 
same number of digits as N and could not be obtained from N by 
deleting one digit. Further, if the second digit of the number N 
is equal to 9 and if the number obtained from N by deleting this 
-digit is equal to N /9 then we have 

N = a0 • IOn + 9 · 1 on- t + a2 · IOn-
2 + . . . + an 

:and 

~ = ao · 10n- l + a2 • IOn-2 + . . . + an 

Now, on multiplying the second of these equalities by 10 and 
subtracting the first equality from the resulting product, we ob· 
ta in 
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(because a2 =:::;; 9). Thus, we see that in order to decrease the num-· 
ber N nine times we must delete the second digit which is equal 
to 0. 

Now we have 

N = ao • lOn + a2 · lOn-2 + . . . + an 
and 

N _ 10n-1 + 10n-2 -L + 9 - ao · a2 · 1 • • • an 

It follows that 

!!_ = N - ao • lOn + ao · IOn-I = N - a0 • 10n-I · 9 
9 

and, finally, 

which means that in order to divide the number N /9 by 9 it is; 
sufficient to delete its initial digit. 

(b) We have (see the solution of Problem 32 (a)) 

~ = N - a0 • 10n-I · 9 

whence it readily follows that 
N = ao · 10n-I • 81 

8 

Now, making ao assume, in succession, the values 1, 2, 3, etc. 
we conclude that the number N can be equal to one of the num­
bers 10 I25; 2025; 30 375; 405; 50 625; 6075 and 70 875 or it can 
differ from one of these numbers in a group of noughts placed at 
the end (a0 cannot be equal to 8 or 9 because in this case the 
second digit of N cannot be equal to 0). 

33. (a) Let us suppose that a-whole number N decreases m 
times when its third digit is deleted. Then, by analogy with the 
solution of Problem 32 (a), we can write 

N=ao·lOn+a1·IOn-l+a2·IOn-2 + ... +an 
and 

For m < 10 we obtain (10 - m) N /m < ton-1, which is impossible 
because (10- m) /m > 1/10 and N /IO= a0 • 10n-I + ... ;;;:: 10n-1• 

For m > I I we obtain (m - 10) N /m < 10n-1, which is impos­
sible (the same reason: (m - 10) /m > 1/10). Finally, if m = I l, 
there must be N/11 ~< ton-1, that is the number of digits of 
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N /m = N /11 is less by two than the number of digits of N, 
which is impossible. 

Hence, the only possible case is m = 10; consequently, the con­
dition of the problem is satisfied by those and only those numbers 
whose all digits except the first two are noughts. 

Remark. We can analogously show that the whole numbers which decrease 
an integral number of times when their kth digits are deleted (where k > 3) 
are those whose all digits except the first k - 1 digits are noughts. 

(b) By analogy with the solution of Problem 32, we can write 
the equalities 

N = ao. 10n + a1. 10n-I + a2. 10n-2 + ... +an 
and 

~ -:- ao' lOn-I + a2 • lOn-2 + . •. +an 

for a whole number N which decreases m times when its second 
digit is deleted. It follows that 

!!_ = N - ao • lOn - a1 • 10n-I + a0 • 10n-t 
m 

whence, after simple transformations, we obtain 

N = (9ao + a1) · 10n-I · m 
m-1 

The last relation can be rewritten in the form 

N Ion+ 10n-I 10n-I + 9 (a 0 + a 1) · 10n-1 
= a0 • a1 • - ao • m _ 1 

(*) 

On the other hand, we know that N is an (n + !)-digit number 
whose first two digits are a0 and ai, that is 

N = a0 • lOn + a1 • I On-I+ a2 • lOn-2 + ... +an 

where we can assume that not all the digits a2, ••• , an are noughts 
(if otherwise, the problem reduces to the consideration of two­
digit numbers N; see the solution of Problem 30). We see that the 
inequalities 

O < _ ao. 10n-I + (9ao + a1) · 10n-I < I On-I 
m-1 

,must hold; they are equivalent to the inequalities 

< 9ao + a1 < +I ao m-1 ao (**) 

Thus, we can finally state the following results. The sought-for 
numbers N are expressed by formula (*) where 0 ~ ao ~ 9 and 
.0 ~ a1 ~ 9; since N is a whole number and the numbers m and 
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m - 1 are relatively prime, it follows that the proper fraction; 
(9a0 + at)/(m - 1) can be changed to a terminating decimal;. 
the admissible values of a0, a1 and m must satisfy ineq4alities 
(**). Besides, to these possible values of N we must add the two­
digit numbers obtained in the solution of Problem 30. 

Now it only remains to consider consecutively all the possible­
values of ao. 

1°. a0 = 1. In this case inequalities (**) result in 

1 <-1
-
8

- m- l < 18·, m-1' 
9 -- < 2 and m--1 >4 m-1 

On making m - 1 assume, in succession, the values 5, 6, 7, ... , l T 
and choosing every time the appropriate values of a1 we obtain the 
following values of N: 

N = 108; 105; 10 125; 1125; 12 375; 135; 14 625; 1575; 
16 875; 121; 132; 143; 154; 165; 176; 187; 198; 

1625; 195; 192; 180625; 19125 

To each of these numbers we can add an arbitrary number of 
noughts at the end. 

Further, in a similar manner we obtain: 
2°. ao = 2: 

N = 2025; 21 375; 225; 23 625; 2475; 25 875; 231; 242; 
253; 264; 275; 286; 297; 2925 

3°. ao = 3: 

N=30725; 315; 32625; 3375; 34875; 341; 352; 363; 
374; 385; 396 

4°. ao = 4: 

N = 405; 41 625; 4275; 43 875; 451; 462; 473; 484; 495 

5°. ao = 5: 

N = 50 625; 5175; 52 875; 561; 572; 583; 594 

6°. ao = 6: 

7°. ao = 7: 

8°. ao = 8: 

N = 6075; 61875; 671; 682; 693 

N=781; 792 

N=891 

There are no values of N which correspond to a0 = 9. 
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Altogether, including the results of Problem 30, we obtain for the 
·number N one hundred and four values to each of which we can 
add an arbitrary number of noughts at the end. 

34. (a) First solution. Let us denote as X the (m-digit) num• 
ber which is obtained when the initial digit 1 is deleted in the 
-sought-for number. Then, by the condition of the problem, we 
have 

(I • I om + X) • 3 = 1 OX + l 
whence 

3.10m-1 
X= 7 

From the last equality we can easily find the number X. To this 
.end let us consider the process of long division of the number 
J. lQm = 30 000 ... by 7 until l is obtained in the remainder. We 
have: 

42 857 
7) 3000 ... 0 

-28 

20 
-14 

60 
-56 

40 
-35 

50 
-49 

'Thus, the least possible value of the number X is equal to 42 857 
and the least possible value of the sought-for number is 142 857. 

After the first digit l is obtained, the process of long division 
.could be continued until the next digit l is obtained and so on. 
This would result in the numbers of the form 

142 857 142 857 ••• 142 857 

k tlmes 

which also satisfy the condition of the problem. 
Second solution. Let us denote the second digit of the sought· 

for number as x, the third digit as y etc., that is let us suppose 
that the sought-for number has the form lxy ... zt (the bar 
above this expression means that we deal here with a number 
whose digits are 1, x, y, ... , z, t but not with the product 
l · x · y. , . z · t). Then, by the condition of the problem, we have 

lxy •.• zt • 3=xy ... ztl 
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It follows that t = 7 (if otherwise, the product on the left-hand' 
side could not end with 1). Consequently, the digit in the tens 
place of the number on the right-hand side is equal to 7. This is 
only possible if the product z.3 ends with 7 - 2 = 5 (here the· 
number 2 which is subtracted from 7 appears due to the product 
of the last digit 7 of the sought-for number by 3), that is z = 5. 
We have thus found that the digit in the hundreds place in the­
number on the right-hand side is equal to 5; therefore the mlll­
tiplication of the digit in the hundreds place of the sought-for 
number by 3 must result in a number whi.ch ends with 5 - 1 = 4 
(here 1 is the digit in the tens place of the product 5 · 3). These 
calculations finish when we arrive at the first digit I. The 
calculation process can be conveniently represented by arranging: 
the operations in the following way: 

1 4 2 8 5 7 42 857 
. . . . .. X3= ..... 

4-1=3; 2-0=2; 8-2=6; 5-1=4; 7-2=5 

(the calculations are carried from right to left). Thus, the least 
number satisfying the conditions of the problem is 142 857. 

If these calculations are continued after the first unity is ob· 
tained we find the other numbers satisfying the conditions of the 
problem: 

142 857 142 857 ..• 142 857 

k times 

(b) Since the number of the digits does not increase when the 
whole number in question is increased three times, it follows that 
the initial digit of that number can only be equal to 1, 2, or 3. 

As is seen from the solution of Problem 34 (a), it is possible 
that this digit is equal to I. Now let us show that it cannot be 
equal to 3. 

Indeed, if the initial digit of the sought-for number were equal 
to 3 then its second digit (which coincides with the first digit of 
the number equal to the given number times three) would be equal 
to 9. But the number obtained when a number beginning with the 
digits 39 is multiplied by 3 has more digits than the original num­
ber itself; therefore it cannot be obtained from the original number 
by carrying its initial digit to the end. 

Let the reader prove that the sought-for numbers can begin with 
the digit 2. The smallest of these numbers is 285 714; all such 
numbers beginning with the digit 2 have the form 

285 714 285 714 ... 285 714 

k times 

(the proof is analogous to the solution of Problem 34 (a)). 
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35. First solution. Let X be the number satisfying the conditions 
.of the problem. Then we have 

x = a1a2 .•• an-16 and 4X = 6a1a2 ... Gn-1 

where ai. a2, ... , an-I and 6 are the digits of the number X. Since 
the last digit of the number X is 6, the last digit Gn-i of the num-
ber 4X is 4; hence, X = a1a2 • •• an-246; this makes it possible lo 
find the last but one digit an-2 = 8 of the number 4X. Now, on 
writing X in the form ... 846 we can determine an-a = 3 etc. Let 
us continue this process until the digit 6 is obtained in the num· 
ber 4X; this digit can be regarded as being carried from the end 
of the number X. In this way we find that the smallest number 
satisfying the condition of the problem is X = 153 846 and that 
4X = 615 384. 

Second solution. Since the sought-for number X has the digit 6 
.at its end, it can be written in the form X = 1 Ox + 6 where x is 
·the number obtained from X by deleting that last digit 6. If x is 
.an n-digit number, the conditions of the problem imply that 

4 • (lOx + 6) = 6 • lOn + x 
·that is 

2(\0rl-4) 
39x = 6 · (lOn - 4) whence x = 

13 
(*) 

The number 1ori - 4 is obviously equal to 6 or to 96, or to 996, 
-or to 9996, . . . . The smallest of these numbers which is multiple 
.of 13 is the number 99 996 = 13·7692, and the value of n corres• 
ponding to it is equal to 5. It follows that equality (*) results in 
x = 15 384 and, consequently, X = 153 846. 

36. If the multiplication of a number by 5 does not change the 
.number of its digits, the initial digit of the number must be 1. 
When this digit is carried to the end we obtain a number whose 
last digit is 1. But such a number cannot be divisible by 5. 

In a similar way it can be proved that there are no numbers 
which increase 6 or 8 times when their initial digits are carried 
-to the end. 

37. First solution. Since the product of the sought-for number 
by 2 has the same number of digits as the original number, the 
initial digit of that number cannot exceed 4. When the initial digit 
is carried to th_e end the resultant number must be even (it is 
.equal to the duplicated original number), and therefore the initial 
digit of the sought-for number must be even. Hence, it can only 
be equal to 2 or 4. 

Now let us suppose that the initial digit of the sought-for num· 
·ber is equal to 2 or 4. On denoting as X the number obtained from 
tlhe sought-for number by discarding its initial digit, we can write, 
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by analogy with the first solution of Problem 34 (a), the equality 

(2· IOm+X)·2=10·X+2 whence X= 4
·

10
;-

2 = 2
·

10
;-

1 

or 

(4·10m+X)·2=10·X+4 whence X=B·l0;- 4 = 2
·

10
;-

1
. 

Now we see that neither of the formulas for the number X we 
have derived can hold because a whole number cannot be equal to 
a fraction whose numerator is odd and denominator is even. 

Second solution. As in the first solution, we conclude that the 
initial digit of the sought-for number can only be equal to 2 or 4. 
Further, using the notation introduced earlier (see the second so­
lution of Problem 34 (a)) we can write 

2xy ... zt • 2 = xy ... z/2 or 4xy ... zt • 2 = xy ... zt4 

From the first of these relations it follows that t can only be· 
equal to 1 or 6 (because, if otherwise, the product on the left-hand 
side could not end with 2). However, if t = 1 then on the left­
hand side we obtain a number which is not divisible by 4 whereas 
on the right-hand side a number divisible by 4 (because its last 
two digits are 12). If t = 6 then, on the contrary, we obtain a 
number divisible by 4 on the left-hand side and a number which 
is not divisible by 4 (because its last two digits are 62) on the 
right-hand side. 

From the second of the last two relations it follows that t can 
be equal to 2 or 7. If t = 2 then, by analogy with the second so­
lution of Problem 34 (a), we find that z = 1 or z = 6; for z = l 
the product on the left-hand side is divisible by 8 (since it is 
equal to the product of a number whose last two digits are 12 by 
the number 2) whereas the number on the right-hand side is not 
divisible by 8 (because it ends with 124). For z = 6 the number 
on the right-hand side is divisible by 8 whereas the product on: 
the left-hand side is divisible by 4 but not by 8. It can similarly 
be shown that t cannot be equal to 7. 

38. (a) First solution. A number which increases 7 times when 
its initial digit is carried to the end must begin with the digit 1 
(if otherwise, the number which is 7 times as great as the original 
number must have more digits than the original number). Further, 
on denoting by X the m-digit number obtained from the original 
number by discarding its initial digit we can write (cf. the solu­
tion of Problem 34 (a)) the equality 

( 1 • 1 om + X) • 7 = IO · X + 1 
whence 

X- 1·10m-l 
- 3 
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Now it becomes clear that for any m X cannot be an m-digit num­
ber because (7 · 1 om - 1) /3 > 10m. 

We can similarly prove that there are no numbers which in­
crease 9 times when their initial digits are carried to the end. 

Second solution. As in the first solution, we conclude that the 
sought-for number can only have 1 as its initial digit. Further, 
using the notation introduced earlier we can write 

lxy ... zt · 7 = xy ... ztl 

It follows immediately that the last digit of the product t · 7 is l. 
Consequently, t = 3. On substituting this value of t into the above 
equality we obtain lxy ... z3·7=xy ... z31. Since we have 
3 · 7 = 21 and since the product of the number z3 by 7 ends in 31, 
the product z · 7 must have 1 as its last digit. Consequently, z is 
equal to 3. In just the same way we can prove that every conse­
cutive digit of the number in question is equal to 3 (it is meant 
here that the digits are read from right to left). At the same time, 
the initial digit must be equal to 1, which can never be achieved. 
Therefore there are no numbers which increase 7 times when their 
initial digits are carried to the end. 

It can similarly be shown that there are no numbers increasing 
9 times when their initial digits are carried to the end. 

(b) First solution. Since the product of the sought-for number 
by 4 has not more digits than the original number, the initial digit 
of the original number cannot be greater than 2. When the initial 
digit is carried to the end we obtain an even number and there­
fore that initial digit must be equal to 2. Further, on denoting by 
X the m-digit number obtained when the initial digit of the sought· 
for number is discarded, we obtain 

8· IOm-2 
(2 · tom+ X) • 4 = 1 OX+ 2 whence X = 

6 

This relation is impossible because (8 · 1 om - 2) /6 > 1 om (cf. the 
solution of Problem 38 (a)). 

Second solution. As in the first solution, we conclude that the 
initial digit of the sought-for number can only be equal to 2. Fur­
ther, we have 

2xy ... zt · 4=xy ... zt2 

whence it follows that t = 3 or t = 8 since f. 4 ends in 2. 
If t were equal to 8, the number on the right-hand side would 

end with 82 and therefore it would not be divisible by 4. In case 
t = 3 we have 

2xy ... z3 • 4 = xy .•. z32 
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whence 
2xy ... zO • 4=xy ... z20 

and 
2xy ... z · 4 = xy ... z2 

Thus, we see that the number 2xy . .. z possesses the same property 
as 2xy . .. zt. Therefore, using the same argument, we conclude 
that z = 3. On continuing these calculations from right to left 
we consecutively find the digits and see that the decimal repre­
sentation of the number in question involves only the digits 3. On 
the other hand, this number must have 2 as its initial digit, and 
consequently such a number does not exist. 

39. First solution. Let us denote by x, y, ... , z, t the unknown 
digits of the sought-for number. Using the notation of the second 
solution of Problem 34 (a) we can write 

1 _. __ _ 

7xy ... zt · 3 =xy ... zt7 

whence 
xy ... zt7 · 3=7xy ... zt 

Now it becomes clear that t = 1; after that we can determine 
the digit z (17 · 3 ends in 51, and therefore z = 5). In this way, 
moving from right to left, we can consecutively find the digits of 
the sought-for number. The calculations should be stopped when 
we arrive at the digit 7. It is convenient to arrange the calcula­
tions in the following way: 

241379310344827586206896551 7241379310344827586206896551 

............. 7·3= ............. . 

'(the calculations are carried out from right to left). Thus, 
the least number satisfying the conditions of the problem is 
7 241 379 310 344 827 586 206 896 551. 

If the calculation process is continued after the first digit 7 is 
obtained we find the other numbers satisfying the condition of the 
problem. All such numbers have the form 

7241379310344827586206896551 ... 7241379310344827586206896551 
--~-.---=::=::==:=:============== 

k times 

Second solution. Let 7xyz ... t be the sought-for number. Then 
its division by 3 results in the number xyz . .. t7. Let us write the 
division process in the form 

xyz ... t7 
3) 7xyz ... t 
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It follows that x = 2. If we substitute 2 for x into the dividend 
and into the quotient this will allow us to determine the second 
digit of the quotient; using this digit we can then find the third 
digit of the dividend; this makes it possible to determine the third 
digit of the quotient etc. The process ends when the last digit we 
obtain in the quotient is equal to 7 and when the dividend we 
find is exactly divisible by 3. 

It can readily be seen that we thus find the sought-for number 
because if we carry its initial digit 7 to the end we obtain the new 
number which we have written as the quotient, that is a number 
which is three times as small as the sought-for number. In the 
above process every consecutive digit is determined uniquely hy 
the digits found earlier, and therefore the number we obtained is 
the smallest of the numbers possessing the required properties. 
The calculations can be conveniently arranged as follows: in the 
upper line we write the digits of the dividend, in the second line 
we write the number for which every step of its division by 3 gives 
us the corresponding digit of the quotient and in the lower line 
we write the digits thus determined: 

7 24 1 3 7 9 3 1 0 3 4 4 8 2 7 5 8 6 2 
14 24 8 22 17 25 18 6 2 

4 8 2 7 5 8 6 2 0 
7 12 4 11 23 27 9 3 1 10 13 

24137931034 

0 6 8 9 6 5 5 
20 26 28 19 16 15 5 21 

689655 7 

Thus, the smallest number possessing the required property is 
7 241 379 310 344 827 586 206 896 551. 

Third solution. By analogy with the first solution of Problem 
34 (a), we obtain, using similar notation, the equality 

(7 · 10m + X) · ~ = lOX + 7 

whence 
7 ·!Om - 21 

X= 29 

The problem thus reduces to the determination of a number of 
the form 70 000 ... whose division by 29 leaves a remainder of 21. 
Let the reader check that this procedure leads to the same result 
as in the first two solutions. 

Remark. We can analogously solve the following problem: 
It is required to find the smallest number with a given initial digit which 

decreases 3 times when the initial digit is carried to the end of the number. In 
order to include those solutions which begin with the dig!ts I and 2 as well 
it is convenient to assume thas 0 can stand at the beginning of the numbers, 
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If the initial digit of a number is 0, it can readily be shown that only the 
number O posseses the required property. Let us write down the other (28-di· 
git) numbers possessing this property: 

034 482 758 620 689 655 172 413 793 

2 068 965 517 241 379 310 344 827 586 

3 103 448 275 862 068 965 517 241 379 

4 137 931 034 482 758 620 689 655 172 

5 172 413 793 103 448 275 862 068 965 

6 206 896 551 724 137 931 034 482 758 

8 275 862 068 965 517 241 379 310 344 

9 310 344 827 586 206 896 551 724 137 

In just the s_a~2 way we can solve the following problem: 
It is required to find the smallest whole number with a given initial digit a 

which decreases- l times when this digit is carried to the end. It is also requi­
red to find all the numbers possessing the indicated property. 

40. (a) By the condition of the problem, we have 

xy ... zt · a= tz ... yx 

where a is one of the numbers 2, 3, 5, 6, 7 and 8 (the bars desig· 
oate the numbers consisting of the corresponding digits). 

If a = 5 then x must be equal to 1 because, if otherwise, the 
number xy ... zt·5 would have more digits than the number 
xy ... zt (we exclude the value x = 0 because in this case 
y . .. zt = 2 · tz . .. y, that is we arrive at the same problem with 
a = 2). But the number tz . .. yl cannot be divisible by 5. In the 
same way we prove that a cannot be equal to 6 or 8. 

If a = 7 then x must also be equal to 1. But in this case t must 
be equal to 3 because, if otherwise, the number ly ... zf.7 cannot 
end with the digit 1. As to the equality ly ... z3·7 = 3z ... yl, it 
is quite obvious that it is inconsistent (because it is clear that the 
left-hand member of the equality is greater than the right-hand 
member). 

If a = 2 then x cannot be greater than 4. Since in this case the 
number tz . .. yx is even, we conclude that x must be equal to 2 
or 4. For x = 4 the digit t (the initial digit of the number 
4y ... zt · 2) can only be equal to 8 or 9, and neither 4y . .. z8 · 2 
nor 4y ... z9 · 2 can have 4 as the last digit. If x = 2 then t (the 
initial digit of the number 2y . .. zt · 2) can only be equal to 4 or 5; 
but neither 2y ... z4·2 nor 2y ... z5·2 can end with 2. 

Finally, if a = 3, the digit x cannot be greater than 3. If x = 1 
then t must be equal to 7 (because the last digit of the number 
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t · 3 is equal to 1). If x = 2 the digit t must be equal to 4 and if 
x = 3 the digit t must be equal to 1. But in the first case tx . .. yx 
is greater than xy .~·3, and in the second and in the third 
cases tx ... yx is less than xy . .. zt · 3. 

(b) Let xy .. . zt be the sought-for number; then 

xy ••• zt • 4 = tz ... yx 

Since the number xy ... zt·4 has the same number of digits as 
the number xy ... zt, the digit x can be equal to 0, I or 2; since 
tz .. . yx is divisible by 4, the digit x must be even. Consequently, 
x can only be equal to 0 or 2. 

Let x = 0. It is evident that the number 0 possesses the re· 
quired property. For the sake of convenience, we shall use decimal 
representations having one or more noughts at the beginning. 
Then we have y ... zt·4 = tz ... yO whence t = 0 (since t < 4) 
and y-:-:-:-z.4 = z-:-:-:y because if a number possessing the re· 
quired property begins with nought then its last digit is also 
equal to 0 and the number which is obtained when the first .and 
the last noughts are deleted also possesses the required property. 

Therefore it suffices to consider the value x = 2. In that case 
we have 2y ... zt·4 = tz ... y2. Since 2·4 = 8, the digit t can 
only be equal to 8 or 9. However, the last digit of the product f··1 
is 2; consequently, t = 8, that is we can write 2y ... z8·4 = 
= 8z .. . y2. Since 23 · 4 > 90, the digit y can only be equal to 
0, 1 or 2. At the same time, the digit in the tens place of the pro· 
duct z8 · 4 is odd for any z. Consequenily, y = 1. Knowing the 
last two digits of the product 2y ... z8· 4 we conclude that the last 
but one digit z of this number can only be equal to 2 or 7. Now, 
since 21 ·4 > 82, it follows that z = 7. 

Thus, the sought-for number has the form 21 ... 78. If it has 
four digits we obtain the number 2178 satisfying the condition of 
the problem. Now let us consider the case when the number of 
digits of the sought-for number exceeds 4. In that case we have 

21uv ... rs78 · 4 = 87sr .•. vu12 

whence, after simple transformations, we obtain 

84· IQk+ 2 +312+uv ... rs00·4=87· 10k+2 + 12+sr ... vuOO 

and 
uv ... rs • 4 + 3 = 3sr ... vu 

Since the product of the number uv . .. rs by 4 has more digits 
than the given number itself and since this product has the initial 
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digit 3 (or begins with the combination of the digits 29) \Ve see 
that u can only be equal to 9, 8, or 7. Further, since 3sr . .. vu is 
an odd number, u can only be equal to 9 or 7. Let ·us consider 
separately these two possibilities. 

1°. u = 9. In this case we obviously have 

9v ... rs· 4 + 3 = 3sr ... v9 

whence it follows that s = 9 (because s · 4 ends with 6; if s = 4 
then 34r ... v9 is less than 9v ... r4 · 4 + 3) and 

9v ... r9 · 4 + 3 = 39r ... v9 and v ... r · 4 + 3 = 3r ... v 

Thus, the number obtained from the number uv . .. rs by discard­
ing the digits 9 standing at the beginning and at the end pos­
sesses the same property as the number uv . .. rs itself. In parti­
cular, uv ... rs can be equal to 9; 99; 999 etc.; in this way we 
obtain the numbers 

21978 219978; 2199978; 

satisfying the conditions of the problem. 
2°. u = 7. In this case we have 

7v ... rs · 4 + 3 = 3sr ... v7 

whence, by analogy with the argument at the beginning of the 
solution of the problem, we readily find that s = 1, v = 8 and 
r = 2, that is the number uv . .. rs is of the form 78 ... 21 and the 
number obtained from uv . .. rs by discarding the combinations 
of the digits 78 and 21 at the beginning and at the end respecti­
vely is 4 times as small as its reversion. 

It follows that if a number which is 4 times as small as its 
reversion differs from the numbers in the sequence 

O; 2178; 21 978; 219 978; ... ; 2199 ... 978; 2199 ... 9978; ... (*) 
'--...-' ""--....... -
k digits (k+l) digits 

then there are the same combinations of digits at the beginning 
and at the end of this number and these digits form one of the 
numbers belonging to the above sequence; besides, if these com­
binations of digits are deleted (both at the beginning and at the 
end) then we also obtain a number which is 4 times as small as 
its reversion or, as in the case of the number 21 782 178, all the 
digits of the number turn out to be deleted. 

Therefore the decimal representation of any number which is. 
4 times as small as its reversion must have the form 

P1P2 ; • • Pn-1PnPn-1 . ·. P2P1 
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or the form 
P1P2 ••• Pn_JPnPnPn-1 ••• P2P1 

where P1, P 2, ••• , Pn are combinations of digits forming some of 
the numbers belonging to sequence (*), For instance, such are the 
numbers 

2197 821978; 2199782178219978; 

21978021997800219978021978 and 02199999780 

(the last of these numbers can also be regarded as the solution of 
the problem on condition that we arc allowed to write 0 at the 
beginning of the decimal representation of a number). 

We can similarly prove that all the numbers which are 9 times 
as small as their reversions are obtained from the numbers form­
ing the sequence 

-0; 1089; IO 989; 109 989; ... ; 1099 ... 989 ... ; 1099 ... 9989; ... ._,,,__. ._...,....__, 
k times (k +I) times 

in the same way as the numbers which are 4 times as small as 
-their reversions are obtained from the numbers belonging to se­
quence (*). 

41. (a) Let us denote by p the number consisting of the first 
three digits of the sought-for number N and by q the number 
.consisting of the last three digits of N. Then the condition of the 
problem implies 

-whence 
IOOOq + p = 6 (lOOOp + q} = 6N 

(lOOOq + p) - (lOOOp + q) = 999 (q - p) =SN 

which means that N is divisible by 999. 
Further, we have p + q =(I 000 p + q) -,...- 999p = N - 999p 

whence it follows that p + q is also divisible by 999. On the other 
hand, p and q are three-digit numbers which obviously cannot be 
equal to 999 simultaneously, and consequently 

Now we readily find that 

(lOOOq + p) + (IOOOp + q) = 1001 (p + q) = 7 N 

.and, consequently, 

7N = 999 999 and N = 142 857 

(b) By analogy with the solution of Problem 41 (a), on denot~ 
:ing as p and q the numbers formed of the first four and of the 
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last four digits of the sought-for number N respectively, we can 
write 

7 N =IO 001 (p + q) = 99 999 999 

It is evident that this relation cannot hold for any integral num­
ber N (because 99 999 999 is not divisible by 7). 

42. Let x be a number satisfying the condition of the problem. 
Since both 6x and x are six-digit numbers, the initial digit is the 
decimal representation of the number x is equal to 1. Therefore 
we conclude that 

( 1) the initial digits of the decimal reoresentations of the num· 
bers x, 2x, 3x, 4x, 5x and 6x are all different, and consequently 
they form the whole set of digits contained in the decimal repre· 
sentation of the number x; 

(2) all the digits in the decimal representation of the number x 
are different from one another. 

The set of these digits does not contain 0 and therefore the last 
digit of the number x is odd (if otherwise, 5x would end with 
nought) and differs from 5 (becaus~, if otherwise, the last digit 
of 2x would be 0). Therefore the last digits in the decimal repre­
sentations of the numbers x, 2x, 3x, 4x, 5x and 6x are all different, 
and hence they also form the whole set of the digits contained in 
the decimal representation of the number x. Consequently, this set 
contains 1. The digit 1 can only be the last digit of the number 3x 
because 2x, 4x, and 6x end with even digits and 5x ends with 5 
and the decimal representation of the number x involves one digit 
1 which is its initial digit. Thus, the number x ends with the 
digit 7, the number 2x with the digit 4, the number 3x with the 
digit 1, the number 4x with the digit 8, the number 5x with the 
digit 5 and the number 6x with the digit 2. Since the first digits 
of these numbers belong to the same set of digits but are arranged 
in the increasing order, we can write 

x. 1=1 **** 7 

x·2=2****4 

x·3=4****1 

x·4=5****8 

x. 5 = 7 **** 5 

x. 6= 8 **** 2 

where the stars stand in the places occupied by the unknown di­
gits. 

Now we note that in the table we have written not only every 
line contains the six different digits 1, 2, 4, 5, 7, and 8 arranged 
in a certain order but also every column consists of the same six 
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different digits arranged in some order. Indeed, let us suppose 
that, for instance, the third digits of the numbers x · 2 and x · 5-
coincide and are equal to a (a can assume one of the two values 
not equal to the first and to the last digits of the two numbers in· 
question). Then the difference x· 5 - X· 2 = x· 3 is a six-digit num­
ber the third digit of whose decimal representation is 0 or 9 (this 
follows from the rule according to which the subtraction of num­
bers written as a column is carried out). But this conclusion can­
not be true because, as we know, the decimal representation of the 
number x · 3 involves the digits I, 2, 4, 5, 7 and 8. 

Now let us again write as a column the numbers x· 1, x·2, x·3., 
x·4, X·5 and x·6 in order to add them together: 

x·l=1****7 
x. 2= 2 **** 4 

x·3=4**** I 
x. 4 = 5 **** 8 

x·5=7****5 
x. 6 = 8 **** 2 

Taking into account that the sum of the digits of every column is. 
equal to I + 2 + 4 + 5 + 7 + 8 = 27 we get 

x • 21 = 2 999 997 

whence x = 142 857. The number x we have is nothing but the 
sought-for number; indeed, it is readily seen that 

x= 142857 

2x = 285 714 
3x=428571 

4x=571428 

5x=714285 
6t= 857142 

43. Let N = xyz = IOOx + IOy + z be the sought-for number, 
the symbols x, y and z designating its digits. The permutations. 
of the digits of the number N give us the new numbers N1 = 
=yxz=IOOy+lOx+z, ... , Ns=zyx=IOOz+lOy+x. The· 
sum N + N1 + ... + Ns of all these numbers must be equal to the 
product of the number N by 6 whence we readily obtain 

(2 • 100 + 2 • 10 + 2) (x + y + z) = 6 (lOOx + IOy + z) 
(because in the 6-tuple of the numbers N, N1, N2, N3, N4, N5 each· 
of the digits, for instance x, is encountered twice in the ones place~ 
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twice in the tens place and twice in the hundreds place). This 
means that 

whence 
37(x+y+z)= IOOx+ lOy+z 

63x = 27y + 36z 

On cancelling by 9 we find 

7x = 3y + 4z~ that is 7 (x - y) = 4 (z - y) 

Now, since the absolute values of the differences x - y and z - y 
<lo not exceed 9, it follows that the last equality can only hold 
when x - y = 0, z - y = 0 or x - y = 4, z - y = 7 or x - y = 
= - 4, z - y = - 7. If z - y = 7 then x = 9; 8 or 7 and if 
z - y = - 7 then y = 9; 8 or 7. Therefore we obtain the follow­
ing 15 possible values of the number N: 

N = 111; 222; 333; 444; 555; 666; 777; 888; 999; 407; 518; 

629; 370; 481 or 592 

(the "solution" N = 000 has been discarded). 
44. It is clear that A and A' must be IO-digit numbers. Let 

A = a10a9as . .. a1 and A'= aloa9a8 ... al (here a10, ag, aa, •.. , a1 
are the consecutive digits of the number A and alo, a9, ... , al 
are the digits of the number A'). Suppose that we write the num­
bers A and A' as a column to add them together. It is clear that 
their sum can be equal to the number IO 000 000 000 only in the 
case when there is such an index i (where 0 :;:::; i :;:::; 9) for which 
a1 +al= 0, a2 + a2 = 0, ... , ai + ai = 0, 

ai+I + ai+1=10, a1+2 + ai+2 = 9, ... , a10 + alo = 9 (*) 

(if i = 9 then there are no sums of the form a1+2 + ai+2, a1+3 + 
+ al+3 , ••• which are equal to nine and if i = 0 then there are no 
sums of the form a1 +al, ... , a1 +a[ which are equal to zero). 
On adding together all sums (*) we obtain 

(a1 + al) + (a2 + af) + . . . + (a10 + afo) = I 0 + 9 (9 - i) 

Since a1a2, ... , a10 and a!a2, ... , a!o are sequences consisting 
of the same digits but arranged in different order we conclude that 
the right-hand member of the last equality is an even number 
equal to 2 (a1 + a2 + ... + a10); therefore the number 10 + 9(9- i) 
is also even. It follows that the index i must necessarily be odd, 
that is i cannot be equal to zero (there must be i = I or i = 3 or 
.i = 5, ... ) . Hence, a1 +al= 0, which implies that a1 =al= 0. 
The last equalities show that both numbers A and A' are divisible 
by 10. 
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45. Let us write the numbers M and N as a: column to add them 
together in accordance with the ordinary rule of arithmetic. If we 
suppose that all the digits of the resultant sum M + N are odd 
then the sum of the last digits is odd, which implies that the sum 
of the initial digits is also odd (the columns consisting of the 
initial digits and of the last digits differ only in the order in which 
the digits are written). This is only possible if after the addition 
of the digits in the 2nd column unity is not carried from that 
column to the 1st column, which means that the sum of the digits 
of the 2nd column is less than IO and, consequently, so is the sum 
of the digits of the last but one column. Therefore unity is not 
carried from the last but one column to the 3rd (counting off from 
right to left) column either because the case when the sum of the 
digits of the last but one column is equal to 9 < I 0 and unity is 
carried from that column to the next one because it is taken from 
the last column is impossible. For, in this case, the last but one 
digit of the sum M + N must be equal to 0, that is it must be 
even, which contradicts the hypothesis. Thus, in the addition pro­
cess the digits in the last two (and in the first two) columns do 
not affect the other digits of the sum M + N. Therefore we can 
simply discard the first two and the last two digits in the num­
bers M and N and continue the argument for the corresponding 
"truncated" ( 13-digit) numbers M 1 and N1• 

Now let us consider the sum M1 + N 1 of the numbers M1 and 
N 1; as before, it can be shown that if all the digits of the number 
M 1 +Ni are odd then when we write the 13-digit numbers A1 1 
and Ni as a column to add them together the first two digits and 
the last two digits of the numbers M 1 and Ni do not affect the 
other digits of the sum Mi+ Ni (that is they do not affect the 
digits of the sum M 1 + N1 except the first two and the last two 
digits). This means that we can "truncate" the numbers Mi and 
Ni by discarding in each of them the first two and the last twO' 
digits and pass to the corresponding 9-digit numbers M 2 and N 2• 

Next we perform the same operation on the numbers M2 and N2 
and pass to the corresponding 5-digit numbers Ma and Na; finally, 
in just the same way we pass from the numbers Ma and Na to the 
corresponding "truncated" (one-digit!) numbers M4 and N4 which 
are equal to the digits of the numbers M and N standing at the 
middle of the decimal representations of M and N, these digits 
being coincident. It is clear that the digits (or, more precisely, one 
digit!) of the number M4 + N4 = 2M4 cannot be odd (because 
the number 2M4 is even!), whence we conclude that all the digits 
of the sum M + N cannot be odd either. 

Remark. It is clear that the above argument is of a general character and 
remains applicable to any two numbers M and N (which are written with the 
aid of the same digits but taken in "reverse" order) provided that the number 
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()f the digits in each of them has the form 4n + I, that Is provided that the di· 
vision of the number of the digits by 4 leaves a remainder of 1. But if the num­
ber of the digits of the number M (and of the "reverted" number N) does not 
have the form 4n + l, then It may happen that the sum M + N is written only 
with the aid of odd digits (let the reader prove this). 

46. (a) We have n3 - n = (n- l)n(n + l), and one of the 
three consecutive whole numbers in the product on the right-hand 
side must necessarily be divisible by 3. 

(b) We have n5 -n=n(n-l)(n+l)(n2 +l). If the whole 
number n ends with one of the digits 0, l, 4, 5, 6 or 9 then one of 
the first three factors on the right-hand side is divisible by 5. If n 
-ends with one of the digits 2, 3, 7 or 8 then the last digit of n2 

is 4 or 9, and n2 + 1 is divisible by 5. 
(c) We have n7-n=n(n-l)(n+l)(n2-n+l)(n2+n+l). 

If n is divisible by 7 or if the division of n by 7 leaves a rema· 
inder equal to 1 or 6 then one of the first three factors on the right· 
hand side is divisible by 7. If the division of n by 7 leaves a 
remainder equal to 2 (that is n = 7k + 2) then the division of n2 

by 7 leaves a remainder of 4 (because n2 = 49k2 +28k + 4), and 
consequently n2 + n + 1 is divisible by 7. In the same way we can 
prove that if the remainder resulting from the division of n by 7 
is equal to 4 then n2 + n + l is exactly divisible by 7 and if the 
division of n by 7 leaves a remainder equal to 3 or 5 then 
n2 - n + l is divisible by 7. 

(d) We have n 11 -n=n(n-l)(n+1)(n8+n6+n•+n2+1). 
If n is divisible by 11 or if the division of n by 11 leaves a re· 
mainder equal to l or l 0 then one of the first three factors on the 
right-hand side is divisible by 11. If the remainder resulting from 
the division of n by 11 is equal to 2 or 9 (that is if n = 1 lk ± 2) 
then the remainder resulting from the division of n2 by 11 is equal 
to 4 (because n2 = 12lk2 + 44k + 4), the division of n4 by 11 re· 
suits in the remainder equal to 5 = 16 - 11, the division of n6 by 
I 1 leaves a remainder equal to 9 = 20 - 11, (because n6 = 
= n4 ·n2 = (1 lk1 + 5) (l lk2 + 4) = 12lk1k2 + 11 (4k1 + 5k2) + 20) 
and the division of n8 by 11 leaves 3=25 - 22 in the remainder. 
H follows that n8 + n6 + n4 + n2 + 1 is divisible by 11. It can 
similarly be shown that n8 + n6 + n4 + n2 + 1 is divisible by 11 
if the remainder resulting from the division of n by 11 is equal 
to +3, +4 or +5. 

(e) We have n 13 -n=n(n-l)(n+l)(n2+l)(n4 -n2+l)X 
X (n4 + n2 + 1). By analogy with the solutions of the foregoing 
problems, we conclude that if n is divisible by 13 or if the divi­
sion of n by 13 leaves a remainder equal to + l or -1 then one 
-0f the first three factors on the right-hand side is divisible by 13, 
if the remainder resulting from the division of n by 13 is equal to 
±5 then n2 + 1 is divisible by 13, if the remainder resulting from 
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the division of n by 13 is equal to ±2 or ±6 then n4 - n2 + 1 is. 
divisible by 13 and if the remainder resulting from the division 
of n by 13 is equal to ±3 or +4 then n4 + n2 + 1 is divisible 
by 13. 

47. (a) The difference of two powers with equal even exponents. 
is exactly divisible by the sum of the bases; therefore 35n - 26n= 
=272n - 82n is divisible by 27 + 8 = 35. 

(b) It can easily be verified that 

n5 - 5n3 + 4n = n (n2 - 1) (n2 - 4) = (n - 2) (n - 1) n (n + 1) (n + 2), 

Here there are five consecutive whole numbers in the product on 
the right-hand side one of which must necessarily be divisible 
by 5; besides, at least one of the factors is divisible by 3 and at 
least two of them are divisible by 2; further, at least one of the 
last two factors must also be divisible by 4. Thus, the product of 
five consecutive whole numbers is always divisible by 5 · 3 · 2 · 4 = 
=120 (cf. the solution of Problem 46 (a)). 

( c) Let us make use of the identity 

n2 + 3n + 5 == (n + 7) (n - 4) + 33 

For this expression to be divisible by 11 it is necessary that 
(n + 7) (n - 4) should be divisible by 11. Since we have 
(n + 7)-(n- 4) = 11, both factors n + 7 and n- 4 should be, 
simultaneously divisible or not divisible by 11. Therefore if the 
number (n + 7) (n - 4) is divisible by 11 then it is also divisible 
by 121 and, consequently, (n + 7) (n - 4) + 33 cannot be divisible­
by 121. 

48. (a) It can readily be checked that 

56 786 730 = 2. 3. 5. 7. 11 . 13. 31 . 61 

and hence it only remains to prove that the given expression is 
divisible by each of the prime factors on the right-hand side. If 
both m and n are odd numbers then the number m60 - n60 is even; 
consequently, mn(m60 - n60) must necessarily be even (that is it 
must be divisible by 2). Further, from the result of Problem 46 
it follows that if k is equal to 3, 5, 7, 11 or 13 and if n is not di­
visible by k then the difference nk-l - 1 must necessarily be di­
visible by k. In particular, it follows that if both m and n are not 
divisible by 3 then the numbers m60- 1= (m30) 2- l and n6o_ 1= 
.= (n30) 2 - 1 are divisible by 3, that is the division of m60 and 
of n60 by 3 leaves one and the same remainder equal to I. Con­
sequently, if mn is not divisible by 3 then m60 - n60 is divisible 
by 3, whence it follows that in all the cases the product 
mn(m6° - n60) is divisible by 3. In just the same way we can 
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prove that the difference 

mBo _ nBo = (m'5)4 _ (n'5)4 = (m'0)6 _ (n'o)6 = 

= (m6)10 _ (n6)!o = (ms)12 _ (n5)12 

is divisible by 5 when neither m nor n is divisible by 5, is divisible 
by 7 when neither m nor n is divisible by 7, is divisible by 11 
when neither m nor n is divisible by I I and is divisible by I3 when 
neither m nor n is divisible by I3. We have thus proved that 
mn(m60 -n60 ) is always divisible by 2·3·5·7·II·I3. 

It can similarly be shown that the expression mn (m60 - n60) is 
divisible by 3I and by 6I (because for any integral n the expres­
sion n31 - n is divisible by 31 and the expression n61 - n is di­
visible by 61; see Problem 340 below). 

(b) Let us represent the given expression in the form 

(m - 2n) (m - n) (m + n) (m +2n) (m + 3n) 

For n =I= 0 all the five factors of this product are pairwise diffe­
rent. At the same time, the number 33 cannot be factored as a 
product of more than four different integers (the factorization into 
four such factors can be performed in several ways, for instance, 
33 = ( - I l ) · 3 · 1 · ( - I ) or 33 = 11 · ( -3) · l · ( -1 ) ) . 

In the case when n = 0 the given expression turns into m5 and 
cannot be equal to 33 for any integral m. 

49. First of all we note that 323 = 17 ·I 9; hence we have to 
establish the condition under which the number N indicated in the 
problem is divisible both by I 7 and by I9. Let us begin with the 
case when n is an even number: n = 2k. It is clear that 2on - 3n 
is divisible by 20-3=17 for all n; on the other hand, 16n- In= 
=162k-1 2k is divisible by 162 -l2=(16-1)(16+l)=I5·17 
and, consequently, for even n the number 15n - l is also divisible 
by I7, that is in this case N=(20n-3n)+(l6n- l) is divisible 
by 17. Further, the number 2on - 1 is divisible by 20 - l = 19 for 
all n and the number 16n - 3n = 162k - 32k is divisible by 
162 - 32 = (16 - 3) (16 + 3) = 19· 13, that is it is also divisible 
by 19; therefore the number N = (20n - 1) + (16n - 3n) is di­
visible by 19. Thus, the number N is divisible by 323 for all even 
values of n. If the number n is odd, that is n = 2k + 1, then the 
difference 20n - 3n is again divisible by 17. Since 162k - l is di­
visible by 17, the division of l 62k by 17 leaves a remainder equal 
to 1, and consequently the division of the number I62k+1 = 
= 162k· 16 by 17 leaves a remainder equal to I· I6 = I6. There­
fore the number 16n- I= I62k+' - I is not divisible by I7 (its 
division by I 7 results in the remainder equal to I5). Hence, for 
any odd value of n the number N is not divisible by I 7 and there­
fore it cannot be divisible by 323. 
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Thus, the number N is divisible by 323 if and only if n is even. 
50. If the last digit of the number n is 0, 1, 2, 3, 4, 5, 6, 7, 8 or 

9 then the last digit of n2 is 0, 1, 4, 9, 6, 5, 6, 9, 4 or 1 respecti­
vely, and consequently the number n2 + n ends with 0, 2, 6, 2, 0, 0, 
2, 6, 2 or 0 respectively and the number n2 + n + 1 ends with the 
digit 1, 3, 7, 3, l, l, 3, 7, 3 or 1 respectively. Thus, the number 
n2 + n + l cannot have 0 or 5 as its last digit, that is it cannot 
be divisible by 5 (and consequently it cannot be divisible by 
1955 either). 

51. Any whole number is either divisible by 5 or can be written 
in one of the following four forms: 5k + l, 5k + 2, 5k - 2 and 
5k - I. If a number is divisible by 5 then its hundredth power is 
obviously divisible by 53 = 125. Further, by Newton's binomial 
formula, we obtain 

(5k + I)IOO = (5k)IOO + ... + 10
1
°::9 

(5k)2 + 100 • 5k + 1 

where all the terms marked by the dots contain the factor 5k to 
the power not less than 3, and consequently they are all divisible 
by 125. Analogously, 

(5k+2)100 =(5k)100 + ... + 
10

1°.'2
99

(5k)2·298 +100·5k·299 +2100 

The numbers l00·
99 (5k)2 =125·990k2 and 100·5k= 125·4k l. 2 

are divisible by 125. As to the number 2100, it can be represented 
in the form 

50. 49 
(5 - 1 )50 = 550 

- • • • + IT · 5 - 50 · 5 + 1 

whence we readily see that· the division of this number by 125 
leaves a remainder equal to 1. 

Thus, the hundredth power of a number divisible by 5 must be 
divisible by 125, and the division by 125 of the hundredth power 
of a number not divisible by 5 leaves a remainder 1. 

52. We have to prove that if N is relatively prime to 10 then 
N101 - N = N(N 100 - 1) is divisible by 1000, that is we must 
prove that N 100 - 1 is divisible by 1000. First of all, it is quite 
clear that if N is an odd number then N100 - 1 = (N5o + 1) X 
X (N25 + 1) (N25 - 1) is divisible by 8. Further, from the result 
of the foregoing problem it follows that if N is not divisible by 
5 then .N100 - 1 is divisible by 125. Thus, we see that NlfJO - 1 is 
divisible by 8 · 125 = 1000 for N relatively prime to 10. 

53. Let N be the sought-for number; then N2 - N has three 
noughts at the end, that is this difference is divisible by 1000. 
Since N2 - N = N (N - 1) and since N and N - 1 are relatively 
prime numbers, this can only be possible when one of these num-
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-bers is divisible by 8 while the other is divisible by 125 (neither 
of these numbers itself is divisible by 1000 because N is a three­
digit number). 

If N is a three-digit number divisible by 125 then N - 1 can be 
-divisible by 8 only when N = 625 (in that case N - 1 = 624), 
which can easily be verified. It can also be easily shown that it 
N - 1 is a three-digit number divisible by 125 then N is divisibl(: 
'by 8 only when N - 1 = 375, that is in this case N = 376. 

Now we note that since Nk-I - 1 is exactly divisible by N - l 
for any integral k ~ 2, the number Nk - N = N(Nk-1 - 1) is 
-divisible by N (N - 1) = N2 - N for any integral k. Therefore 
if the last three digits of N2 - N are noughts then Nk - N also 
has three noughts at the end for any integral k ~ 2, that is Nk 
ends with the same three digits as N. It follows that the numbers 
625 and 376 (and only these numbers) satisfy the conditions of 
the problem. 

54. Let us find the last two digits of the number N20. The num­
ber N20 is divisible by 4 because N is even. Further, the number N 
is not divisible by 5 (if it were divisible by 5 then it would also 
be divisible by 10), and consequently N can be represented in the 
form 5k + 1 or 5k + 2 (cf. the solution of Problem 51). The di­
vision of the number 

(5k + 1)20 = (5k)20 ± 20 (5k) 19 + ... + 2~: ~9 (5k)2 + 20. 5k + 1 

by 25 leaves a remainder of 1 while the division of the number 

.5k + 2)20 = (5k)20 + 20 (5k)19 • 2 + ... 
. . . + 2~: ~9 (5k)2. 21s + 20. 5k. 219 + 220 

by 25 leaves the same remainder as the division of the number 
220 = (210)2 = (1024) 2 = (1025- 1) 2, that is l. The fact that the 
remainder resulting from the division of the number N20 by 25 is 
equal to 1 implies that the last two digits of this number can only 
·be 01; 26; 51 or 76. Besides, taking into account that N20 must be 
divisible by 4, we conclude that the last two digits of this number 
.can only be 76. Thus the digit in the tens place of the number N20 

is 7. 
Now let us determine the last three digits of the number N200• 

The number N200 is divisible by 8. Further, since N is relatively 
prime to 5, the division of N100 by 125 leaves a remainder equal 
to 1 (see the solution of Problem 51): N 100 = 125k + 1. Therefore 
the division of the number N200= (125k + 1)2= 1252k2 + 250k + 1 
.by 125 also leaves a remainder 1. Consequently, the last three 
-digits of N200 can be 126; 251; 376; 501; 626; 751 or 876. However, 
the number N200 is divisible by 8 and therefore it must end with 
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-the digits 376. Thus, the digit in the hundreds place of the num­
ber N200 is equal to 3. 

Remark. It can easily be seen that not only N200 but also the number N10~ 
must necessarily have the digits 376 at the end. 

55. The sum 1 +2+3+ ... +n is equal to n(n+l)/2; con­
sequently, we have to prove that if k is odd then sk = 1 k + 2k + 
+ 3k + ... + nk is divisible by n(n + 1)/2. 

First of all we should take into account that ak + bk is divisible 
by a + b for any odd k. Let us consider separately the following 
two cases: 

A. The number n is even. Then the sum Sk is divisible by n + 1 
because each of the sums 

lk+nk, 2k+(n-1)k, 3k+(n-2)k, ... , (;)k+(; +it 
is divisible by 

1 + n = 2 + (n - 1) = 3 + (n - 2) = . . . = ; + ( ~ + 1) 
The sum Sk is also divisible by n/2 because the expressions 

lk + (n - 1)\ 2k + (n - 2)k, 3k + (n - 3)k, .. . , (; - l)k + 

+ (; + 1 )k, (; )k, nk are all divisible by n/2. 

B. The number n is odd. In this case the sum Sk is divisible 
by (n + 1)/2 because the expressions l~ + nk, 2k + (n - l)k, 

3k+(n-2)k, ... , (n;-J)k +(n~ 3 t and (n~J)k are all 

divisible by (n + 1)/2. The sum Sk is also divisible by n 
since the numbers lk+(n-l)k, 2k+(n-2)k,3k+(n-3)\ ... , 

( n ;-
1 

/ + ( n ~ 1 t and nk are all divisible by n. 
56. Let 

N =an• lOn + Gn-1 • lOn-I + an-2 • lOn-2 + ... +a,· 10 + ao 

be the given number where an, an-1, an-2, ... ' a,, ao are its digits 
which can assume the values 0, 1, 2, ... , 9. 

Let us subtract from N the number 

M=ao-a1 +a2-aa+ ... ±an 

equal to the algebraic sum of the digits of the number N taken 
with the alternating signs "+" and "-". On grouping the terms 
in the appropriate manner we obtain the expression 

N -M = ai(lO + 1) + a2 (102 
- 1) + a3 (103 + 1) + 
+ a4 (104 

- 1) + ... +an (Ion+ 1) 
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which is exactly divisible by 11 since each of its addends is di~ 
visible by 11 (because from the well-known fact that to the 
multiplication of numbers there corresponds the multiplication of 
the remainders obtained when these numbers are divided by a 
given number it readily follows that when 

lOk = ( 11 - 1 )k 

is divided by 11 the remainder is equal to -1 for odd k and to 
+ 1 for even k). Thus, the difference N - M is divisible by 11. 
that is the numbers N and M are simultaneously divisible or not 
divisible by 11. 

57. The division of the number 15 by 7 leaves a remainder L 
It follows that 

152 = (7 · 2 + 1) (7 • 2 + 1) = 7n1 + 1 

and therefore the division of 152 by 7 also leaves a remainder 
equal to 1. Similarly, 

153 = 152 
• 15 = (7n1 + 1) · (7 • 2 + 1) = 7n2 + 1 

whence it follows that the division of 153 by 7 also leaves 1 and 
so on, that is, generally, the division of any power of the number 
15 by 7 leaves a remainder equal to 1. Now, on subtracing the 
sum 1 + 2 + 3 + 4 + ... + 14 = 105 from the given number and 
grouping the terms in the appropriate manner we obtain the num· 
ber 

13 ( 15 - 1) + 12 ( 152 
- 1) + 11 (153 

- I) + ... 
... +2(15 12 -1)+1(1513 -1) 

which is exactly divisible by 7. Since the difference between the 
given number and the number 105=7·15 is divisible by 7, it 
follows that the original number is also divisible by 7. 

58. Let K be an n-digit number. Among the (n + 2) -digit num· 
bers whose first two digits are 1 and 0 (that is among the 
numbers of the form 10a1a2 ... an (where 1, 0, ai, ... , an are the 
digits of the number and the bar designate~ the member itself) 
there always exists at least one number divisible by K. Let 
10b1b2 .•• bn be such a number. Then, by the condition of the pro· 
blem, both numbers b1b2 ... bnlO and b1b2 ... bn01 are divisible 
by K. Their difference is equal to 9 and it is also divisible by K. 
The only divisors of 9 are the numbers 1, 3 and 9, whence follows 
the assertion of the problem. 

59. It is clear that d = 333 ... 33 = 3 • 111 ... 11 = 3n; 
~~ 

100 threes 100 ones 
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iherefore the sought-for number N = 1111 ... 111 must be exactly 
~ 

k ones 
divisible by the numbers n and 3 (n is not divisible by 3 because 
the sum of the digits of the number n is equal to 100 and 
is not divisible by 3). If k is a number of the form k = 
= IOOq + r where r < 100 (but r ~ 0) then, obviously, 
N = 11 ... 1100 ... 00 + 11 ... 11 = M + R where R = 11 ... 11 

'---v--' '-.,----/ '-.,----/ '-.,----/ 
\OOq ones r noughts r o~es r ones 

and M = 11 ... 1100 ... 00 the number M being divisible by n 
'-.,----/ '-.,----/ 
IOOq ones r noughts 

(the divisibility of M by n becomes quite obvious if we consider 
the process of long division of M by n). Thus, N is divisible by 
n if and only if R = 0, that is if and only if r = 0 and, conse­
quently, if and only if k is divisible by 100. 

Now, if k = 100q then the sum of the digits of the number N 
is equal to lOOq; this sum is divisible by 3 (and, consequently, the 
number N is also divisible by 3) if and only if q is divisible by :). 
Therefore the smallest number N = 111 ... 11 divisible by d con-

'-.r--/ 
k ones 

sists of 300 ones. 
60. Since a is obviously an even number, it only remains to 

prove that the product aA is divisible by 3. The last digits of the 
numbers 2k+1 = 2N and 2a (where a is the last digit of N) 
coincide. Therefore, on multiplying consecutively the powers of 2 
again by 2 (that is on increasing consecutively the exponents of 
the powers of 2) we find that the last digits of the numbers 21=2; 
22 = 4; 23 = 8; 24 = 16; 25 = 32; ... form the following sequence 
of periodically alternating digits: 

2; 4; 8; 6; 2; 4; 8; 6; 2; 4; 8; 6; 

On the other hand if the division of 2k = N by 3 leaves a re­
mainder equal to 1 then the division of the number 2k+I = 2N 
by 3 leaves a remainder of 2, and if N = 31 + 2 then the number 
2k+1=2N has the form 3· (21)+4=3· (21+1)+1 and therefore its 
division by 3 leaves a remainder 1. Consequently, when the num­
bers belonging to the same sequence of the powers of two are di· 
vided by 3 we obtain the following sequence of periodically al­
ternating remainders: 

2; 1; 2; 1; 2; 1; 2; 1; 2; 1; 2; 1; 

Thus, if the last digit of the number N is equal to 2 or 8 (that 
is if a= 2 or a = 8) then the division of N by 3 leaves a rema­
inder of 2, and if a = 4 then the remainder resulting from the 
division of N by 3 is equ.al to 1. (The case when a = 6 is of no 
interest because for a = 6 the product aA = 6A must necessarily 
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be divisible by 6.) It follows that in all these three cases the num· 
ber N - a = lOA is divisible by 3, and consequently the number A 
is also divisible by 3. Hence, the product aA is divisible by 6 for 
all k ~ 1; for k equal to 1, 2 or 3 this conclusion is quite trivial 
because in these cases A = 0 and the number aA = 0 is divisible 
by any number. 

61. We have to show that the number 

N = 271958 - 10 8878 +101528 

is exactly divisible by 26 460 = 22 · 33 • 5 · 72. The proof consists of 
the following two stages. 

1°. We have N = 271958 -(108878 -101528). The number 
27 195 is equal to the product 3 · 5 · 72 · 37, and consequently the 
number 27 195 is divisible by 5 · 72. On the other hand, the differ· 
ence in the parentheses is divisible by 

10 887 - 10 152 = 735 = 3 • 5 • 72 

(because the difference of the 8th powers of two numbers is di· 
visible by the difference of the bases of the powers). It follows 
that N is divisible by 5 · 72. 

2°. We have N=(271958 -108878)+101528• The number 
I 0 152 = 23 • 33 • 4 7 is divisible by 23 • 33 and, on the other hand, 
the difference in the parentheses is divisible by 

27 195 - 10 887 = 16 308 = 22 • 33 • 151 

Hence, N is divisible by 22 · 33• 

Since N is divisible both by 5· 72 and by 22·33, we conclude that 
N is divisible by the product of these numbers which is equal to 
26 460. 

62. It can easily be checked that 
1110 - 110 = 
=(11-1)(11 9 + 11 8 + 117+11 6 + 11 5 + 11 4 + 113+ 11 2+ 11+1 

The second factor on the right-hand side is obviously divisible by 
10 because it is equal to a sum of 10 terms each of which ends 
with 1. 

Thus, 11 10 - 1 is equal to the product of 10 by a number di· 
visible by 10, and consequently the difference 11 10 - 1 is divisible 
by 100. 

63. We have 22225555 + 55552222 = (22225555 + 45555) + (555522~2 -
_42222) - ( 45555 - 42222) 

The number 22225555 + 45555 is divisible by 2222 + 4 = 2226 = 
= 7·318 (because a sum of two odd powers is always divisible 
by the difference of the bases of the powers), and consequently 
this number is divisible by 7. The difference 55552222 - 42222 is 
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also divisible by 7 since it is divisible by 5555 - 4 = 5551 = 
= 7 · 793 (because the difference of any integral powers with 
equal exponents is divisible by the difference of the bases). As 
to the difference 45555 - 42222, it can be rewritten as 

42222 (43331 - 1) = 42222 (641111 - 1) 

whence it can readily be seen that this expression is divisible by 
the difference 64 - 1 = 63 (because the difference of two integral 
powers with equal exponents is divisible by the difference of the 
bases of the powers). Consequently, 45555 - 42222 is divisible by 7. 

64. We shall make use of the method of mathematical induction. 
A number aaa formed of three identical digits a (the bar above 
this expression is written in order to avoid the confusion with the 
product a· a· a) is divisible by 3 (because the sum of the digits 
of this number is equal to 3a and is therefore divisible by 3). 
Further, let us suppose that the assertion of the problem has al­
ready been proved for every number whose decimal representa­
tion consists of 3r. identical digits. We must prove that then this 
assertion is true for any number consisting of 3n+1 identical digits. 
Such a number can be written in the form 

aa ... a aa . . . a aa . . . a = aa . . . a · 100 ... 0 I 00 ... 01 ..___., ..___., ..___., ..___., ..___., ..___., 
3n times 3n limes 3n times 3n times 3n digits 3n digits 

In accordance with the induction hypothesis, the first factor on 
the right-hand side is divisible by 3n; the second factor is also di­
visible by 3 (because the sum of the digits of this factor is equal 
to 3). Hence, the whole product is divisible by 3n+1• 

65. First of all we note that the number 106 - 1 = 999 999 is 
divisible by 7 (because 999 999 = 7 · 142 857). It readily follows 
that the division of ION by 7 (where N is an arbitrary whole num­
ber) leaves the same remainder as the division by 7 of the number 
10' where r is the remainder resulting from tbe division oi N by 6. 
Indeed, if N = 6k + r then the number 

ION - 10' = 106
k+r -- 10' = 10' (106

" - 1) =-= 

= 10'. (106 
- 1) (105

k-
5 + 106

"-
12 + ... + 106 + 1) 

is divisible by 7. 
Further, the division of any integral power of 10 by 6 leaves 

a remainder equal to 4; indeed, according to the tests for divisi· 
bility by 2 and by 3, the difference 1 on - 4 = 999 ... 96 is always 

~ 
(n-1) times 

divisible by 2 · 3 = 6. Thus, the remainders resulting from the di· 
vision by 6 of all the exponents of the powers in the addends of 

5-60 
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the above sum are equal to 4. Consequently, when each of these 
10 addends is divided by 7 we obtain the same remainder as in 
the case when 104 is divided by 7, and the division of the whole 
sum by 7 leaves the same remainder as the division by 7 of the 
number 

101 + 1Q4 + 104 + 101 + 1Q4 + 101 + 1Q4 + 1Q4 + 104 + 104 = 

= 105 = 100 000 = 7 • 14 285 + 5 

Thus, the sought-for remainder is equal to 5. 
66. (a) Every even power of 9 can be represented in the form 

92n=81n=81·81 ... 81 
'---~--

n times 

and, consequently, its last digit is 1. Every odd power of 9 can 
be written in the form 92n+t = 9·81n, and therefore its last digit 
is 9 (because such a power is a product of a number whose last 
digit is 1 by the number 9). In particular, 9<9 9> is an odd power 
of 9, and consequently the last digit of 9< 99

> is equal to 9. 
Now we note that any integral power of 6 ends with the digit 

6; indeed, we have 61 = 6, and if 6n ends with 6 then the last 
digit of 6n+t = 6n·6 is also equal to 6. Further, the last digits of 
16n and 6n coincide, and consequently any integral power of 16 
has 6 as its last digit. Therefore any integral power of 2 with an 
exponent multiple of 4 ends with 6 (because 24n = 16n). But 
34 - 1 is divisible by 3 + 1 = 4, and consequently 2(34

- i) ends 
with the digit 6 while the last digit of 231 = 2 · 2(a4

- 1) is 2 (be­
cause this expression is the product of a number whose last digit 
is 6 by 2). 

(b) It is required to find the remainder resulting from the di­
vision of 2999 by 100 (it is clear that this remainder is formed of 
the last two digits of the number 2999). First of all, let us show 
that the division of the number 21000 by 25 leaves a remainder I. 
Indeed, 210 + 1=1024 + 1=1025 is divisible by 25, and con­
sequently 220 - 1 = (2 10 + 1) (2 10 - 1) is divisibie by 25 while 
21000 - 1 = (220) 50 - 1 is divisible by 220 - 1. It follows that the 
last two digits of the number 21000 can be 01 or 01 + 25 = 26 or 
01 + 50 = 51 or 01 + 75 = 76. Since 21000 is obviously divisible 
by 4, we see that these two digits can only be 76. Thus, 2999 is 
equal to the quotient resulting from the division by 2 of a number 
whose last two digits are 76, that is 2999 can only have the digits 
38 or 88 at the end (because 76/2 = 38 and 176/2 = 88). Hence, 
since the number 2999 is divisible by 4 its last two digits must 
be 88. 



Now let us find the remainder resulting from the c]ivision uf 
the number 3999 by 100. We remind the reader that the last digit 
of every even power of g is 1 and that the last digit of every odd 
power of g is g (see the solution of Problem 65 (a)). Using these 
facts we can readily find the remainder resulting from the division 
of the number gs+ 1 by 100. We have 

gs+ 1=(9+1) • (94 - ga + g2 - 9 + 1) = 10 • (94 - g1 +92-9 + J) 

Each of the three positive summands in the algebraic sum in the 
parentheses ends with 1 and each of the two negative summands 
ends with 9. Hence, the number 94 + g2 + 1 ends with 3 and the 
number g3 + g ends with 8, and consequently the whole expres­
sion in the parentheses ends with 5. Thus, the remainder result­
ing from the division of the number gs + 1 by 100 is equal to 
10 · 5 = 50. It follows that the number g10 - 1 = (g5+ 1). (gs_ I) 
is divisible by 100 and, since 31000 - 1 = gsoo - 1 = (g10) so - 1 is 
divisible by g10 - 1 (because a difference of two integral powers 
is divisible by the difference of the bases of the powers), the num­
ber 31000 - 1 is also divisible by 100. Therefore the number 31000 
ends with the digits 01. Further, 31000 is divisible by 3, and conse­
quently if the integral number of hundreds contained in 31000 is 
divided by 3 we must obtain 2 in the remainder (if the division 
of this number of hundreds by 3 gave 1 or 0 in the remainder then 
the number of hundreds plus 01 could not be divisible by 3). We 
see that the last two digits of the number 3999 = 31000 . 3 must be 
the same as those of the number 201/3 = 67. 

(c) We have to find the remainder obtained when the number 
14(1414) = (7. 2/1414) is divided by 100 because this remainder con­
sists of the last two digits of the number 14(1414). To this end we 
shall separately determine the remainders resulting from the di­
vision of the numbers 7(1414) and 2(1414) by 100. 

The number 74 - 1 = 2401 - 1 = 2400 is divisible by 100. It 
follows that if n=4k (i.e. if n is divisible by 4) then 7n - 1 is 
divisible by 100 (because 74k - 1 = (7 4 )k - (l)k is divisible by 
74-1). Further, 1414 = 214 ·714 is divisible by 4, and consequently 
7(1 414) - 1 is divisible by 100, whence it follows that the last 
two digits of the number 7(1414) are 01. 

As was shown in the solution of Problem 65 (b), 220 - 1 is 
divisible by 25; consequently, if n = 20k (i.e. if n is divisible by 
20) then 2n - 1 is divisible by 25. Now let us find the remainder 
resulting from the divisi_on of the number 1414 by 20. We ob­
viously have 1414 = 214 ·714. Further, we have 214 = 4·212, and 
since 212 - 1 = (24) 3 - 1 is divisible by 24 - 1 = 16 - 1 = 15, 
we see that 4 (2 12 - 1) is divisible by 20; consequently when 
214 = 4. 212 is divided by 20 we obtain 4 in the remainder. Besides, 

5* 
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we have 714 = 49· 712, and since the division of 712 by 20 leaves 
a remainder of 1 (because 12 is divisible by 4 and therefore 
712 - 1 is divisible by I 00), we see that the remainders resulting 
from the division of 49 · 712 by 20 and from the division of 49 by 
20 coincide and are equal to 9. Thus, the division of 1414=2 14 -7 14 
by 20 leaves the same remainder as the division of the product 
4 · 9 = 36 by 20, that is this remainder is equal to 16 because 
1414 = 20K + 16. Now it readily follows that the division by 25 
of the numbers 2( 1414) = 216 • 22°K and 216 = 65 536 leaves the same 
remainders, which means that the last two digits of the number 
2(1414) can only be 11; 36; 61 or 86. Since the number 2(14 14) is di· 
visible by 4 we conclude that this number has the digits 36 at the 
end. 

Thus the last two digits of the number 7(1414) are 01 and those 
of the number 2(11 14 ) are 36. Consequently, their product 
7(1414). 2(11 14) = 14(1414) ends with the digits 36. 

67. (a) It is clear that both numbers 999 and 9999 end with 9 
(cf. the solution of Problem 66 (a)), that is their last digits coin­
cide. Further, by Newton's binomial formula, we have 

A = 9a9 = (I 0 - I )99 = 
=IOa-C(a, 1)·10a-i+C(a,2)·10a-z_ ... +C(a, 1)·10-1 

and 

99 99 
B = 99 = (I 0 - I )9 = 

=!Ob -C(b, 1) · l0"- 1 + C(b, 2) • I0'-2 - ••• + C(b, 1) · 10- 1 

where a= 99 and b = 999
• Thus, the last two digits of the num­

bers under consideration coincide with the last two digits of the 
numbers 

C (a, 1) • 10 - I= lOa - 1 and C (b, 1) • 10- 1 =!Ob - 1 

respectively. Further, both numbers a= 99 and b = 999 end with 
the digit 9 (see again the solution of Problem 66 (a)). Therefore 
the last two digits of the numbers lOa and !Ob are 90 and those 
of the numbers A and B are 89. 

(b) By analogy with the solution of Problem 67 (a), we can 
find the last six digits of the two numbers in question (the solu· 
tion of Problem 67 (a) is based on the equality 9 = 10 - 1; in 
the present problem the role of this equality is played by the re· 
lation 72 = 50 - 1). It turns out that these digits coincide. How· 
ever, this method of the solution leads to rather lengthy calcula· 
tions (because here, instead of two last digits, we deal with six 
last digits) and therefore it is preferable to use another method. 
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We must show that the last six digits of the numbers A= 7a 
77 

2nd B = 7b coincide where a= 777 and b = 777
• Hence, we must 

-prove the difference 

A - B = 7a - 7b = 7b (7a-b - 1) 

is divisible by 1 000 000 = 26 • 56 (this means that we must prove 
that the number 

D=7d-1 

where d = a - b is divisible by 1 000 000 = 26 • 56). Thus, the pro­
blem reduces to the determination of the exponents of the power 
of two and of the power of five by which the number D = ?d - 1 
is divisible where d is a natural number. We shall investigate se­
parately the divisibility of the number D by 2a (in this case we 
have to prove that a ? 6) and the divisibility of D by 513. 

1°. Let C = 7c - 1 where c = 2Pq (here q is odd). We shall 
prove that in this case we have C = 2aPP where P is an odd num­
ber and the exponent ap (which is dependent on p solely and does 
not depend on q) satisfies the recurrence relation 

(*) 
for p '> 1. 

Since the number 7(21l - l = 72 - 1=48 is divisible by 24 = 
= 16 and is not divisible by 25 we see that a 1 = 4, and therefore 
(*) obviously implies that 

aP = p + 3 for all p ?:: 1 

Hence, if the greatest exponent of the power of two by which the 
number c is divisible is equal to p ? 1 then the greatest expo­
nent ap of the power of two by which the number C = 7c - 1 is 
divisible is equal to p + 3 (for p = 0 we have a 0 = 1 because 
the number 72' - 1 = 7 - 1 = 6 is divisible by 2 and is not di­
visible by any higher power of 2). 

We shall first prove that the number ap is independent of q. 
This follows from the formula 

7(2Pq) - 1 = (72P)q - 1 q = 

= [72P - 1] {[7(2P)r-l + [7(2P)r-2 + [7(2P)r-3 + ... + 1} 

where the sum in the curly brackets consisting of the odd num­
ber q of odd summands is obviously odd. This implies that the 
highest powers of 2 by which the numbers 72

Pq - 1 and 72
P - 1 

are divisible coincide. Therefore in the further argument we can 
,put q= 1, that is we can replace the number C = 72Pq - 1 by the 
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number CP = 72
P - 1. 

Now it only remains to make use of the formula 
Cp = 72P - I= (72P-1)2 - 12 = [72P-I - 1][72P-l +I]= Cp-1. C' 

The division of 7 by 4 leaves a remainder equal to -1, and there­
fore when 7m is divided by 4 we obtain -1 in the remainder for 
odd m and + 1 for even m. Consequently, the division of 72n + 1 
(and even of 72

n + 1) by 4 leaves a remainder equal to 2 for any 
(natural) n. This means that 72n - I and 72

n - 1 are divisible by· 
2 but are not divisible by 22• Hence, the left-hand member Cp of 
the equality Cp = Cp-1 • C' is divisible by the number 2aP, Cp-t i& 
divisible by 2aP- 1 and C' is divisible by 2 and not divisible by 
a higher power of 2, which implies formula (*). (It-is clear that 
for p = 1 we have a special case because C' = 72.0+ 1 = 7 + 
+ 1 = 8 is divisible not only by 21 but also by 23 ; the distinction 
appears because this is the only case when the exponent 2° of the 
power of 7 in the expression of C' is an odd number.) 

Thus, in order to determine the exponent a in the formula 
D = 7d - 1 = 2a • Q (where Q is odd) we should only find by 
what power of the number d =a - b = 7a' - 7b, = 7b, (7d' - 1} 
is divisible (that is by what power of two the number 7d, - 1 
is divisible) where a1 = ?777

, b1 = 77 and ad1 = a1 - bi. As we­
know, to this end it is necessary and sufficient to determine the 
power of two by which the exponent di = a1 - b1 = 7a, - 7b, = 
= 7b, (7d, - 1) is divisible where a2 = 777

, b2 = 7 and d2 = a2 -

- b2 = 7a, - 7b, = 7b, (7d• - 1) (here b3 = 1, a3 = 77 and d 3 = a3 -

- b3 = 77 - 1). Since 7 is an odd number, the number d3 = 77 
- 1 

is divisible only by 2a' = 21 = 2. It follows that the number 
7d' - 1 is divisible by 2a' = 21

; thus, the number d2 = 7b, (7d' - 1) 
is divisible by 24 and, consequently, the number 7d, - 1 is divi­
sible by 2a' = 27

• Now, since d 1 =7b, (7d' - 1) is divisible by 27
,. 

the number 7d, - 1 is divisible by 2a' = 210
, and therefore we 

conclude that d = 7b, (7d 1 - 1) is also divisible by 210• Hence,, 
D = 2d - 1 is divisible by 2a' = 213

• 

2°. The divisibility of the number C = 7c - I (where it is ad~ 
visable to put c = 5's) by the powers of five can be investigated 
in a completely analogous manner. In this case we should how­
ever stipulate that the number s (which is not divisible by 5) is. 
divisible by 22 (or by a higher power of 2) because if s is odd or 
is divisible by 2 but not divisible by 4 we arrive at some other 
conclusions. For s=4s1, that is for c=5"·4s1 where s1 is an in­
tegral number, the greatest exponent ~' of the power of five by 
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which the number C is divisible is dependent solely on the ex­
ponent r in the formula for c, that is the number ~r is independent 
-0f s1; as before, there holds the recurrence relation 

("'*) 

which is analogous to (*). Since the number 74 - 1 = (72)2- 1 = 
= (72 + 1) (72 - I) = 50 · 48 is divisible by 52 = 25, that is ~o = 2, 
:relation (**) implies that for all r ;;:=:: 0 we have 

~r=r + 2 

Hence, if the exponent c in the expression C = 7c - 1 is divisible 
by 4, and if the greatest exponent of the power of five by which c 
is divisible is equal to r then the greatest exponent ~r of the 
power of five by which C is divisible is equal to r + 2. 

To prove the independence of ~r of s 1 it suffices to make use of 
the formula 

C = 7c - I= 75r·4s, - 1 = (75'·4)8' - ls'= 

= [75'·4 - 1] {[7(s'.4)]8'-1 + [7(5'.4)]81-2 + ... + 7(5'.4) + 1} 

Since the division of } 4 = (72) 2 = (50- 1) 2 = 502 - 2·50 + 1 by 
5 leaves a remainder equal to 1, the division of the number (74) n 

by 5 also leaves a remainder 1 for any n. Therefore the expression 
in the curly brackets on the right-hand side of the last formula is 
a sum of s1 numbers the division of each of which by 5 leaves a 
remainder equal to I, whence it follows that this sum is not di­
visible by 5 because s 1 is not divisible by 5. Therefore the number 
C = 7s'· 4s, - 1 is divisible by the same power of five by which the 
number Er= 75r· 4 - 1 is divisible. This allows us to put s 1 = 1 
in the further course of the argument, that is we can replace the 
number C by the number Er. 

Further, we have 

E,=75'·4-1 =(75r-l,4)5-15= 

= (75r-l.4 _ 1) {(7sr-l,4)4 + (75r-l.4)3 + 
+ (7sr-1.4)2 + 75r-l.4 + 1} = E,_1. E' 

First of all, this implies that Er is divisible by Er-t, that is the 
exponent of the power of five by which E, is divisible is not less 
than the exponent of the power of five by which Er-I is divisible. 
In other words, we have ~r ;;:=:: ~r-1 ; since ~o = 2, it follows that 
there hold the inequalities 

2 = ~O ~~I ~ ~2 ~ " • 
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Thus, the number E,_ 1 = 75'-
1

•4 - 1 is divisible by .25 for all: 
r ~ 1, and consequently the remainder resulting from the division 
of the number e,_ 1 =e=75'-

1
· 4 by 25 is equal to 1, and the di­

vision of any power ek of the number e by 25 also leaves a re­
mainder equal to 1. Since the expression E' in the curly brackets 
on the right-hand side of the formula for E, is equal to the sum 
e4 + e3 + e2 + e + 1, the division of E' by 25 leaves a remainder 
equal to 5, that is E' is divisible by 51 and is not divisible by 52• 

What has been established and the formula E, = E,_1 • E' imply 
relation (**). 

Let us come back to the number A - B = 7b·D where D = 
= 7d - 1. As has been shown, the number d is divisible by 4 (it 
is even divisible by 210 = 1024), and therefore it only remains to 
determine the power of 5 by which the number d = 7a - 7b, = 
7b, (7d' - 1) is divisible where d 1 = a 1 - b1 (see the end of Sec­
tion 1° of the solution of the present problem). Further, since d1 
is also divisible by 4 (this number is even divisible by 27), the­
problem reduces to the determination of the exponent of the power 
of five by which the number d 1 =7a' - 7b, = 7b, (7d' - 1) is di­
visible where the number d2 = a2 - b2 = 7a - 7b, = 7b, (7d' - 1) is 
divisible by 4 (it is even divisible by 24) and d3 = 77 - l. As we 
know, the number d3 is divisible by 2 and is not divisible by 4, 
that is d 3 = 2f where f is odd; therefore the number 7d, - 1 = 
=49'-1=(50-1)'-lis not divisible by 5 (its division by 5 leaves 
a remainder of -2 or, which is the same, a remainder equal to 3). 
On the other hand, the number 7d, - 1 and also the number 
d2 = 7b, (7d, - 1) are divisible by 4, whence it follows that the 
number 7d, - 1 is divisible by 5f.1° = 52 and is not divisible by any 
higher power of five; therefore d 1 = 7b, (7d, - 1) is divisible by 52 

and d = 7b, (7d, - l) is divisible by 513 2 = 54 while the expres­
sion D=7d - 1 and the number A - B=7b·D we are interested 
in are divisible by 513• = 56• 

This argument concludes the solution of the problem. 

Remark. It is clear that, by a complete analogy with the solution of this prob­
lem, it can be shown that the numbers An+2 and An composed of n + 2 and n 
digits 7 respectively (An+ 2 and An are similar to the numbers B and A consid­
ered in the present problem) have 2n - 2 identical digits at the end of their 
decimal representations. We recommend the reader to try to estimate the num­
ber of identical digits at the end of the numbers An and Am composed of n and 
of m digits 7 respectively (here it is natural to begin with the case when the 
difference n - m is not very large). 

68. (a) When two numbers one of which ends with a digit a 
while the other ends with a digit b are multiplied by each other the 
last digit of their product coincides with that of the product ab 
This proposition allows us to solve the given problem rathe; 
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'Simply. Let us perform consecutively the raisings to the power 
and consider only the last digits of the resulting numbers: the last 
digit of 72 is 9, the last digit of 73 = 72 • 7 is 3, the last digit ot 
74 = 73 • 7 is 1 and the last digit of 77 = 74 • 73 is 3. 

Further, in just the same way we find that the last digit of (77)7 
is again equal to 7 (indeed, (77) 2 ends with the digit 9, (77)3 ends 
with the digit 7, (77) 4 ends with the digit 1 and (77)7 ends with the 
digit 7). It follows that the number ((77)7)7 has the same last digit 
as the number 77, that is this last digit is equal to 3, and the last 
digit of the number (((77)7)7)7 is again equal to 7 etc. Continuing 
the argument in the same manner we conclude that after an odd 
number of raisings to the 7th power we every time obtain a num­
ber with the last digit 3 and after an even number of raisings to 
the 7th power we obtain a number with the last digit 7. Since the 
number 1000 is even, the number we are interested in ends with 
the digit 7. 

Now let us consider two numbers whose last two digits form 
two 2-digit numbers A and B respectively. It is evident that the 
product of the given numbers has the same last two digits as the 
product A· B. This allows us to determine the last two digits of 
the number we are interested in. As before, we check that the last 
two digits of 77 are 43 and that the last two digits of (77)7 coin­
cide with those of 437, namely (7 7)7 ends with 07. It follows that 
if we consecutively raise the numbers 7, 77 , (77)7, ... to the 7th 
power then after an odd number of these operations we every time 
arrive at a number whose last two digits are 43 and after an 
even number of the operations we arrive at a number ending with 
the digits 07. Consequently, the last two digits of the sought-for 
number are 07. 

(b) As was shown in the solution of Problem 68 (a), the num­
ber 74 ends with the digit 1. It follows that the last digit ot 
74k = (74)k is also equal to 1 and that 74k+1 where l is one of the 
l1umbers 0, 1, 2 or 3 has the same last digit as 71 (74k+t = 74k. 71). 
Hence, the problem reduces to the determination of the remainder 
resulting from the division by 4 of the exponent of the power to 
which 7 should be raised in order to get the number mentioned in 
the condition of the problem. 

The exponent of the power to which the number 7 is raised in 
1.his problem is itself a power of 7 with a very large exponent. We 
have to determine the remainder which is obtained when the latter 
power of seven is divided by 4. Since 7 = 8 - 1, it follows that 
the remainder resulting from the division of 72 = ( 8 - 1) · (8- 1) 
by 4 is equal to 1, the division of 73 = 72 • (8 - 1) by 4 leaves a 
remainder equal to -1 or, which is the same, equal to 3, and, 
generally, the division of any even power of 7 by 4 leaves a 
remainder of 1 and the division of any odd power of 7 by 4 leaves 
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a remainder equal to -1 or, which is the same, equal to +3. 
Further, the exponent of the power of 7 we consider in this pro· 
blem is an odd number because it is itself a power of 7. Conse· 
quently, the number mentioned in the condition of the problem is. 
of the form 74k+3 and hence its last digit coincides with that of 73, 

that is this digit is equal to 3. 
Since 74 ends with the digits 01 we conclude that the last two· 

digits of 74k+z coincide with those of 71• Consequently, the number 
in question ends with the same two digits as the number 73, that 
is these digits are 43. 

69. Let us consider, in succession, the following numbers: 

1°. z, =9 
2°. Z2 = 921 =(IO - 1)21 = 102 • - c (Z" I) • 1oz,--l + . 

... +C(Z1, 1)-10-1 

where the terms designated by the dots are all divisible by 100. 
Since C(Z1, 1) = 9, the last two digits of the number Z2 coincide· 
with those of the number 9 · 10 - I = 89. 

3°. Z3 = 9z, = (10 - l)Z2 = 1022 - c (Zz, 1). JOZ,-l + ... 
... -C(Z2,2)·102 +C(Z2 , 1)·10-1 

The number Z2 has 89 at the end; consequently, the last two· 

digits of C (Z2, 1) = Z2 are 89 and the last digit of C (Z2, 2) = 

Z2 (~~; I) _ · · · 
8
;: 2 · · 88 (where the dots designate the un--

known digits) is 6. Consequently, the last three digits of the num­
ber Z3 coincide with the last three digits of the number -600 +, 
+ 890 - I = 289. 

4°. Z 4 =92, = (10- 1)2' = 102• -C(Z3, 1) · 1oz,- 1 + ... 
. . . + C (Z3, 3) • 103 

- C (Z3, 2) · 102 + C (Z3, I)· 10 - 1 

Since Z3 ends with 289, the last three digits of C (Z3, I)= Z3 are 
289. The number 

C (Z 2) = Z3 (Zs - I) = ... 289 · ... 288 
3, I · 2 I· 2 

ends with 16. The last digit of the number 

C (Z 3) = Zs (Zs - I) (Za - 2) = ... 289 · ... 288 .... 287 
3, I · 2 · 3 I · 2 · 3 

is equal to 4. Consequently, the last four digits of the number Z41 
coincide with those of the number 4000 - 1600 + 2890 - I __:_ 
= 5289. 

5°. Z5 = 92 • = (10 - 1)2• = 102• - C (Z4, I)· 1oz.-1 + ... 
... -C(Z4, 4) · I04+C(Z4, 3) · 103-C(Z4, 2) · I02+C(Z4, I)· 10-F 
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:Since Z4 ends with 5289, the last four digits of C(Z4, 1) = Z4 are 
.5289. The number 

C (Z 2) = Z.(Z4 - 1) = ... 5289 • ... 5288 
4• 1 . 2 1 • 2 

ends with 116. 
The number 

C (Z 3) = ZdZ4 - I) (Z4 - 2) ... 5289 · •.• 5288 • .•. 5287 
4' 1 . 2 . 3 - 1 . 2. 3 

.-ends with 64, and, finally, the last digit of the number 

C (Z , 4) = Z4 (Z4 - 1) (Z4 - 2) (Z4 - 3) = 
4 1·2·3·4 

... 5289 • • . . 5288 . . . • 5287 • . . . 5286 
1. 2. 3. 4 

'is equal to 6. Hence, the last five digits of Zs coincide with the 
-Jive digits of the number 

- 60 000 + 64 000 - 11 600 + 52 890 - 1 = 45 289 

Further, the coincidence of the last four digits of the number Zs 
with the last four digits of the number Z4 implies that the last five 
digits of the number Z6 = 92• = (10 - 1)2 • coincide with the last 
five digits of the number Z5 = 92 •• In the same way we can show 
-that all the numbers belonging to the sequence 

Zs, Z5=9Zs, Z1=9z•, ... , Z1000=9z,,., Z1001=9Z1000 

,end with the same five digits, namely with 45 289. The number 
Z 1001 is nothing other than the number N mentioned in the condi­
tion of the problem. 

70. First of all let us find the remainders resulting from the 
division of the numbers 5n and n5 by 13 for several consecutive 
values n = 0, 1, 2, .... It is more convenient to begin with the 
numbers 5n; we can write the following table of the remainders: 

n 0 1 2 3 4 

The number 5n 5 25 125 625 

The remainder resulting from 
the division of 

5n by 13 5 -1 -5 

··(Here we write the remainder -1 instead of the remainder 12 and 
ihe remainder -5 instead of the remainder 8; this facilitates the 
.determination of all the other remainders: if the division of 5n by 
13 leaves a remainder equal to -1, that is if 5n = 13k - 1 where 
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k is an integer, then the division of 5n+1 = 5n.5 = (13k- 1)5 = 
= 13(5k)- 5 by 13 leaves a remainder of -5. Similarly, if the 
division of 5m by 13 leaves a remainder equal to -5, that is if 
5m = 13! - 5, then the remainder resulting from the division of 
5m+1=5m.5=(13l-5)·5=13(5l)-25=13(5l-2)+1 by 13 
is equal to 1.) There is no need to continue this table of the re­
mainders because, since 54 = 13q + 1, the division of 55 =54 ·5= 
= ( 13q + I) 5 by 13 leaves the same remainder as the division of 
5 by 13, that is the remainder equal to 5; similarly, the division of 
the number 56 = 54 ·52 = (13q + 1) ·52 by 13 leaves the same re­
mainder as the division of the number 52 by 13 (that is the re­
mainder equal to -1), etc. Thus, in this sequence of the remainders 
the numbers 1, 5, - I and -5 alternate in succession. 

We can similarly compile the table of the remainders obtained 
when the numbers n5 are divided by 13 where n = 0, 1, 2, ... , etc. 
The division of the number 

(13p+r)5 =~p+r)(l3p-1:_r) ... (13p+_j 
5 factors 

by 13 leaves the same remainder as the division of the 
number r 5, and therefore we can limit ourselves to the values 
n = 0, 1, 2, 3, ... , 12. If the number n is equal to s or if its divi­
sion by 13 leaves a remainder equal to s and if the division of the 
number n2 by 13 leaves a remainder t then the division of the 
numbers n5 = n2 ·n2 ·n and t·t·s by 13 leaves one and the same 
remainder. This facilitates the compiling of the required table for 
the values of n equal to 4, 5, and 6. Finally, it should be noted 
that if the division of the number n5 by 13 leaves a remainder u 
then the remainder resulting from the division of the number 
(l3-n)5 =(13-n)(l3-n) ... (13-n) by 13 coincides with the 

-.-
5 factors 

remainder resulting from the division of the number (-n) 5 by 13, 
this remainder being equal to -u or, equivalently, to 13 - u. 

Now we can write down the corresponding table of the remain­
ders: 

n 0 1 2 3 4 5 
ns 0 1 32 243 
n2 16 25 

The remainder resulting from 
the division of n2 by 13 3 -1 

The remainder resulting from 0 1 6 -4 -3 -1(-1)5=5 
the division of n6 by 13 (because 

t. t. s = 
=3·3·4) 
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n 6 7 8 9 10 11 12 . 
n5 
n2 36 

The remainder resulting from 
the division of n2 by 13 -3 

The remainder resulting from 2 -2 -5 3 4-6 -I 
the division of n5 by 13 (because 

t. t. s = 
(-3). (-3) ·6) 

Here, when writing the remainders corresponding to the values 
of n equal to 7, 8, ... , 12, we take into account that the division 
of the numbers n5 and (13- n) 5 by 13 leaves remainders equal 
to u and -u respectively. Besides, for the values of n exceeding 
12 the same remainders 0, l, 6, -4, -3, 5, 2, -2, -5, 3, 4, -6 
and -1 repeat periodically in the table. 

We see that the first table has 4 numbers in the "period of the 
remainders" while the second table has 13 numbers in the "period 
of the remainders"; therefore the number 4 · 13 = 52 determines 
the "length of the period of the remainders" in the "union" of both 
tables in the sense that when n is increased by 52 (or by any 
number multiple of 52) the remainders resulting from the division 
of the numbers 5n and n5 by 13 do not change. It is clear that we 
can limit ourselves to the consideration of only those columns of 
the second table which correspond to the remainders + 1 and ±5 
because in the first table only the remainders l, 5, -1 and -5 
alternate. Further, in the second table for the values of n ranging 
from 0 to 51 the remainders l correspond to the values of n equal 
to l, l + 13 = 14, 1+2·13 = 27 and 1+3·13 = 40. Among 
these four numbers l, 4, 27 and 40 only the number 14 is of the 
form 4x + 2, and in the first table to the number n = 14 there 
corresponds a remainder equal to -1. Thus, the number n = 14 
satisfies the required condition because 514 + 145 is divisible by 13. 
Similarly, in the second table, for the same values of n ranging 
from 0 to 51, the remainders -1 correspond to the values of n 
equal to 12, 12 + 13 = 25, 12+2·13 = 38 and 12+3·13 = 51; 
among these four numbers 12, 25, 38 and 51 only 12 has the form 
4y, the remainder corresponding to n = 12 in the first table being 
equal to 1. Similarly, in the second table the remainders 5 cor­
respond to the values of n equal to 5, 5 + 13 = 18, 5+2·13 = 31 
and 5 + 3 · 13 = 44, and the remainders -5 correspond to the 
values of n equal to 8, 8 + 13 = 21, 8+2·13 = 34 and 8 + 
+ 3· 13 = 47; further, among the four numbers 5, 18, 31 and 44 
only 31 is of the form 4z + 3 for which the division of 54z+3 = 531 

by 13 leaves a remainder equal to -5 while among the four num-
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hers 8, 21, 34 and 47 only 21 has the form 4w + 1 for which the 
division 54w+1 = 521 by 13 leaves a remainder equal to 5. Thus, 
within the limits from n = 0 to n = 52 (that is for 0 ~ n ~ 52) 
only the four natural numbers n = 12, 14, 21 and 31 satisfy the 
required condition. As to the whole set of the natural numbers 
satisfying the condition of the problem, it consists of the following 
four sequences: 

n=52m+ 12, n=52m+ 14 (that is n=26(2m)+ n 
and n = 26 (2m + 1) - 12), 

n=52m+21 and n=52m+31 (that is n=52m+21) 

where m = 0, 1, 2, ... (the only exception is that in the formula 
n = 52m-21 we should put m > 0). 

Now it becomes clear that the smallest number n satisfying the 
conditions of the problem is n = 12. 

71. It is clear that the last two digits of the numbers n2, n3, ••• 

where n is a nonnegative integer depend solely on the last two 
digits of the number n, which follows from the ordinary arithmetic 
rule for the multiplication of multiplace numbers written as a 
column. On the other hand, the last two digits of 100 consecutive 
nonnegative integers must necessarily run over the sequence 00, 
01, 02, ... , 99 (although, in the general case, their order may 
differ from the one in which we have written the sequence here). 
Therefore the problem reduces to the determination of the last two 
digits of the sum 

for a = 4 and a = 8. 
(a) If n = lOx + y is a two-digit number then 

n4 = (IOx + y)4 = 104x4 + 4 · l03x 3y + 6 · 102x2y2 + 4 · IOxy3 + y4 

and the last two digits of the number n4 depend solely on the last 
two terms of this sum because each of the other terms has two 
noughts at the end. Consequently, it only remains to determine 
the last two digits of the numbers equal to the sums 

L L 4 · IOxy3 and L L x0y4 = 10 L y4 

x g x g y 

where x and y independently run over the values ranging from 0 
to 9 (here we put o0 = 1, and therefore .L x0 = o0 + 1° + ... + 

x 

9° = 10} 



Now we note for any fixed y the number 

2:4· toxy"= 
x 
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= 4 · 10 (0 +I+ 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9) · y3 = 1800y3 . 
ends with two noughts; therefore the number L L 4 · 10xy3 also has 

x y 

two noughts at the end, and hence it does not affect the last two 
digits of the number N4. Thus, we have to determine the last two 
digits of the number 

10l:y4 = 
y 

= 10 (04 + 14 + 24 + 34 + 44 + 54 + 64 + 74 + 84 + 94
) = 10S4 

The last equality shows that it suffices to find the last digit of the 
number equal to the sum S 4• 

To determine the last digit of S 4 let us consider the following 
table in which the last digits of the numbers y, y2 and y4 are 
written in succession: 

y 0123456789 

y 2 O 4 9 6 5 6 9 4 I 
y4 0 6 I 6 5 6 I 6 I 

It follows that the last digit of the number S4 coincides with that 
of the sum 

o+ l +6+ 1 + ... +I =4(1 +6)+5=33 

and consequently the last two digits of the number N4 and also of 
the number mentioned in the condition of the problem are 30. 

(b) By complete analogy with the solution of Problem 71 (a), 
we find that for a= 8 the last two digits of the sum N8 (and, 
consequently, the last two digits of the number we are interested 
in) coincide with the last two digits of the number 10 S 8 where 
S 8 = 08 + 18 + ... + 98• From the table of the last two digits of 
the number y4 written above and from the equality y4k= (y4) k it 
follows that the number y4k (where y is a digit) has the same last 
digit as the number y4• Therefore in the case when a= 8 the last 
two digits of the number in question are the same as in the case 
when a = 4, that is these digits are 30. 

Remark. It can easily be seen that the same result can be obtained for all 
values of a multiple of 4, that is for a = 4, 8, 12, 16, .... 

72. According to the formula for the sum of the members of a 
geometric progression, we have 

501000 _ I 501000 _ I 
N= 50-1 = 49 
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The number 1/49 is changed into a repeating decimal whose pe· 
riod consists of 42 digits and can simply be found by division: 

4
1
9 = 0.(020408 l 63265306122448979591836734693877551) 

(here the parentheses symbolize the period of the decimal). In the 
abbreviated form we can write 

1 
49= O.(P) 

where the symbol P designates the above sequence of 42 digits 
and (P) designates the period. 

The nearest integer to 1000 multiple of 42 is equal to 1008 = 
= 24 ·42. Hence, 

101008 iooa 1 
-;ig= 10 • 49 = PP ... P.P ... 

~ 
24 times 

where the heavy face type dot between two neighbouring P's 
symbolizes the decimal point. 

Thus, the fraction M = (101008 - 1) / 49 can be written as 

M= 101008_1 = lQIOOB._1 ___ 1 =PP ... p 
49 4949~ 

24 times 

and therefore it is equal to a whole number written with the aid 
of 1008 digits which can be divided into 24 repeating groups of 
the 42 digits denoted as P (by the way, M is in fact a 1007-digit 
whole number because the sequence of digits denoted as P begins 
with nought). 

Now let us form the difference between the number N we are 
interested in and the number M: 

51000. 101000 _ 1 101008 _ 1 51000 _ 108 
N - M = 49 - 49 = 49 • 101000 

Since the difference N - M of two integral numbers is itself an 
integral number and since 101000 is relatively prime to 49, the 
number 51000 - 108 must be divisible by 49. Consequently, x = 
= (51000 - 108) /49 is an integral number and the difference 
N - M = 101000 .x ends with 1000 noughts. Thus, the last 1000 
digits of the number N coincide with those of the number M, 
namely they form the sequence 

pPP ... P 
~ 

23 times 

where p is a group of 34 digits which are the last 34 digits of the 
number P. 
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73. Let M = IOA +a denote the original number where a is 
the last digit of M. Then the number N obtained from M as clt::;­
cribed in the condition of the problem is obviously equal to 
a· 10611- 1 +A where 6n is the number of the digits forming the 
number M. 

Let us consider the expression 

M - 3N = (lOA +a) - (3 · I0511- 1a + 3A) = 
=7A-(3 · \0611 - 1 -1) a 

According to the condition of the problem, the minuend M on the 
left-hand side is divisible by 7; the number 7 A is obviously di­
visible by 7; therefore if we prove that the number 3· 10611- 1 - l 
and, consequently, the number (3· 10611- 1 - l}a, are divisible by 7, 
this will imply that the number 3N and, consequently, the number 
N, are also divisible by 7. 

The division of the number IO by 7 leaves a remainder 3 and 
the division by 7 of 102 leaves the same remainder as the division 
of the number 3·3 = 9, the latter remainder being equal to 2. Con­
sequently, the division of the number 103 = 102 • 10 by 7 leaves a 
remainder equal to 2·3 = 6; the remainder resulting from the 
division by 7 of the number l 06 = l 03 • l 03 coincides with the re­
mainder resulting from the division of the number 6 · 6 = 36 by 7, 
this remainder being equal to l. Hence, the number 106 =103 ·103 

can be written in the form 7k + l. Further, the remainders result­
ing from the division by 7 of the numbers l 05 = 103 • 102 and 
6·2 = 12 coincide and are equal to 5; in other words, the number 
105 = 103 • 102 has the form 7l + 5; therefore 

10611-l = 10611-6 . I05 = (106t-1 • I05 = 

= (7 k + 1) (7 k + l) . :. (7 k + l )(7 l + 5) = 7 K + 5 _, 
11-l times 

It follows that the division of the number 10611- 1 by 7 leaves a 
remainder of 5. Finally, the division of the numbers 3· 10611- 1 and 
3.5 = 15 by 7 leaves one and the same remainder equal to 1, 
whence we conclude that the number 3· 10611- 1 - 1 is exactly di­
visible by 7. The assertion stated in the problem has thus been 
proved. 

74. The number of noughts at the end of the decimal represen­
tation of a number is equal to the maximum exponent of the power 
of IO by which this number is divisible. The number 10 is equal 
to the product 2 · 5. The exponent of the power of 2 contained in 
the product of all whole numbers from 1 to IOO inclusive is 
greater than that of the power of 5 contained in this product. Con· 
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sequently, the exponent of the highest power of 10 by which the 
product 1·2·3 ... 100 is divisible (this exponent coincides with the 
number of the noughts at the end of the decimal representation of 
the product) is equal to the exponent of the power of 5 contained 
in the product. Further, among the numbers from I to 100 there 
are 20 numbers multiple of five, and four among these five num­
bers (25, 50, 75 and 100) are also multiples of 25, that is they 
contain 5 to the second power. Consequently, the total number of 
5's contained in the product 1·2 · 3 ... 100 is equal to 24; therefore 
there are exactly 24 noughts at the end of the decimal represen• 
talion of this product. 

75. First solution of Problems 75 (a) and (b). Let us begin 
with Problem 75 (a). Let us denote as t+ 1, t+2, ... , t+n a 
sequence of n arbitrary consecutive whole numbers. We can de­
termine the greatest exponent m of the power of every prime 
number p entering in the product n! and the greatest exponent .s 
of the power of p entering in the product (t+ I) ... (t+n). 

We shall denote by m 1 the number of the members in the se­
quence 1, 2, ... , n which contain powers of p with exponents not 
less than 1; similarly, by m2 we shall denote the number of the 
members in this sequence which contain powers of p with expo­
nents not less than 2, etc. Then the exponent of the power of p 
contained in n! is equal to m = m1 + m2 + . . . . 

Similarly, let us denote the number of the members in the se­
quence t + 1, ... , t + n divisible by p as si, the number of the 
members in the sequence divisible by p2 as s2 and so on; it is 
obvious that the exponent s of the power of p contained in the 
product (t + I) ... (t + n) is equal to s = s1 + s2 + .... 

Further, the number of the members in the sequence t + I, ... 
. . . , t + n which are divisible by p is not less than m1. Indeed, 
among the numbers t + 1, ... , t + n there are the numbers t + p, 
t + 2p, ... , t + m1p, and in each of the intervals between t + kp 
and t+ (k+ I) p (k=O, 1, 2, ... , m1 - 1) there is at least one 
number divisible by p. Hence, s 1 ;;::::: m1; we similarly conclude that 
s2 ;;::::: m2 etc.; therefore s ;;::::: m. It follows that each of the prime 
factors of the number n! is contained in the number (t + 1) ... 
. . . (t + n) and that the exponent of the power of each such prime 
factor contained in the product (t + 1) ... (t + n) is not less than 
the exponent of the power of that prime number contained in n.!. 
This means that the number (t + 1) ... (t + n) is divisible by n!. 

(b) The product of the first a factors in n! coincides with a!; 
the product of the b factors following these a faetors is divisible 
by b! (see the solution of Problem 75 (a)); the product of the 
next c factors is divisible by c! and so on. Since a + b + c +: 
+ ... + k ~ n, it follows that n! is exactly divisible by the pro­
duct a!bl ... kl 
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Second solution of Problems 75 (a) and (b). Let us begin with 
the solution of Problem 75 (b). As was shown, the exponent m 
.of the power of any prime number p contained in at is equal to 
m = m1 + m2 + ... where m1 is the number of the members in 
the sequence 1, 2, ... , a which are multiple of p, the symbol m2 

indicates the number of the members in the sequence which are 
multiple of p2 , etc. Further, the number of the members which am 

multiple of p is equal to [;], the number of the member~ 

multiple of p2 is equal to [ ; 2 ] etc. where [;], [ ; 2 ], • • • am 

the integral parts of the fractions .!!... , ~, ••• respectively (see p p 

page 36). Thus, m = [;] + [ ;2 ] + . . . . Now, let p be an ar­
bitrary prime number. Then the exponent of the power of p con­
tained in the numerator of the expression we are interested in is 

·equal to the sum [;] + [;] + . . . and the exponent of the 
power of p contained in the denominator of this expression is 
equal to 

[;] + [ ;2 ] + ... + [ ! ] + [ ;2 ] + ... + [;] + [ :2] + ... 
Since n ~ a+ b + ... + k we can use the result established in 
Problem 201 (1) to obtain the inequality 

I;J+[;2 ]+ ... ~ ([;J+[!J+ ... )+ 
+ ([ ;2] + [ :2] + ... ) + 

This means that the exponent of the power of p in the numerator 
exceeds that of the power of p in the denominator. Therefore the 
given fraction is a whole number. 

Now let us solve Problem 75 (a). To this end we multiply the 
product (t + 1) ... (t + n) and the expression n! by the product 
t (t - 1) ... 1 so that the former product turns into (t + n) !. Then 
the result of the division of (t + 1) ... (t + n) by n! can be writ­
ten as the fraction of the form 

(t + n) ... (t + 1) t (t - 1) ... 1 
nl t (t - 1) ... 1 - (n + t)! 

nl tt 
(t+ 1) ••• (t+n) 

nt 

As was shown, such a fraction is in fact equal to an integral 
number. 

( c) The expression (n!) ! is the product of the first n! whole 
numbers. These n! numbers can be divided into (n - 1) ! groups 
each of which consists of n consecutive whole numbers. The pro-
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duct of the numbers forming each of these groups is divisible by 
n!, which follows from the solution of Problem 75 (a). 

( d) Let the numbers in question be denoted as a, a + d, 
a+ 2d, ... , a +(n- l)d. We shall begin with proving that there 
exists a whole number k such that the division of the product kd 
by n! leaves il remainder equal to 1. Indeed, let us consider the 
n! - 1 numbers d, 2d, 3d, ... , (n! - 1) d. None of them is di­
visible by n! because d and n! are relatively prime. On the other 
hand, there are not two products pd and qd where p and q are 
whole numbers which are less than n! and where division by n! 
leaves equal remainders because, if otherwise, the di_fference 
pd -- qd = (p - q) d would be divisible by n!. Thus, the division 
of these n! - 1 numbers by n! must leave n! - 1 different remain· 
ders, whence it follows that there exists a number k such that the 
division of kd by n! leaves a remainder equal to 1. 

Now let us denote the product ka as A. Then we can write 

ka=A 

k (a + d) = A + kd =(A + l) + r · nt 
k (a+ 2d) =A+ 2kd =(A+ 2) + 2r · n! 

k [a+ (n - 1) d] =A+ (n - 1) kd =[A+ (n - 1)] + (n - l) r · nr 

It follows that the division by n! of the product 

kna (a+ d) (a+ 2d) ... [a+ (n - 1) d] 

leaves the same remainder as the division of the product 
A(A+l)(A+2) ... [A+(n-1)]. The product A(A+l)(A+2) ... 
. . . [A+ (n - 1)] is divisible by n! (see Problem 75 (a)), and 
the numbers kn and n! are relatively prime because, if otherwise, 
k would not be relatively prime to n! and kd would not be rela­
tively prime to n! either. 

76. The number of combinations of 1000 things, taken 500 at a 
time, is equal to 1000!/(500!)2. Since 7 is a prime number, the 
highest power of 7 by which 1000! is divisible has the exponent 
equal to [1000/7] + [1000/49] + [1000/343] = 142 +20+2=164 
(see the second solution of Problem 75 (b)). The greatest expo· 
nent of the power 7 contained in 500! is equal to [500/7] + 
+ [500/49] + [500/343] = 71 + IO+ 1 = 82. Consequently, the 
exponent of the highest power of 7 by which the denominator 
( 500!) 2 is divisible is equal to 82 · 2 = 164. Thus, both the n ume­
rator and the denominator contain 7 to the 164th power. On can­
celling by this highest power of 7 we arrive at a fraction whose 
numerator no longer contains the factor 7, whence it follows that 
the whole number (1000!)/(500!) 2 is not divisible by 7. 
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77. (a) The number (n - I) I is not divisible by n only in the 
case when n is a prime number or when n = 4. 

Indeed, if n is a composite number which can be represented 
as a product of some two different factors a and b then both a 
and b are less than n - I and, consequently, a and b are con~ 
tained in (n - 1) !, whence it follows that (n - I)! is divisible 
by ab = n. If n is a square of a prime number p exceeding two 
then n - I = p2 - I > 2p, and therefore both p and 2p are con­
tained in (n- I)!; consequently, (n-1)! is divisible by p·2p = 
= 2p2 = 2n. Thus, the only numbers satisfying the condition of 
the problem are 2; 3; 4; 5; 7; II; I3; 17; 19; 23; 29; 31; 37; 41; 43; 
47; 53; 59; 61; 67; 71; 73; 79; 83; 89 and 97, that is these are the 
number 4 and all prime numbers less than 100. 

(b) The number (n - 1) I is not divisible by n2 only in the fol-­
lowing cases: n is a prime number or n is a duplicated prime 
number or n = 8 or n = 9. 

Indeed, if n is not a prime number and is not a duplicated prime 
number and is not a square of a prime number and is not equal 
to 8 and is not equal to 16 then n can be represented in the 
form n = ab where a and b are different numbers not smaller 
than 3. 

Analogously, if n is not equal to 16 then n can be written as 
n = ab where a ~ 3 and b ~ 5. Let us assume that n = ab,. 
b > a and a ~ 3. Then the numbers a, b, 2a, 2b and 3a are less 
than n - 1, a, b and 2b being different from one another, and at 
least one of the numbers 2a and 3a is different from the numbers 
a, b and 2b. Thus, in this case (n - 1) ! contains as factors the 
numbers a, b, 2b and 2a or a, b, 2b, and 3a (or perhaps all the 
numbers a, b, 2b, 2a, and 3a). In all these cases (n - I)! is di vi· 
sible by a2b2 = n2. 

Further, if n = p2 where p is a prime number exceeding 4 then 
n - 1 > 4p, and (n -- 1) ! contains the factors o, 2p, 3p and 4p; 
consequently, (n - 1) ! is divisible by p4 = n2• If n = 2p then the­
number (n - 1) ! is not divisible by p2 and hence it is not divisible 
by n2 either; if n = 8 or n = 9 then (n - 1) ! is not divisible by 
n 2 (7! is not divisible by 82 and 8! is not divisible by 92). 

In case n = I6 the number (n - 1) ! is divisible by n2 (be· 
cause I5! contains the factors 2, 4=22, 6=3·2, 8=23, 10=2·5, 
12 = 22·3 and 14 = 2-7, and consequently, I5! is divisible by 
21+2+1+3+1+2+1 = 211 = I62-23). 

Thus, the numbers satisfying the condition of Problem 77 (b) 
are those satisfying the condition of Problem 77 (a) and, besides, 
the numbers 6, 8, 9, IO, I4, 22, 26, 34, 38, 46, 58, 62, 74, 82, 86 
and 94; in other words, these are all prime numbers less than 100, 
all duplicated prime numbers not exceeding 100 and the numbers 
8 and 9. 
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78. Let us suppose that n is a number divisible by all numbers m 
less than or equal to -Vft. Let K be the least common multiple of 
all such numbers m. The factorization of the number K obviously 
contains all prime numbers less than -Vn, the exponent k of the 
power of each of such prime numbers p satisfying the relations 
pk :::;;; ,yft and pk+t > ,yn. Let us suppose that the number of the 
prime numbers less than -Vii is equal to l; we shall denote these 
prime numbers as Pt, P2 • ... , p1. The least common multiple K of 
all numbers less than -Vn is equal to the product p~ 1p;2 ••• p:t 
w;here k 1 satisfies the inequalities p~·:::;;; -Vn < p~·+ 1 , k2 satisfies the 

inequalities p~· :::;;; -vn < p~·+ 1 etc. On performing the term-by· 
term multiplication of the l inequalities 

. r: k + t • /- k +I . /- k +I 
'V n < P1 i , 'V n < P22 ' ••• ' 'V n < P11 

we obtain 

(-Vn) 1 < K2 

According to the hypothesis, the number n must be divisible by 
K, and therefore we have K ~ n; consequently, ( ,yft)1 < n2 whence 
it follows that l < 4. Since Pt •... , Pt are all prime numbers less 
than -Vn, there must be p4 = 7 > -Vn (the fourth prime number is 
equal to 7) and n < 49. 
· On investigating all numbers smaller than 49 we readily find 

-that among them only the numbers 24, 12, 8, 6, 4 and 2 posses); 
the required property. 

79. (a) Let 
n-2, n-1, n, n+ 1, n+2 

denote five consecutive whole numbers. Then 

{n - 2)2 + (n - 1 )2 + n2 + (n + 1 )2 + (n + 2)2 = 5n2 + 10 = 5 (n2 + 2) 

If the number 5 (n2 + 2) were a perfect square, it would be di· 
visible by 25 and, consequently, the number n2 + 2 would be di· 
visible by 5. This is only possible when the last digit of the num­
ber n2 is equal either to 8 or to 3, but it is known that there is no 
whole number whose square has 8 or 3 as its last digit. 

(b) Among three consecutive whole numbers there is one num­
ber that must be divisible by 3, one number whose division by :3 
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leaves a remainder of 1 and one number whose division by 3 
leaves a remainder equal to 2 or, which is the same, a remainder 
equal to -1. To the multiplication of numbers there corresponds 
the multiplication of the remainders resulting from the division of 
these numbers by a given number; indeed, we have 

(pk+ r) (qk + s) = pqk2 + pks + qkr +rs= k (pqk + ps +qr)+ rs 

Therefore, if the division of a number by 3 leaves a remainder of 
1 then the remainder resulting from the division of any power of 
this number by 3 is also equal to 1. In case the division of . a 
number by 3 leaves a remainder equal to -1, the division of any 
odd power of that number by 3 leaves a remainder of -1 and the 
division by 3 of its any even power leaves a remainder of 1. 

Thus, among three even powers of consecutive whole numbers 
there is one divisible by 3 while the remainders resulting from the 
division by 3 of the other two powers are equal to 1. Consequently, 
the division of a sum of even powers of three consecutive whole 
numbers leaves a remainder equal to 2 or, which is the same, a 
remainder equal to -1. However, as was already shown, such a 
remainder cannot result from the division by 3 of an even power 
of any whole number. 

Remark. It should be noted that in the above proof we do not use the fact 
that the powers to which three consecutive numbers are raised have equal even 
exponents. Therefore there holds the following more general assertion: a sum. 
of even powers (which may have different exponents) of three consecutive whole 
numbers cannot be equal to an even power of any whole number. 

( c) As was shown in the solution of Problem 79 (b), a sum of 
three even powers of consecutive whole numbers by 3 leaves a 
remainder 2. It follows that the division by 3 of a sum of even 
powers of nine consecutive whole numbers leaves a remainder 
equal to 2 + 2 + 2 = 6, which simply means that the sum is di· 
visible by 3. Now let us prove that a sum of powers of nine con· 
secutive whole numbers with equal even exponents cannot be di­
visible by 32 = 9; the assertion of the problem is obviously an im· 
mediate consequence of the last proposition. 

Among nine consecutive whole numbers there is one number 
which must be divisible by 9, one number whose division by 9 
leaves a remainder equal to 1, one number whose division by 9 
leaves a remainder equal to 2 and so on. It follows that if the 
even exponent of the power to which the nine numbers are raised 
is equal to 2k then the division of the sum under consideration and 
of the sum 
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leaves one and the same remainder. It is also clear that the di· 
vision of the latter sum and of the expression 

2 (I k + 4k + 7k) 

bv 9 leaves one and the same remainder because the numbers 32 

and 62 are divisible by 9, the division of the numbers 12 and 
82 = 64 by 9 leaves the same remainder equal to 1, the division 
of the numbers 22 = 4 and 72 = 49 by 9 leaves a remainder equal 
to 4 and the division of the numbers 42 = 16 and 52 = 25 by 9 
leaves a remainder equal to 7. 

Now we note that the division of the numbers 13 = 1, 43 = 64 
and 73 = 343 by 9 leaves the same remainder equal to 1, whence 
it follows that if k = 31 then the division of the sums 1 k + 4k + 
+ 7k = II+ 641 + 3431 and 11 + II+ 11 = 3 by 9 leaves the same 
remainder (equal to 3). Hence, the former sum is not divisible 
by 9. Similarly, it follows that if k = 31 + 1 then the division of 
1 k + 4k + 7k = 11 • 1 + 641 ·4 + 3431 • 7 by 9 leaves the same re­
mainder as the division of the sum l · l + l · 4 + l · 7 = 12, that 
is the expression 1 k + 4k + 7k is not divisible by 9, and if k = 
= 31 + 2 then the division by 9 of the sum 1 k + 4k + 7k=F · l + 
+ 641·42 + 3431 • 72 and of the sum 1 · 1 + I · 16 + l · 49 = 66 leaves 
the same remainder, which means that in this case 1 k + 4k + 7k 
is not divisible by 9 either. 

80. (a) The sum of the digits of each of the numbers A and B 
is equal to 

I + 2 + 3 + 4 + 5 + 6 + 7 = 28 

whence it follows that the division of both numbers by 9 leaves 
a remainder 1 (the division of every number by 9 leaves the same 
remainder as the division by 9 of the sum of the digits of the 
number). If we had A/ B = n or, which is the same, A = nB 
where n is a whole number different from 1 then the relation 
B = 9N + I would imply A = nB = 9M + n, which means that 
the division of n by 9 would leave a remainder of 1. But the 
smallest number n possessing this property is equal to 10 whereas 
we bave A/B<lO because both A and B are 7-digit numbers. 
This contradiction shows that A cannot be divisible by B. 

(b) Let N, 2N and 3N denote the sought-for numbers. The di· 
vision of a whole number by 9 leaves a remainder equal to the 
-0ne resulting from the division by 9 of the sum of its digits. The· 
refore the division of the sum N + 2N + 3N by 9 leaves the same 
remainder as the division by 9 of the sum 1 + 2 + 3 + ... + 9= 
= 45, whence it follows that 6N and, consequently, 3N are divi­
sible by 9. 

Since 3N is a three-digit number, the initial digit of the num­
ber N cannot exceed 3; therefore the last digit of the number N 
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cannot be equal to 1 (because, if otherwise, the last digit of 2N 
would be equal to 2, the last digit of 3N would be equal to 3 and 
hence the initial digit of N could not be smaller than 3). The last 
digit of the number N cannot be equal to 5 either because, if other­
wise, the number 2N would end with nought. Now let us suppose 
that the last digit of the number N is equal to 2; in this case the 
last digits of the numbers 2N and 3N are equal to 4 and 6 res­
pectively. Therefore the first two digits of 3N can only assume the 
values 1, 3, 5, 7, 8, and 9; since the sum of all digits of the num­
ber 3N is multiple of 9 the first two digits of 3N can only be equal 
to 3 and 9 or to 5 and 7. On testing all the possible cases we find 
one triple of numbers satisfying the condition of the problem for 
the case when the last digit of N is equal to 2: 192; 384; 576. The 
cases when the last digit of N is equal to 3, 4, 6, 7, 8 or 9 are in­
vestigated in like manner; it turns out that there are three more 
solutions of the problem: the triple 273; 546; 819, the triple 327; 
654; 981 and the triple 219; 438; 657. 

81. A perfect square can only have 0, 1, 4, 9, 6 or 5 as its last 
digit. Further, the square of every even number is obviously di­
visible by 4 while the division of the square of an odd number by 
4 must leave a remainder equal to 1 because (2k) 2 = 4k2 and 
(2k + 1) 2 = 4 (k2 + k) + 1. Therefore there is no whole number 
whose square has 11, 99, 66 and 55 as its last two digits because 
the division of a number ending with the digits 11, 99, 66 or 55. 
by 4 leaves remainders equal to 3, 3, 2 and 3 respectively. Now let 
us consider the remainders resulting from the division of the 
squares of whole numbers by 16. Every whole number can be 
written in one of the following five forms: 

8k, 8k + 1, 8k + 2, 8k + 3 and 8k + 4 

Accordingly, the squares of these expressions are 

16. (4k2), 16 (4k2 + k) + 1, 16 (4k2 + 2k) + 4, 

16 (4k2 + 3k) + 9 and 16 (4k2 + 4k + 1) 

Thus, we see that either the square of a whole number is divisible 
by 16 or its division by 16 leaves a remainder equal to 1, 4 or 9. 
As to the numbers whose last four digits are 4444, their division 
by 16 leaves a remainder of 12, and consequently these numberS­
cannot be perfect squares. 

Thus, if a perfect square ends with four identical digits, these· 
digits can only be four noughts (for instance, 1002 = 10 000). 

82. Let x, y and z denote the lengths of the sides and of the 
diagonal of the rectangle respectively. Then, by Pythagoras' theo­
rem, we have 

x2 + y2=z2 
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It is required to prove that the product xy is divisible by 12. 
We shall first show that this product is divisible by 3 and then 
that it is divisible by 4. 

Since 

(3k + 1)2 = 3 (3k2 + 2k) + I and (3k + 2)2 = 3 (3k2 + 4k + 1) + 1 

we see that the division by 3 of the square of any number which 
is not multiple of 3 leaves a remainder equal to 1. Consequently, 
if neither x nor y were divisible by 3, the division of the sum 
x2 + y2 by 3 would leave a remainder equal to 2, and therefore 
the sum x2 + y2 could not be equal to a square of a whole number. 
Hence, if x2 + y2 is equal to the square of an integer z then at 
least one of the numbers x and y is divisible by 3 and thus xy 
is divisible by 3. 

Further, it is clear that the numbers x and y cannot be simui­
taneously odd; for, if x = 2m + 1 and u = 2n + 1, then the ex· 
press ion 

x2 + y2 = 4m2 + 4m + 1 + 4n2 + 4n + 1 = 4 (m2 + m + n2 + n) + 2 

cannot be equal to the square of a whole number because the 
square of an odd number is itself odd and the square of an even 
number must be divisible by 4. In case both x and y are even 
numbers their product is of course divisible by 4. Let us suppose 
that x is even and y is odd: x = 2m and y = 2n + 1. In this case 
the number z is odd (because z2 = x2 + y2 is odd), that is z = 
= 2p + 1. Then we have 

(2m)2 =(2p+ 1)2 -(2n + 1)2=4p2 +4p+ l -4n2 -;-4n-1 

that is 
m2 = p (p + 1) - n (n + 1) 

It follows that m2 is even (because the products p (p + I) and 
n (n + I) of two consecutive whole numbers must be even). Con· 
sequently, the number m is even and the number x = 2m is di· 
visible by 4. Thus, in this case as well the product xy is divisible 
by 4. 

83. By the formula for the roots of a quadratic equation, we 
have 

- b ± ,,/b2 - 4ac X = --~2-a __ _ 

Consequently, for the roots of the equation to be rational numbers 
it is necessary and sufficient that the expression b2 - 4ac should 
be a perfect square. Let us put b = 2n + 1, a = 2p + 1 and 
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c = 2q + 1; then we have 

b2 -4ac=(2n+ 1)2- 4(2p+ 1)(2q+ 1)=4n2 +4n-

- 16pq - 8p - 8q - 3 = 8 ( n (n i 1
) - 2pq - p - q - l) + 5 

Since the number b2 - 4ac is odd (because n(n + 1) is a product 
of two consecutive whole numbers and therefore it is an even 
number, whence it follows that n(n+ 1)/2 is a whole number), 
we see that if b2 - 4ac is a square of a whole number then this 
whole number must be odd. Every odd number can be represented 
in the form 4k + l and its square can be written in the form 

(4.k + 1)2 = 16k2 + 8k + l = 8 (2k 2 + k) + l 
Consequently, the division of the expression ( 4k + l) 2 by 8 always 
leaves a remainder equal to I. Therefore, since the division of the 
number b2 - 4ac by 8 leaves a remainder of 5, the expression 
b2 - 4ac cannot be a perfect square. 

84. We have 
1 1 1 3n2 + 6n + 2 
n+ n+ 1 + n+2 = n(n+ I} (n+2) 

The numerator of the fraction on the right-hand side is not di­
visible by 3 while its denominator is exactly divisible by 3 because 
it is equal to the product of three consecutive whole numbers. Con­
sequently, the denominator always contains prime factors different 
from 2 and 5, and therefore when this fraction is written in 
decimal notation we obtain an infinite repeating decimal. 

Among the two whole numbers n and n + 1 there must be one 
which is even. If n + 1 is even then n is odd and, consequently, 
3n2 is odd, whence it follows that the entire numerator is an odd 
number. If n is even then n + 2 is also even (that is, it is di­
visible by 2) and, consequently, the denominator must be divisible 
by 22 whereas the numerator is divisible by 2 and is not divisible 
by 22 because for n = 2k we have 

3n2 + 6n+ 2= 12k2 + 12k + 2=2 (6k2 + 6k + 1) 

Hence, after the given fraction has been reduced to its lowest 
terms its denominator is not relatively prime to 10 and therefore 
in the decimal representation of the fraction we obtain a mixed 
periodic decimal. 

85. (a), (b) Let us reduce all the fractions in the sum 
I I 

M=2+ ··· +fi 
and in the sum 

N- I+ I + I + + l -n n+1 n+2 ••• n+m 
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to common denominators. From all fractions in the sums let us 
choose the ones whose denominators contain the highest powers 
.of two (there can be only one such fraction in each of the sums). 
When these fractions are reduced to the common denominators 
their numerators and denominators are multiplied by the corres­
ponding odd factors. When the other fractions in the sums are 
reduced to the common denominators the factors by which their 
numerators and denominators are multiplied must contain the 
number 2. On adding together all the fractions in the sums A1 
and N we obtain fractions whose denominators are of course even 
numbers, and each of their numerators is a sum of several even 
numbers and one odd number, which follows from what was said 
about the reduction of the fractions to the common denominators. 
Consequently, the numerators of the resultant fractions are odrl 
numbers, and therefore these fractions cannot be equal to whole 
numbers. 

(c) Among the fractions in the sum K let us choose the one 
whose denominator contains the highest power of the number :3 
(let the exponent of this power of 3 be k). Since the denominators 
of all fractions are odd numbers, the sum K does not contain the 
fraction 1/2·3k. Therefore when we reduce all these fractions in 
the sum to the common denominator the factor by which the de­
nominator and the numerator of the fraction we have chosen are 
multiplied is not divisible by 3 whereas for the other fractions 
such factors are divisible by 3. Consequently, on adding together 
all the fractions in the sum we arrive at a fraction whose deno­
minator is divisible by 3 and whose numerator is not divisible 
by 3, whence it follows that K cannot be equal to a whole number. 

86. (a) The fractions (a3 + 2a)/(a4 + 3a2 + 1) and (a4 + 
a2 + I 

+ 3a2 + 1)/(a3 + 2a) =a + a3 + 2a- (and also the fraction (a.2 + 
+ 1) / (a3 + 2a)) are simultaneously reducible or irreducible. 
Further, the fractions (a2+1)/(a3+2a) and (a3+2a)/(a2+1)= 
=a+ a/(a2 + 1) (and also the fraction a/(a2 +I)) are simul­
taneously reducible or irreducible as well. Finally the fractions 
a/ (a2 + 1) and (a2 + 1) /a= a+ 1/a (and the fraction I/a) are 
also simultaneously reducible or irreducible. Now, to complete the 
solution of the problem it is sufficient to note that for any inte­
gral a the fraction 1/a cannot be reduced by a factor. 

(b) If both the number a= Sn+ 6 and the number b=Bn + 7 
are divisible by an integer d =I= 1 then the difference p = b - a = 
= 3n + 1, the difference P1 = a - p = 2n + 5 and also the dif­
·ferences P2 = p - Pi = n - 4; p3 = P1 - P2 = n + 9 and p4 = 
= p3 - P2 = 13 are also divisible by d. Thus, the (prime) num­
ber 13 must necessarily be divisible by d, whence it follows that d 
,can only assume one value 13. The fact that the case when the 
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given fraction is reducible by 13 is possible can readily be demon­
strated by an example; for instance, if n = 4 then the fraction 
(5n + 6) / (8n + 7) = 26/39 can be reduced by 13. 

87. It is clear that it is sufficient to prove the assertion of the 
problem under the assumption that we start reading the digits 
of the new number beginning with the second digit of the number 
obtained in the initial reading. Indeed, on performing such "shifts" 
by one digit an appropriate number of times we can pass, in suc· 
cession, from any given initial digit to any other digit beginning 
with which we read the corresponding 1953-digit number. If after 
every such "shift" we pass from a number divisible by 27 to an­
other number which is also divisible by 27 then this divisibility 
is retained for any number of the shifts. Let the initial digit of the 
first 1953-digit number we have read be a,= a; let the 1952-digit 
number formed of the other digits contained in that l 953-numb2r 
be denoted as B. Then the first number is equal to a· 101952 + B, 
and the new 1953-digit number which we read beginning with the 
second digit of the former 1953-digit number (this is initial digit 
of the number B) is equal to B · 10 + a. 

According to the condition of the problem, the number 
a· 101952 + B is divisible by 27. The number 101952 - 1 is written 
with the aid of 1952 nines; on dividing this number by 9 we ob­
tain a number consisting of 1952 ones, which, being divided by 3, 
yields a remainder which is equal to the remainder resulting from 
the division by 3 of the sum of the digits of that number. Since 
this sum of the digits is equal to 1952, the remainder we speak 
of is equal to 2. Consequently, the division of the number 
101952 -1 by 27 leaves a remainder equal to 2·9 = 18 and the 
division of 101952 by 27 leaves a remainder equal to 19. Therefore, 
on denoting as b the remainder resulting from the division of 
the number B by 27, we conclude that the division of the numbers 
a· 101952 + B and 19a + b by 27 leaves coinciding remainders. 
Hence, the condition of the problem implies that the number 
M = 19a + b is divisible by 27. 

Now let us pass to the new number B · 10 + a. The remainders 
resulting from the division of the numbers B ·I 0 + a and N = 
= lOb +a by 27 are equal, and hence the problem reduces to the 
proof of the fact that if M = 19a + b is divisible by 27 then 
N = lOb +a is also divisible by 27. But this is quite obvious 
because lOM - N = 189a is divisible by 27 (since we have 
189 = 27 · 7) and N = 10 · M - I 89a. 

88. It is obvious that the last digit in the decimal notation of 
every number of the form 5n (where n is a natural number) is 
equal to 5, and therefore the decimal representation of the number 
a = 51000 also ends with the digit 5 (but not with 0). Now let us 
suppose that the decimal representation of the number a contains 
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noughts as well. Suppose that the first (counting from right to 
left) of these noughts occupies the ith place. It is clear that the 
decimal representation of the number 5iooo.1oi-J ends with the 
digits 5000 ... O; consequently, the last i - 1 digits in the decimal .__ ..... _ 

i-1 noughts 
representation of the sum a1 = 51000 + 51000 · l Qi-I coincide with 
the i - 1 last digits of the number a (that is, all these i - 1 digits 
are different from nought), and the ith digit (counting from right 
to left) of the number a1 is also equal to 5 (that is, it is also 
different from 0). Thus, we have replaced the number a by the 
tcumber a1 whose decimal representation contains a greater num­
ber of digits and whose ith digit (counting from right to left) is 
different from 0. Next we perform the same operation on the num· 
ber a1: if its decimal representation contains noughts and the 
first of these noughts (counting from right to left) occupies the jth 
place where, of course, j > i, then we replace a 1 by the number 
a2 = a1 + 51000 .10H which is also divisible by 51000, the lasl j 
digits of a2 being different from 0 (its jth digit is equal to 5; here 
again the digits are counted from right to left). 

If the continuation of this process results in a number a,. 
(where k can be equal to 0, 1, 2, ... and by ao is meant the num­
ber a = 51000 itself) whose decimal representation does not con­
tain noughts, the assertion of the problem turns out to be true. 
However, since the number of the digits in the decimal represen­
tations of a 0 = a, a1, a2, ..• permanently increases, the proces:> 
may last indefinitely. In this case we can stop the process when 
we arrive at a number a1 whose last 1000 digits are different from 
0 because the number a1 can be written as a1 = 101000 .A + B 
where the decimal representation of the number B and the decimal 
representation of the number a1 have the same last 1000 digits; 
consequently all the digits of B are different from 0 and the 
decimal representation of the number A consists of all the digits 
of the number a1 preceding the I OOOth digit (counting from right 
to left) of a1, whence it follows that 

B =a1 - 101000. A 

We see that the number B is divisible by 51000 (because both a1 
and J0 1000 ~A = 21000 .51000 .A are divisible by 51000). 

89. The numbers forming the sequence we are interested in are 
all of the form I + 104 + 108 + ... + 104" (k=l, 2, ... ) . Let us 
also consider the numbers of the form 1 + 102 + 104 + 106 + 
... + 102". We can verify directly that 

104
"+4 - l = (104 

- 1). (1+104 + 108 + + 104
") 

and 
IO~k+2 -1=(102 - l) ·(1+10~+ 104 + 



Besides, we obviously have 

104k+4 - 1 = (102
k+

2 - 1) (102
k+

2 + 1) 

From these three equalities we derive the relation 

104
k +4 - 1 = ( 104 - 1) (1 + 104 + 108 + • • • + lOk) = 
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= (102 - 1) (1 + 102 + 104 + ••• + 102k) (102
H

2 
+ 1) 

whence, since (104 - 1)/(102 - 1) = 102 + 1 = 101, we obtain 

(1 + 104 + 108 + • • • + 104k) • 101 = 

=(I + 102 + 104 + ... + 102
k) (102

k+
2 + 1) 

Since 101 is a prime number, we see that 1 + 102 + 104 + ... + 
+ 102" or 102"+2 + 1 is divisible by 101. In case k > 1 the quo­
tient resulting from the division by 101 of 1 + 102 + 104 + 
+ ... + 102" or of 102"+2 + 1 exceeds 1. On cancelling the last 
relation by 101 we conclude that for k > 1 the number 1 + 104 + 
+ 108+ ... + 104k can be written as a product of at least two 
factors, which is what we intended to prove. For k = 1 we have 
the number 104 + 1 = 10 001 which is also composite (10 001 = 
= 73· 137). 

Remark. In just the same way we can prove that all the numbers forming 
the sequence 

100 ... 0 100 ... 01; 100 ... 0 100 ... 0 100 ... 01; ... 
'--v--' '--v--' '--v--' '--v--' '--v--' 

(2k+li times (2k+l) times (2k+l) times (2k+l) times (2k+l) times 

are composite. 

90. Using the formula a2 - b2 =(a+ b) (a - b) we can write 

22n _ l = (2 2n-l + l) (22n-l _ 1) = 

=(22n-l+ l)(22n-2+ 1)(22n-2_ l)= ... 

. . . = (22n-l + l) (22n-2 + 1) (22n-3 + 1) ... (22 + 1) (2 + 1) 

(the last factor 2 - 1 = 1 has been dropped). Thus, the number 
22n - 1 = (22n + 1) - 2 is divisible by all the preceding numbers 
of the sequence in question. It follows that if the numbers 
22n + 1 and 22k + 1 (where k < n) have a common factor then 
the number 2 must also be divisible by that factor. However, the 
number 2 cannot be a common factor of two numbers belonging 
to the sequence since all these numbers are odd; consequently, 
every two numbers belonging to the sequence are relatively prime. 

91. The number 2n cannot of course be divisible by 3. If the 
division of 2n by 3 leaves a remainder of 1 then 2n - 1 is divisible 
by 3; if the division of 2n by 3 leaves a remainder of 2 then 
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2n + 1 is divisible by 3. Consequently, in all the cases one of 
the two numbers 2n - I and 2n + 1 is divisible by 3, and hence 
if both these numbers exceed 3, they cannot be simultaneously 
prime numbers. 

92. (a) If the remainder resulting from the division of a prime 
number p > 3 by 3 were equal to 2 then 8p - 1 would be divisible 
by 3. Therefore if 8p - 1 is a prime number then the division of p 
by 3 must leave a remainder equal to 1; in this case 8p + 1 is 
divisible by 3; if p is equal to 3 the number 8p + 1 = 25 is also 
composite. 

(b) If p is not divisible by 3, the division of p2 by 3 leaves a 
remainder of 1 (see the solution of Problem 79 (b)), and conse­
quently 8p2 + 1 is divisible by 3. Thus, we must have p = 3 and 
8p2 + l = 73. We see that in this case 8p2 - 1 = 71 is also a 
prime number. 

93. The division of a prime number different from 2 and 3 by 6 
leaves a remainder equal to 1 or 5 because if the remainder result­
ing from the division of that number by 6 were equal to 2 or 4, 
this prime number would be even (which is impossible because 
the prime number is supposed to be different from 2) and if the 
remainder were equal to 3 the prime number would be divisible 
by 3 (which is also impossible). Thus, any prime number exceed­
ing 3 can be written in the form 6n + 1 or 6n + 5. The squares 
of these expressions are equal to 36n2 + 12n + 1 and 36n2 + 
+ 60n + 25 respectively, and in both cases the remainders re­
sulting from the division of these squares by 12 are equal to 1. 

94. The three prime numbers in question are of the form 6n + 1 
or 6n + 5 (see the foregoing problem). Therefore at least two of 
them have the same form. Consequently, the difference of these 
two prime numbers which is equal to d or to 2d where d is the 
common difference of the progression is divisible by 6. Hence, d 
is divisible by 3. Besides, since d is a difference of two odd num­
bers, it must be divisible by 2. Therefore d is divisible by 6. (Also 
see the solution of Problem 95 (a).) 

95. (a) Since all prime numbers different from 2 are odd, the 
common difference of the progression is an even number. Further, 
if the common difference of the progression were not divisible by 
3 then the division by 3 of the three terms a1, a1 + d and a1 + 2d 
of the progression would leave different remainders because among 
them there are not two numbers whose difference is not divisible 
by 3. Consequently, at least one of them would be divisible by 3, 
which is impossible because, according to the condition of the 
problem, all the terms of the progression are prime numbers (if 
a1 = 3 then a1 + 3d is also divisible by 3). Similarly, if d were 
not divisible by 5, the division of all the numbers ai. a1 + Li, 
a1 + 2d, a 1 + 3d and a 1 + 4d by 5 would leave different remain-



Solutions 161 

ders and, consequently, at least one of them would be divisible 
But this inequality cannot hold for k ~ 2, whence it follows that 
all the terms of the arithmetic progression are prime numbers 
implies that the common difference of the progression must be 
divisible by 7. Thus, the common difference d of the sought-for 
progression must be multiple of 2.3.5.7 = 210, that is d == 210k. 

By the condition of the problem, we have 

a10 = a1 + 9d = a1 + 1890k < 3000 

But this inequality cannot hold for k ~ 2, whence it follows that 
k = 1. Therefore a1 < 3000 - 9d = 1110. 

Further, we have 210 = 11·19 + 1, and consequently the 
( m + 1) th term of the progression can be written in the form 

am+I = a1 + (11 • 19 + 1) · m = 11 · 19m + (a1 + m) 

It follows that if the division of a1 by 11 leaves a remainder of 2 
then a10 is divisible by 11; if the remainder resulting from the 
division of a1 by 11 is equal to 3 then a 9 is divisible by 11, etc. 
Thus, we can prove that the division of a1 by 11 cannot leave a 
remainder equal to 2, 3, 4, ... or 10. If the number a 1 is different 
from 11 then it cannot be divisible by 11 (because a 1 is a prime 
number). Hence, either a1 is equal to 11 or the division of a1 by 
11 leaves a remainder equal to I. Further, using the equality 
210 = 13· 16 + 2 which implies 

am+I = a1 + (13 • 16 + 2) m = 13 · 16m + (a1 + 2m) 

we can show that the division of a1 by 13 leaves a remainder 
which can only be equal to 2, 4, 6, 8, 10 and 12. Now, taking into 
account that the number a1 is odd (because all the terms of the 
progression are odd), we conclude that it is either equal to 11 or 
can be written in one of the following forms: 

2. 11. 13l + 23 = 2861+23, 2861+45, 2861+67, 
2861+155, 286l + 177 and 286l + 199 

Since a1 < 1110, it only remains to test the following values 
of a1: 

11; 23; 309; 595; 881; 45; 331; 615; 903; 67; 
353; 637; 925; 155; 441; 727; 1013; 177; 463; 

749; 1035; 199; 485; 771; 1057 

Among these values only the numbers 

11; 23; 881; 331; 67; 353; 727; 1013; 463 and 199 

are prime. 

6 -60 
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On testing the IO progression corresponding to these prime 
numbers we find that only one of them satisfies the conditions 
of the problem, namely this is the arithmetic progression 

199; 409; 619; 829; 1039; 1249; 1459; 1669; 1879; 2089 

(b) This problem is solved by analogy with Problem 95 (a). 
First of all, by analogy with the solution of Problem 95 (a), we 
conclude that if a1 is different from 11 then the common difference 
of the progression must be proportional to 2 · 3 · 5 · 7 · 11 = 2310, 
that is d = 2310k. It follows that 

a 11 = a1 + 23 100k > 20 000 
Now it remains to consider the value a1 = 11. In this case we 

can only assert that d = 210k. Using the equality 210= 13· 16 + 2 
we can write the following expression for the general term of the 
progression: 

an+I = 11 + (13 · 16 + 2) kn= 13 (16kn + 1) + 2 (kn - 1) 
Further, for each of the numbers k = 1, 2, 3, 4, 5, 7, 8, 9, 10 it 

is possible to indicate a number n < 10 such that kn - 1 is di­
visible by 13, and consequently an+1 is divisible by 13 and is not 
a prime number. The values of n corresponding to the enumerated 
values of k are equal to 1, 7, 9, 10, 8, 2, 5, 3, 4 respectively. In 
the case when k = 6 we have d = 210·6 = 1260, and the term 

a4 = 11 + 3 · 1260 = 3791 
is divisible by 17. Thus, if a1 = 11 then k > l 0, and consequently 
d ~ 2100, whence we again obtain a10 > 20 000. 

Remark. In the solutions of Problems 95 (a) and (b) we used the term "pri­
me number" in the ordinary sense and assumed that the terms of the progres­
sion were positive. If this assumption is dropped and by a "prime number" is 
meant any integer n which has no divisors different from ±I and ±n then 
there exist arithmetic progressions satisfying the conditons of Problem 95 (b) 
(here is an example of such a progression: -11; 199; 409; 619; 829; 1039; 1249; 
1459; 1669; 1879; 2089). 

96. (a) If two numbers are not equal to each other and differ 
by not more than 4, they cannot have common divisors exceed­
ing 4. Thus, two of the given five consecutive whole numbers can 
have 2 or 3 or as their common divisor or can be relatively prime 
to each other. Further, among five consecutive whole numbers 
there are at least two odd numbers and among two consecutive 
odd numbers at least one is not divisible by 3. Consequently, 
among the given numbers there is at least one odd number not 
divisible by 3 and this number must be relatively prime to the 
other four numbers. 

(b) The solution of this problem resembles the solution of 
Problem 96 (a) but is much more complicated. If two numbers are 
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not equal to each other and differ by not more than 15, they can,~ 
not have common divisors greater than 15. Since two numbern 
having no common prime divisors are relatively prime, we see 
that in order to prove the theorem it is sufficient to show that 
among 16 consecutive whole numbers there must be one having 
no common divisors equal to 2, 3, 5, 7, and 13 with the other 
15 numbers; this number is relatively prime to all the others. 

We shall begin with deleting eight even numbers from the given 
16 numbers because they do not satisfy the necessary require­
ments; the remaining numbers form a sequence of eight consecu· 
tive odd numbers. Among eight consecutive odd numbers the 1st, 
the 4th and the 7th or the 2nd, the 5th and the 8th or the 3rd and 
the 6th must obviously be divisible by 3; further, the 1st and the 
6th or the 2nd and the 7th or the 3rd and the 8th or only one of 
these numbers are divisible by 5. Similarly, the 1st and the 8th 
or only one of the eight consecutive odd numbers are divisible 
by 7 whereas there is not more than one number divisible by 11 
or 13. If among the eight consecutive odd numbers there are not 
more than five numbers divisible by 3 or by 5 or by 7 then ther~ 
is a number among them which is not divisible by 3, by 5, by 7, 
by 11 and by 13; this number must be relatively prime to the other 
numbers. Now we shall consider all the cases when there are not 
less than 6 numbers divisible by 3 or by 5 or by 7. 

Suppose that there are three numbers among the eight consecu• 
Uve odd numbers which are divisible by 3; then two of the remain· 
ing numbers can be divisible by 5 only if one of the extreme num• 
bers (that is the smallest or the greatest of the numbers) is di· 
visible by 3 while the other is divisible by 5. On deleting these five 
numbers we arrive at a sequence consisting of the 2nd, the 5th 
and the 6th numbers or of the 7th, the 4th and the 3rd numbers. 
Let us begin with the first case. The 2nd, the 5th and the 6th odd 
numbers occupy the 4th, the 10th and the 12th or the 3rd, the 9th 
and the 1 lth places in the original sequence of all 16 consecutive 
whole numbers. None of these numbers can have a common di· 
visor equal to 13 with the other 15 numbers because each of these 
15 numbers differs from that number by less than 13. Conse­
quently, if these three numbers are divisible neither by 3 nor by 5 
then one of them (namely, the one which is divisible neither by 7 
nor by 11) is relatively prime to all the other numbers. The proof 
is carried out in just the same way in the case when after the 
numbers divisible by 3 or by 5 have been deleted there remain 
the 3rd, the 4th and the 7th numbers. 

If among the eight numbers under consideration there are three 
numbers divisible by 3 then there are not two numbers among the 
remaining five numbers which are divisible by 7. In case there are 
only two numbers, the 3rd and the 6th ones, divisible by 3 then 

6* 
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there can be two numbers among the remaining numbers, namely 
the 1st and the 8th, divisible by 7, and two numbers, the 2nd and 
the 7th, divisible by 5. On deleting these six numbers we obtain 
a pair consisting of the 4th and the 5th of the eight odd numbers 
which are not divisible by 3, by 5 and by 7. These two numbers 
are relatively prime to each of the 15 remaining numbers of the 
given sequence because each of the remaining numbers differs 
from these two numbers by less than 11 and cannot therefore have 
a common divisor equal to 11 or 13 with those two numbers. 

Thus, we have completed the proof of the assertion that among 
any 16 consecutive whole numbers there is always one number 
relatively prime to the others. 

Remark. In a similar but simpler way it can be proved that among 8 or 
among 10 or among any number less than 16 of consecutive whole numbers 
there is always one number relatively prime to the others. For 17 consecutive 
numbers this assertion no longer holds: for instance, among the 17 consecutive 
numbers from 1184 to 1200 there is no number relatively prime to all the oth­
ers. For any other number k exceeding 16 it is probably possible to inidicate k 
consecutive whole numbers among which there is no number relatively prime 
to the others; as far as we know, no proof of this general assertion has yet been 
elaborated. 

97. The sought-for number is equal to the product A 1 ·B 1 where 
A 1 consists of 666 digits 9 and B1 of 666 digits 2. The number A 1 
is less by 1 than the number 10666 whose decimal representation 
consists of one digit 1 and 666 noughts; the product of the number 
B 1 by A1 is equal to the product of B1 by 10666 (the latter product 
consists of 666 twos and 666 noughts) minus the number B 1• It 
easily be seen that this difference has the form 22 ... 2177 . . . 78 . ..__,_... ..__,_... 

665 times 665 limes 
98. The number 777 777 is exactly divisible by 1001 and the 

quotient resulting from the division is equal to 777. Therefore the 
division of the number 777 ... 700 000 by 1001 gives the quotient ..__,_... 

996 times 

777000777000 ... 77700000 
the group 777000 ls repeated 166 times 

Besides, since the quotient resulting from the division of the 
number 77 777 by 1001 is equal to 77 and the remainder is equal 
to 700, the division of A by 1001 gives the quotient 

777000777000 ... 77700077 _, 
the group 777000 Is repeated 166 times 

and the remainder 700. 
99. Since the number 222 222 is not a perfect square the de­

dmal representation of the sought-for number has the form 
222 222 a1a8 ... a,, where a7, a8, ... , an are some unknown digits. 
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Let us first suppose that the number n of the digits of the 
sought-for number is even: n = 2k. On extracting the square root 
of the sought-for number according to ordinary rules we obtain 

.y'222222a7as •.. a2k-1a2k=411405 

16 

877,622 
609 

941 

9424 

4 
942805 

5 

1

13 22 

9 41 

I 
x1x2xaaga 10a,,a,2 

4714025 

(the fifth digit of the result is equal to 0 since the digit x1 can 
obviously be equal only to 4 or 5 and, consequently, it must be 
less than 9; by the same reason, in case the sixth digit is the last 
.one, it must be equal to 5). 

The remainder is equal to zero if ag = 4, a10 = 0, a11 = 2, 
a 12 = 5, x1 = 4, x2 = 7 and X3 = 1, whence we readily find that 
a 8 = 6 + 1 = 7 and a7 = (7 + 9)- 10 = 6. Thus, the smallest 
number consisting of an even number of digits and satisfying 
the condition of the problem is equal to 222 222 674 025 = 471 4052• 

The case when the number n is odd (n = 2k + 1) is considered 
in an analogous manner: 

,Y 2 22 22 2a7asag ••• a2ka2k + 1 = 149071 ... 
1 

2~ 11! 
289 

9 

29807 

7 

298141 

1 
298142 

1

2622 

2601 

1

21 2a7a8a9 
2089 4 9 

I 
X1X2X3X4a10all 

29814 I 
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Since the number consisting of the two digits x1 and x2 is not 
less than 33 = 119 - 86 and not greater than 43 = 129 - 86, the 
sixth digit of the root is equal to 1, and the extraction of the root 
does not stop and must be continued. Consequently, the smallest 
number consisting of an odd number of digits and satisfying the 
condition of the problem has not less than thirteen digits, that is 
it exceeds the number 222 222 674 025. 

Thus, the sought-for number is equal to 222 222 674 025. 
100. The equality m2 = n2 + 1954 implies that the numbers m2 

and n2 are simultaneously even or odd. Consequently, so are the 
numbers m and n. Therefore the number 1954 = m2 - n2 = 
= (m + n) (m - n) must necessarily be divisible by 4 (because 
both numbers m + n and m - n are even) whereas 1954 is not 
divisible by 4. Hence, the numbers m and n satisfying the condi­
tion of the problem do not exist. 

101. The sought-for six-digit number which begins with the 
digits 523 and is exactly divisible by 7 · 8 · 9 = 504 can be repre­
sented in the form 523 000 + X where X is a three-digit number. 
The division of 523 000 by 504 shows that 523 000 = 504 · 1037 + + 352, that is the division of 523 000 by 504 leaves a remainder 
equal to 352. Since the sum of the number 523 000 and the three­
digit number X must be divisible by 504, the number X can be 
equal either to 

504- 352 = 152 
or to 

2 • 504 - 352 = 656 

(because 3·504 - 352 is a four-digit number). Thus, there are twO>' 
numbers satisfying the condition of the problem: 523 152 and 
523 656. 

102. Let N be the sought-for number. By the condition of the 
problem, we have 

N = 131k + 112 = 1321+98 

where k and l are positive integers. Besides, since N is a four­
digit number, there hold the inequalities 

l= N-98 < 10000-98 ~ 75 
132 132 """' 

Further, we have 

131k+ll2=132!+98 whence 131(k-l)=l-14 

It follows that if k - l is different from zero then the absolute­
value of l - 14 exceeds 130, which is impossible when l ~ 75. 
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'Thus, there must be k - l = 0, that is k = l, whence we readily 
obtain 

!-14=0, k=l=l4 
and 

N = i31 • 14 + 112 = (132 · 14 + 98) = 1946 

t 03. (a) The 2n-digit number indicated in the condition of the 
problem can be transformed in the following way: 

-4 , I 02n- l + 9 . i 02n-2 + 4 , 102n-3 + 9 ( i 02n-4 + i 02n-5 + . , . 

. . . + lOn) + 5, lOn-1 + 5, 10n-2 = 4 , 102n-l + 9 . 102n-2 + 

+ 4 . i o2n-3 + 9 . ion 10n-:- 1 + 5 . ion- l + 5 . 10n-2 = 

= 4 . 102n-I + 9 . 102n-2 + 5 . 102n-3 _ 10n + 5 . 10n-I + 5 . 10n-2 = 

o= + (8. 102n-l + i8. 102n-2 + 10. 102n-3 - 2. lOn +ton+ 10n-l)= 

-= _!_ (9 , i 02n-l -1- 9. lQ2n-2 _ 9, 10n-l) = [(!On - 1) + Jon-!]. 9. Jon- I 
2 . 2 

This expression is equal to the sum of the terms of an arithmetic 
:progression whose common difference is i, the first term is 10n-1 

and the last term is 10n - I (the number of the terms of the pro­
gression is equal to ion - ion-t = 9. ion-1), that is this expres­
sion is equal to the sum of all n-digit numbers. 

(b) The number of those of the numbers in question whose 
·initial digit-" is a (a can be equal to i, 2, 3, 4 or 5) is equal to 
,6 · 6 · 3 = i 08 (since the second and the third digits can be equal 
to any of the six digits 0, 1, 2, 3, 4 and 5 while the fourth digit 
can be equal to any of the three digits 0, 2 and 4 because we 
consider only even numbers). It follows that the total sum of all 
thousands the integral number of which is contained in all the 
.numbers in question is equal to (l + 2 + 3+4+5)·108· 1000= 
·= l 620 000. 

Analogously, the collection of those numbers whose second digit 
;assumes a fixed value is equal to 5 · 6 · 3 = 90 because the initial 
digit can be equal to one of the five digits i, 2, 3, 4 and 5. It fol· 
lows that the total sum of hundreds the integral number of which 
is contained in all the numbers in question (minus the sum of the 
integral number of thousands) is equal to ( 1 + 2 + 3 + 4 + 5) X 
x 90· 100 = 135 000. 
· In just the same manner we find that the total sum of tens the 
-integral number of which is contained in the numbers in quest,ion 
is equal to (1 + 2 + 3 + 4 + 5) ·90-10 = 13 500 and, finally, the 
fotal sum of ones is equal to (2 + 4) ·5·6·6· l = 1080. 
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Thus, the sought-for sum is 

I 620 000 + 135 000 + 13 500 + I 080 = I 769 580 

104. Let us first consider the integers from 0 to 99 999 999; we 
shall complete those of the integers which consists of Jess than 
eight digits with a number of noughts on the left to make them 
contain eight digits each. Then we shall have 100 000 000 eight­
digit numbers for whose representation we obviously need 
800 000 000 digits. It is evident that each of the IO digits will be 
used the same number of times because they all are quite equiva· 
lent since 0 may occupy the initial place like any other digit. Con­
sequently, every digit will be used 80 000 000 times. 

Now let us find the number of the extra noughts, that is the 
number of the noughts written on the left of the numbers consist­
ing of less than eight digits. There are only nine I-digit numbers 
(here we do not take into account the number 0), 99 - 9 = 90 
two-digit numbers, 999 - 99 = 900 three-digit numbers etc. Since 
to every I-digit number we added seven noughts on the left, to 
every two-digit number we added six noughts etc., the total num­
ber of the extra noughts (we do not take into account the digits 
of the first number which is written as 00 000 000 in this notation) 
is equal to 

7 . 9 + 6 • 90 + 5 • 900 + 4 . 9000 + 3 • 90 000 + 2 . 900 000 + 
+ I · 9 000 000 = 11 111 103 

Now Jet us write I on the left of the first number 00 000 000; 
then we obtain all whole numbers from I to 100 000 000. We see 
that for the decimal representation of these numbers we need 
80 000 000 twos, threes etc. up to nines, 80 000 001 ones (one extra 
digit I was written on the left of 00 000 000) and 80 000 000 -
- 11 111 103 = 68 888 897 noughts. 

105. There are exactly nine one-digit numbers, 99 - 9 = 90 
two-digit numbers, 999 - 99 = 900 three-digit numbers and, ge­
nerally, 9. IQn- 1 n-digit numbers. 

The one-digit numbers occupy nine places in the sequence under 
consideration, the digits of the two-digit numbers occupy 90· 2 = 
= 180 places, the digits of the three-digit numbers occupy 
900 · 3 = 2700 places, the digits of the four-digit numbers occupy 
9000·4 = 36 000 places and the digits of the five-digit numbers 
occupy 90 000 · 5 = 450 000 places, whence it is seen that the digit 
we are interested in belongs to a five-digit number. 

The digits belonging to the numbers consisting of not more 
than four digits occupy the places with indices from I to 
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9 + 180 + 2700 + 36 000 = 38 889 inclusive. To determine the 
number of the five-digit numbers which lie in the interval from the 
38 889th place to the 206 788th place in the sequence in question 
we must divide the difference 206 788 - 38 889 = 167 899 by 5, 
which results in a quotient of 33 579 and in a remainder of 4, 
that is 

206 788 - 38 889 = 5 • 33 579 + 4 

Thus, the sought-for digit belongs to the 33 580th five-digit 
number, that is to the number 43 579, because the first five-digit 
number is 10 000. In this number the digit we are interested in is 
the fourth one (counting from left to right), and consequently it 
is equal to 7. 

106. Let us suppose that 0.1234 ... is a periodic decimal whose 
period consists of n digits, the number of the digits preceding the 
period being equal to k. Let us consider the number N = lOm 
where m is an integer not smaller than n + k; in the decimal no­
tation this number is written as 1 with m noughts following it. 
When forming the decimal under consideration we consecutively 
write all the whole numbers; consequently the number N is also 
placed somewhere after the decimal point. Now, since we have 
supposed that the decimal 0.1234 ... is periodic and since there 
are m ~ n + k noughts standing side by side somewhere in the 
decimal 0.1234 ... , we conclude that the period of the decimal 
<:onsists of noughts only, which is obviously impossible. Thus the 
decimal 0.1234 ... cannot be periodic. 

107. As is well known, the division of an arbitrary positive in· 
teger N by 9 leaves a remainder equal to the sum of the digits o! 
the integer (this follows from the fact that the digit ak occupying 
the (k + l) th decimal place in the decimal representation of the 
number N symbolizes the term ak· lOk in the expansion of N in 
powers of ten; as to the number ak·l0k=ak·(99 ... 9+1)= 
= 99 ... 9ak + ak, its division by 9 leaves the same remainder 
as ak). It follows that if the remainder r resulting from the divi­
sion of the number N by 9 is different from zero then after a suf · 
ficient number of the replacements of the numbers by the sums of 
their digits have been performed we eventually arrive at the one­
digit number r and if N is divisible by 9 we arrive at the number 9. 
Thus, among the I 000 000 000 one-digit numbers resulting from 
the operations we have performed the ones correspond to the num· 
bers l; l O; 19; 28; ... ; l 000 000 000 whose division by 9 leaves 
:a remainder of l and the twos correspond to the numbers 2; 11; 
20; 29; ... ; 999 999 992 whose division by 9 leaves a remainder 
of 2. It is evident that the number of the numbers in the former 
group exceeds by unity that in the latter group, and therefore the 
number of ones exceeds by unity the number of twos. 
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108. (a) The answer to the question is negative. For, if the­
decimal representation of a number N = n2 ends with nought, it 
must necessarily have an even number of noughts at the end, and' 
the number N 1 obtained from N by deleting these noughts must 
also be a perfect square. Therefore it is sufficient to prove that a 
number whose decimal representation consists only of the digits 
6 and 0 and which ends with the digit 6 cannot be a perfect 
square. Indeed, such a number has either 06 or 66 as its last two 
digits, that is it is divisible by 2 and is not divisible by 4; hence, 
it cannot be a perfect square. 

(b) The answer to the question is negative. For, if the decimal 
representation of a number N = n2 ends with the digit 5, then n 
must also end with the same digit, that is n = IOn1 + 5 and' 
n2= (IOn 1 + 5) 2 =10-0nI + 100n1 + 25=100ni(n1 + l)+ 25. Con­
sequently, the last two digits of the number N = IOON1 + 25 are 
25, and we have N1 = ni(n, + 1). It is clear that the last digit ot 
the expression ni(n1 + I) coincides with the last digit of the pro­
duct of the last digits of the numbers n1 and n1 + 1; this digit 
can only be equal to 0, 2 or 6 because the products 0 · 1; 4 · 5; 5 · 6· 
and 9·0 end with the digit 0, the products 1·2; 3·4; 6·7 and 8·9 
end with the digit 2 and the products 2 · 3 and 7 · 8 with the digit 6. 
Thus, the last digit of the number N1 and the third digit (counting 
from right to left) of the number N must necessarily be equal to 6 
because neither the combination of digits 025 nor the combina· 
tion 225 can stand at the end of the number N (the decimal re· 
presentation of N does not contain the digit 0, and the digit 2· 
enters into it only once). Since we have N = 1OOON2 + 625, the­
number N is divisible by 53 = 125 because both 1000N2 and 625 
me divisible by 125; therefore, since N is a perfect square, the 
number N must also be divisible by 54 = 625. However, since N 
is divisible by 54, the number IOOON2 = N - 625 is also divisible 
by 54 and consequently N2 must be divisible by 5. Now, since the 
number N2 is divisible by 5, its last digit can only be 0 or 5; this 
means that the decimal representation of the number N has 0625 
or 5625 as its last four digits, which is impossible because the 
decimal representation of N contains only one digit 5 and does 
not contain 0 at all. 

109. To prove the assertion of the problem it is sufficient to 
show that the 444 445-digit number A which is obtained when we 
consecutively write 88 889 five-digit numbers a,, a2, as, ... , ass ss9 
is divisible by a whole number different from 2. It can easily be 
shown that A is divisible by 11 111. Indeed, the number 
A = a1a2a3 ... ass ss1ass sssass ss9 (here the bar indicates that A is 
the number written with the aid of the digits forming the numbers 
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'a1. a2, a3 • •••• ass ss7. ass sss. ass ss9) can obviously be written as 

A = ass ss9 + ass sss · 105 + ass ss1 · 1010 + . . . + a1 • 1044 440 = 

= (a1 + a2 + ... +ass sss +ass ss9) +ass sss (105 
- 1) + 

+assss1(l010 -1)+ ... +ai(l044440 -1) (*) 

Now, since a1, a2, ... , ass ss9 are all whole numbers from 11 111 
-to 99 999 inclusive, the sum of these numbers is equal to 

:11 111 + 11 112 + 11 113 + .. . + 99 999 = 

= 11 111 + 99 999 
• 88 889 = 11 111 . 5 • 88 889 

2 

·and hence it is divisible by 11 111. All the other addends on the 
·right-hand side of formula (*) are also divisible by 11 t 11 be· 
cause, for any integral k, the di1ierence ( 105) k - I k between the 
·powers kth of 105 and I is divisible by the difference of the bases 
105 -1=99999 = 9-11111 and hence it is divisible by 11111. 
Therefore A is divisible by 11 111. 

110. Let the sought-for number be X = a0a1a2 . .. a9 where 
a0, a1, ••• , a9 are the digits of the number and the bar designates 
the number itself. According to the condition of the problem, a0 is 
equal to the number of noughts among the digits of the number 
X, a1 is equal to the number of ones, a2 is equal to the number of 
twos etc. Therefore the sum of all digits of X is equal to 

ao + a1 + a2 + . . . + a9 = ao • 0 + a1 • 1 + a2 • 2 + . . . + ag • 9 

whence we obtain 

ao = a2 + 2aa + 3a4 + 4as + 5a6 + 6a1 + 7 as + 8a9 (*) 

By the conditions of the problem, a0 =I=- 0 because, if otherwise, 
X would not be a 10-digit number (by the way, the condition 
a0 =I=- 0 is readily implied by (*)). If a0 = 1 then we must have 
a0 = a2 = 1 and a1 = 8 (because the total number of the digits 
must be equal to 10), and all the other digits must be equal to 0, 
which is impossible. If a0 = 2 then we must have a0 = a2 = 2 
and a 1 = 6, and all the other digits must be equal to 0 or we must 
have ao = 2, a3 = 1, and a1 = 7, and all the other digits must be 
equal to 0, which is impossible either. Now, let a0 = i > 2. 
Equality (*) can be rewritten in the form 

ao = i = a2 + 2a3 + ... + (i - 1) ai + ... + 8a9 (**) 

·(if i = 3 then the terms 2a3 and (i - 1) a; coincide; if i = 9 then 
(i - 1) a; and 8a9 coincide). Here a; is the number of the digits 
of X equal to i; therefore a1 =I=- 0 because a0 = i; on the other 



172 Solulions 

hand, equality (**) cannot hold for a1 > I, and hence a;= l. 
Therefore (**) can be rewritten thus: 

l=a2+2a3+ ... +(i-2)a1-1+ia1+1+ ... +Sag (***) 

From (***)it readily follows that a2 = I and that all the digits. 
of the number X different from ao, a 1, a2 and a; are equal to 0. 
Since a2 = I, there is a digit equal to 2 among the digits of the 
number X, and it is evident that only the digit a 1 can be equal 
to 2. Thus, in the decimal representation of X only the digits 
a0 = i, a 1 = 2, a2 = I and a; = I are different from 0, that is 
there are i noughts, 2 ones, I digit equal to two and one digit 
equal to i among the digits of the number X, whence in follows. 
that, since X is a 10-digit number, i = 10 - 2 - 1 - I = 6. 

Thus, X = 6 210 001 000 (it can easily be verified that this 
number does in fact satisfy all the conditions of the problem). 

111. Since A = 999 999 999 = 1000000 000 - I, the product 
AX can be expressed as AX= 109X - X =x1x2 ... xk 000 000 000 -
- x 1x2 • •• xk where X = X1X2 • •• Xk is an arbitrary natural num· 
ber (written with the aid of the digits x 1, x2, ••• , xk; the bars 
designate the numbers consisting of the corresponding digits). It 
is required that the number AX should have only ones in its. 
decimal representation, that is 

X1X2 ••• Xk 000 000 000 - X1X2 ••• Xk = 11 ... 1111 
whence 

x1x2 .•• xk 000 000 000 - 11 ... 1111 = x1x2 ••. xk 

Since all the digits of the minuend in the last relation are known 
we can write the numbers in a column to perform the subtraction 
and to determine, in succession, all the digits of the number X 
beginning with the last one: 

8 digits ----------(7) (8) ... (8) (8) (9) 

000 000 000 

l l . . . 1 1 1 111 111 111 

... 67 ... 777 888 888 889 
'---r---1 

9 digits 

Here we have written in the parentheses the digits of the number 
X which are determined consecutively. This process should ue· 
continued until we arrive at a group of ones which mutually 
cancel when we form the difference; indeed, the decimal represen· 
tations of the number X in the minuend and in the subtrahend 
can be made to coincide only when the number X obtained in the 
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difference begins with a group of noughts (which, of course, are 
not taken into account). 

Finally, we arrive at the following value of the number X = X0: 

X0 = 11 ... 1 22 ... 2 33 ... 3 ... 77 ... 7 88 ... 8 9 
'--v--' '--v--' '--v--' ~ '--v--' 

9 digits 9 digits 9 digits 9 digits 9 digits 

The decimal representation of this number consists of 
9 + 9 + ... + 9 + 8 + 1 = 72 digits. ,__..,___, 

7 summands 

The number Xo we have obtained is obviously the smallest of 
all the numbers possessing the required property and there are 
also other numbers possessing the same property. The matter is 
that we have stopped the process of subtraction when a group of 
nine digits 0 has appeared at the beginning of the number X ob­
tained as the difference (we have simply discarded these noughts 
because they have appeared at the beginning of the decimal re· 
presentation of the number X). However, we can also continue the 
subtraction process after these nine noughts have appeared; to 
this end we simply write these noughts after the digits 1 in the 
minuend. It is clear that on continuing the subtraction we shall 
again obtain the digits forming the number X0 which will stand 
on the left of the nine noughts; the decimal representation of X 
will then take the form 

X1 = XoOO .•• OX0 
'--v--' 

9 digits 

where X0 symbolizes the number X0 in the decimal notation. Ge· 
nerally, our argument shows that all the numbers X satisfying 
the condition of the problem are of the form 

X=Xn=XoOO ••• OXoOO ••• OXoOO •.• OXo ••• XoOO .•. OXo 
'--v--' '--v--' '--v--' '--v--' 

9 digits 9 digits 9 digits 9 digits 

where the number n of the groups consisting of nine consecutive 
noughts can be quite arbitrary, that is n = 0, 1, 2, .... The 
number Xn consists of 72(n + 1)+ 9n =Bin+ 72 digits. 

112. Let A = anan-I .•. a2a1 be an n-digit number. We can of 
course suppose that a1 =F 0 because the noughts at the end of the 
decimal representation of the number A can be simply dis­
carded since this does not change the sum of the digits of the 
number AN for any N. Now let us consider a number N=lOm-1= 
= 999 ... 9 where m / n. It is evident that the sum of the 

'--v--' 
m nines 
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digits of the number 

AN= 10mA -A =a _n_a_n ___ I -. -•• -a-1_0_00-:-:-:-0- anan-1 ... al= 
'--v--' 
m noughts 

coincides with the sum of the digits of the number N which is 
equal to 9m. 

113. First of all we note that the assertion stated in the problem 
can also be considered true for m = 0 (in this case the stipulation 
that n ;;;:::: 2 becomes unnecessary and we can take the value n = 1 
as well) on condition that we put 0° = 1 (since a0 = I for all a). 
For instance, let n = 1; on denoting all the even digits (including 
the digit 0) as cxi, cx2, ... and the odd digits as B1. B2, ... we can 
write 

a~ + ag + . . . = 0° + 2° + 4° + 6° + 8° = 1 + 1 + 1 + 1 + 1 = 5 

and 

~~ + ~g + . . . = 1° + 3° + 5° + 7° + go= 1 + 1 + 1 + 1 + 1 = 5 

Now let us pass to the next value of n: let n = 2; by cxi. cx2, ... 
and B1, B2, ••• we shall again denote all even and all odd digits 
respectively and by Ai. A2, ... and B1, B2, ... we shall denote all 
the numbers which can be formed of not more than two digits for 
which the sum of the digits is even or odd respectively. It is 
evident that every number Ai has the form aMxi = lOcxk + ai or 
the form BkB1 = IO~k + Bi (the bars designate the numbers con­
sisting of the corresponding digits) and every number Bi has the 
form o:kB1 = I Oak + Bi or Bkat = 1 O~k + a1. Denoting the sums of 
all numbers Ai and of all numbers Bi as LA; and L B1 respec· 
lively and the sums of all numbers CXk and of all numbers ~i as 
L ak and L ~1 respectively we can write 

LA;= (IOak + a1) + L (IO~k + ~1) = 

= 10 (_L ak + L ~k) + (L a, + L ~1) 
and, analogously, 

L Bi = L (1 Oak + ~1) + L ( 1 o~k + a1) = 

= 10 (_L ak + L ~k) + (L ~l + La,) 
The last two relations show that LA;= L B1. 

In just the same manner we can prove the required assertion 
for the general case of an arbitrary n using the method of mathe-
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matical induction. To this end we suppose that the assertion ha~ 
already been proved for a certain natural number n (and for all 
m < n) and then prove that it remains true for the next natural 
number n + I (and for an arbitrary exponent m < n + I). Let u~ 
agree to denote all nonnegative numbers consisting of not morn 
than n digits for which the sums of the digits are even or odd as 
a1, a 2, ••• and b1, b2, ••• respectively; further, by analogy with 
the above, we shall denote all the numbers consisting of not more 
than n + I digits for which the sums of the digits are even or odd 
as A1, A2, ... and B1, B2, ... respectively. For the even and the 
odd digits we shall again use the notation a 1, a2, ... and ~i, ~2 •••• 

respectively. By the induction hypothesis, we have 

~ p_ ~ bp-
L, ak - L, k - Sn, p for all p < n (*) 
k k 

Further, let us denote as 

Sn, p = L a~ + L b~ (**) 
k k 

the sum of the pth powers of all numbers whose decimal represen­
tations involve not more than n digits. 

Now we note that every number A; has the form aka1 = !Oak + 
+ a1 or bk~t = IObk + ~1; similarly, every number Bi has the 
form a1,~1 = !Oak+ ~z or bkat = IObk + a1. Using the notation 
analogous to the above we find that 

L A7' = L (!Oak+ a1r + L (IObk + ~1)m where m < n +I 
i 

For the expression (I Oak + a1) m we can write, using Newton's 
binomial formula, the relation 

(lOak + azr = IOm ·a'!:+ C (m, I)· 10m- 1a'l:- 1az + 
+ C (m, 2) · 10m-2a'l:- 2a7 + ... + C (m, m - I)· IOakar- 1 + a'r 

The expression (IObk+~z)m can be written in the same manner. 
Therefore, using (*) we obtain 

L (I Oak+ az)m = IOm La'!:+ C (m, I)· IOm-I L a'l:- 1 L a1 + 
+ C (m, 2) · IOm- 2 L ak1- 2 L aI + ... 

•.. +C(m, m-l)· IOLakl:ar- 1 +l:a?1= 

= IOm L ak1-+- C (m, I)· IOm-ISn, m-1 L az + 
+ C (m, 2) • l0m-

2
sn. m-2 L a7 + ... 

... +C(m, m-l)lOsn,1LaT-1+l:af 
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and, similarly, 

L (lObk + ~ir = IOm Lb'/:+ C (m, 1) · 10m-i L b'/!-1 L ~1 + 
+ C (m, 2) • 10m-2L b'/!-2L ~Y + ... 

Thus, 

... +c(m,m-1)-10.LbkL~7'- 1 +L:~7'= 
= lOm L b~n + C (m, 1) • lOm-lSn, m-l L ~I+ 

+ C (m, 2) · IOm-
2
Sn, m-2 L ~I+ ... 

. . . + C (m, m - 1)- IOsn, 1 L Mn-I+ L ~7' 

L A~n = L (!Oak+ a1)m + L (IObk + ~1r = 
=I Om Sn, m + C (m, 1) • lOm-ISm, m-1S1, I+ 

+ C (m, 2) · 10m-
2
Sn, m-2 S1, 2 + • . · 

... + C(m, m- I)· IOsn, 1S1, m-1 +Si, m 

Now, using (*), (**) and Newton's binomial formula and per­
forming analogous transformations we arrive at exactly the same 
expression for the sum 

L Bi= L (!Oak+ ~1)m + L (IObk + a1r 
which completes the proof of the assertion. 

For the exponents m ;:;:: n the identity indicated in the condition 
of the problem does not hold. For instance, if we take n = m = I 
then 

whereas 
Lal= L a1 = 0 + 2 + 4 + 6 + 8 = 20 

L ~} = L ~I= I + 3 + 5 + 7 + 9 = 25 

114. Let us "truncate" the given triangular table in the follow­
ing way: we discard the first two horizontal rows and in every 
following row we leave the first four numbers. Further, let us 
symbolize every even number by the letter e and every odd num­
ber by the letter o. Then we arrive at a table of the form 

o e o e 

o o e o 
o e e e 

o o o e 

o e o e 
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We see that the fifth row of the new table coincides with the 
first one. Further, each of the first four numbers in every horizon· 
tal row of the given number triangle is even or odd depending 
solely on whether the first four numbers of the preceding row are 
even or odd. Consequently, in the new table the rows must repeat 
periodically with a period of four rows. Since each of the first four 
rows of the new table contains an even number it follows that all 
the other rows contain even numbers as well. 

115. Let us prove that the sum of the numbers in every horizon· 
tal row of the given table is divisible by 1958/2 = 979, the sum 
of the numbers in every row beginning with the second one even 
being divisible by 1958. This auxiliary proposition implies the as· 
sertion stated in the problem because the lowermost "row" con· 
tains only one number and the "sum of the numbers" in this row 
coincides with that number. 

It is clear that the sum S 1 of the numbers in the uppermost row 
(which is equal to the sum of the first 1958 natural numbers form­
ing an arithmetic progression whose common difference is equal 
to 1) is equal to 1/2 (1958 · 1959), that is S 1 is divisible by 1958/2. 
Further, the sum S 2 of the numbers in the second row can ob­
viously be written as S 2 = (0 + 1) + (1 + 2) + (2 + 3) + ... + 
+ (1956 + 1957) + (1957 + 1958) = 2S1 -(0 + 1958) since each 
of the terms of the sum S 1 is involved in the expression of S2 
exactly twice with the exception of the "extreme" terms 0 and 1958 
each of which is involved in the expression of S 2 only once. Now, 
since both 2S1 and 0 + 1958 = 1958 are divisible by 1958 so is th~ 
sum S2. 

Let us pass to the third row of the table. It is evident that the 
sum Sa of all numbers contained in this row can be written as 

S3 =(1 +3)+(3+5)+ ... +(3913+3915)=2S2 -(l +3915) 

Indeed, every number belonging to the second row is involved 
exactly twice in the expression of Sa except the "extreme" num­
bers 1 and 3915 each of which is involved in the sum Sa exactly 
once. These numbers 1 and 3915 belonging to the second row can 
be written as 1 = 0 + 1 and 3915 = 1957 + 1958; therefore the 
sum 

1+3915 = (0 + 1) + (1957 + 1958) = 
= (0 + 1958) + (1 + 1957) = 2 . 1958 

is divisible by 1958, whence it follows that the sum Sa is also di· 
visible by 1958. 

This argument can be continued. The sum S 4 of all numbers 
belonging to the fourth row is equal to 

S4 = 2Sa - (4 + 7828) 
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where 4 = I + 3 and 7828 = 3913 + 3915 are the "extreme" num­
bers of the third row, and the rule according to which the given 
table is formed readily implies that the sum 

4 + 7828 = (1+3) + (3913 + 3915) = (O + l) + 
+ (1+2) + (1956 + 1957) + (1957 + 1958) = (0 + 1958) + 

+ (1+1957) -i- (1+1957) + (2 + 1956) = 4. 1958 

is divisible by 1958 whence it follows that the sum S 4 is divisible 
by 1958. In exactly the same way we prove that the sum of the 
number:'> contained in every other row is also divisible by 1958 
(the formal proof can be carried out using the method of ma­
thematical induction), which completes the proof of the assertion 
stdi:ed in the problem. 

l16. If a pole reads xyz I X1Y1Z1 (where x, y, ... are digits and 
the tars designate the numbers consisting of the corresponding 
digits) then X1Y1Z1 = 999 - xyz and, consequently, z1 = 9 - z. 
y 1 = 9 - y and X1 = 9 -- x. (If x = 9 or x = y = 9 then the di­
gits x1 = 0 or x1 = Yi = 0 are not written on the pole.) It follows 
immediately that if x = y = z (this means that we also have 
x 1 = y1 = z1 = 9 - x) then the conditions of the problem hold; 
in thi:; case we have 10 poles satisfying the condition of the pro­
blem (they correspond to the distances of 0 = 000; 111; 222; ... 
and 999 km from the poles to station A). In the case when the 
number xyz is written with the aid of two different digits these 
digits must be such that their sum is equal to 9; then the number 
x 1y 1z 1 = 9 - x, 9 - y, 9 - z is written with the aid of the same 
digits. There obviously are five pairs of such digits: (O; 9), ( 1; 8), 
(2; 7), (3; 6) and ( 4; 5). Further, for two given digits a and b 
there are six numbers whose decimal representations consist of 
these digits: three of them contain two digits a and one digit b 
(the latter digit can occupy any of the three places) and, si­
milarly, the other three contain one digit a and two digits b. Thus 
we see that there are 5 · 6 = 30 more poles satisfying the condi­
tion of the problem imposed on the distances from the poles to. 
station A. Hence, the total number of the poles satisfying the 
required conditions is equal to 10 + 30 = 40. 

117. First solution. The time interval from the beginning of the 
first show to the end of the seventh show is less than 13 hours 
because the first show begins not earlier than at 12 hours and the 
seventh show ends earlier than at one hour in the morning; the 
interval from the beginning of the second performance to the end 
of the sixth show is greater than 9 hours since the second per­
formance begins before 14 hours and the sixth performance ends 
not earlier than at 23 hours. Consequently, since 13 hours/7 < l 
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hour 52 minutes and 9 hours/5 = 1 hour 48 minutes, the interval 
from the beginning of a show to the beginning of the next show is 
shorter than I hour 52 minutes and is longer than 1 hour 48 mi­
nutes. Usually the duration of a show is expressed by a number 
Qf minutes multiple to 5. Let us assume in this first solution that 
this is the case. Then it follows that the duration of every per­
formance is 1 hour 50 minutes. 

Further, since the first performance ends before 14 hours it 
begins either at 12 hours 00 minutes or at 12 hours 05 minutes; 
accordingly, the second performance begins at 13 hours 50 minutes 
or at 13 hours 55 minutes and so on. 

y 

x 

Fig. 11 

If we do not introduce the requirement that the number of mi­
nutes every show lasts should be multiple of five then there are 
more than two solutions of the problem. This case is considered 
below. 

Second solution. Let 12 + y be the time of the beginning of the 
first show and let x be the duration of every show (here it is 
meant that x and y are expressed in hours). Then 
the !st show begins at 12 + y hours (between 12 hours and 13 hours) 

the 2nd show begins at 12 + y + x hours (between 13 hours and 14 hours) 

the 7th show begins at 12 + y + 6x hours (between 23 hours and 24 hours) 

the 8th show begins at 12 + y + 7 x hours (between 24 hours and I hour 

whence it follows that 

12~12+y<l3, 

13~12+x+y<14, 

23~12 + 6x + y < 24, 

24 ~ 12 + 7 x + y < 25, 

in the morning) 

that is 0 ~ y < I 

that is 1 ~ x + y < 2 

that is 11~6x + y < 12 

that is 12 ~ 7x + y < 13 
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On discarding those of the inequalities which follow from the 
other inequalities we arrive at the system of inequalities 

0 ~ y < I; I ~ x + y < 2; I I ~ 6x + y; 7 x + y < I 3 

which can be easily solved graphically as is shown in Fig. I I. Any 
point belonging to the quadrilateral PQQ 1P1 shaded in the figure 
represents a solution of the problem. 

J 18. Since the trains approach the crossing at n hours and at n 
hours 38 minutes, the hour hand of a timepiece (see Fig. I 2) 

A 

Fig. 12 

occupies the position from 0 minutes to 5 minutes and from 38 mi· 
nutes to 43 minutes wheu the lifting gate stops the road traffic 
for five minutes and the trains pass the crossing twice during 
every hour. Let us mark on the dial of the timepiece all the posi­
tions of the minute hand corresponding to the instants when the 
buses pass the crossing: to this end we mark the time t0 minutes 
when the first bus passes the crossing and then lay off along the 
circumference of the dial ih the clockwise direction the arcs cor· 
responding to time intervals of T minutes to obtain the consecu· 
tive marks indicating the instants to+ T, to+ 2T, etc. The magni· 
tudes of t0 and T0 should be chosen so that none of these marks 
falls inside the intervals from 0 minutes to 5 minutes and from 
38 minutes to 43 minutes which are shaded in Fig. 12. 

First of all it should be noted that if the time table for the 
buses is worked out in the required manner then among the marks 
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on the dial obtained as described above there can be not more tharr. 
12 different marks*. Indeed, let R and R1 be two marks on the 
dial lying at the shortest distance from each other and let 
ROR1 = a0 be the angle corresponding to them (here 0 is the 
centre of the dial). The angle a,0 corresponds to a time interval of 
't minutes and the marks R and R 1 indicate some instants t0 + iT 
and t0 + jT where i and j are integers (for definiteness, let j > i). 
Then the interval between the instants when the ith and the jtll' 
buses approach the crossing is equal to k hours plus or minus t' 
minutes where k is an integral number; for definiteness, let u& 
assume that the interval between the buses is equal to k hours 
plus t minutes so that the arc vRR 1 is laid off along the circum­
ference of the dial in the clockwise direction as shown in Fig. 12 
(in the case when this interval is equal to k hours 11Jinus t minutes. 
the arc vRR 1 is laid off in the opposite direction but the argument 
remains almost the same). In this case the [j + (j- i)] th bu5' 
(that is the (2j - i) th bus) follows the jth bus after k hours and t 
minutes and to the moment this bus approaches the crossing there 
corresponds a mark R2 such that vR1R2 = vRR1 = a0

• Similarly, 
to the [ (2j - i) + I + (j - i)] th bus (that is to the (3j - 2i) th 
bus) there corresponds a mark R3 such that vR2R3 = a0 etc. On 
the other hand, the [ i -(j - i)] th bus (that is the (2i - j) th bus) 
approaches the crossing k hours and 't minutes earlier than the 
ith bus, that is the mark R-1 corresponding to the [i -(j - i)] th­
bus is placed so that R-1 and R1 lie on different sides of mark /~ 
and vR-iR = vRR1 = a0

, and so on. In this way we obtain a 
network of marks such that the shortest distance between them 
corresponds to an arc of a0 or, which is the same, to a time in­
terval of t minutes. It is clear that if 't < 5 (this corresponds to 
an angle a 0 < 30° since to an interval of 5 minutes on the dial 
there corresponds a central angle of 30°) then at least one of these 
marks falls inside an interval corresponding to one of the arcs­
vAB and vCD shaded in Fig. 12, which means that the lifting 
gate stops the road traffic when the corresponding bus approaches 
the, crossing. Therefore there must be T ~ 5 minutes (that i& 
a 0 ~ 300), and hence the total number of the marks cannot ex­
ceed 360° /30° = 12. 

Thus, the timetable for the buses corresponds to k (k ~ I 2) 
marks R, Ri. R2, ... on the dial. From what has been said it fol-

* It is clear that, generally, there can even be an infinite number of marks 
on the dial: it can be proved that this is the case when the interval T is in­
commensurable with an interval of I hour corresponding to the turn of the hour 
hand through an angle of 360°; in this case the marks are placed on the dial 
"densely" in the sense that for any po'nt M on the dial and for an arbitrarily 
small arc of magnitude e there are marks which lie at an arc distance not ex­
ceeding e from the point M. 
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lows that vRR1 = vR1R2 = vR2Ra = ... , which means that 
RR1R2 ... R1i-1 is a regular k-gon inscribed in the circumference 
of the dial (we shall denote this k-gon as Mk). Hence, we should 
determine all the values of k (k :::::;; 12) for which regular k-gons 
Mk can be inscribed in the circumference of the dial so that none 
of the vertices of Mk falls inside the arcs vAB and vCD shaded 
in Fig. 12. It is evident that for k = 1 (this means that the buses 
follow one another with an interval of one hour) and for 
k = 2 (in this case the interval between the buses is half an 
hour, and it is required to indicate two marks R and R1 on the 
dial not falling inside the arcs vAB and vCD and lying on the 
.opposite sides of a diameter of the dial) it is possible to work out 
the timetable in the required manner. The condition T < 30 mi­
nutes means that it is required to find the solutions of the pro­
blem corresponding to the values of k exceeding 2. It is also 
evident that for k = 12 (that is a.0 = 30° and 't' = 5 minutes) 
this is impossible. For, in this case, there are no marks within 
the arc vAB only if its end points A and B coincide with some 
marks R and R1; then the 9th mark corresponds to the instant 
(0 + 8·5) minutes= 40 minutes and therefore it falls inside the 
arc CD. Similarly, the values k = 10, k = 9 and k = 7 (that is 

the values 't' = 60/10 = 6 minutes, T = 60/9 = 6 ~ minutes and 

-<t = 60/7 = 8 ~ minutes) should also be discarded. For in­
stance, if 't' = 6 minutes and if R does not fall inside the arc 
vAB then the mark R which is the nearest to the point A must be 
within the interval from 5 minutes to 6 minutes and then the mark 
corresponding to the 7th bus lies within the interval from 5 + 
+ 6·6 = 41 minutes to 6 + 6·6 = 42 minutes which is entirely 
contained in the arc v CD. (Let the reader check that if the mark 

R falls inside the interval from 5 minutes to 6 ~ minutes or in-

side the interval from 5 minutes to 8 ~ minutes then the 6th or 

the 5th bus, respectively, approaches the crossing at instants to 
which correspond marks falling inside the arc vCD.) Finally, the 
values k = 11, k = 8, k = 6, k = 5, k = 4 and k = 3 are ad· 

missible and they correspond to the values T = 60/11 = 5 --1r- mi­

nutes, 60/5 = 12 minutes, 60/4 = 15 minutes and 60/3 = 20 mi· 
nutes respectively. For instance, if k = 11 then the buses may 

approach the crossing-, say, at the instants 5 minutes, 10 --1r- minu-

tes, 15 ~~ minutes, 21 Tr minutes, 26--ft minutes, 32 :1 minu-
s 2 7 . 1 

tes, 37 11 minutes, 43 TI minutes, 48 11 minutes, 54 TI minu-
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tes, and 59 ~1 minutes, and if k = 5 then the buses may ap· 

proach the crossing at the instants 8 minutes, 8 + 12 = 20 minu· 
tes, 32 minutes, 44 minutes and 56 minutes. 

Thus, under the condition T < 30 minutes the timetable for the 
buses can be worked out for T = 20 minutes, T = 15 minutes, 

T = 12 minutes, T = 7 ; minutes and T = 5 -fr minutes and for 

these values of T only. 
119. Let the number N be written as N = abc where a, b and c 

are the digits of N and the bar designates the number N itself. It 
is clear that for the numbers N = 100, N = 200, ... , N = 900 
we have N/(a + b + c) = 100. Further, if the number N does not 
end with two noughts then b + c > 0 and a + b + c ~ a + 1, 
and since the digit a of the number N stands in the hundreds 
place, we have N <(a+ 1) · 100 and 

N < (a+ 1) · 100 = lOO 
a+b+c a+l 

Thus, the greatest value of the ratio we consider is equal to 
100; this greatest value is attained only for the numbers multiple 
of 100. 

Remark. It can similarly be proved that the greatest value of the ratio of 
a k-dig:t number N = akak-1 •.. a1 to the sum ak + ak-1 + ... + a 1 of its di­
gits is equal to JOk-l and that this greatest value is attained only for the num­
bers whose last k - I digits are noughts. 

120. The given number consists of 192 digits; the number ob­
tained from the given number by deleting its 100 digits consists 
of 92 digits. 

(a) The first digits of the number we are interested in must 
have the greatest possible values. We can delete 100 digits from 
the given 192-digit number so that the remaining digits form a 
number beginning with 5 nines; these 5 nines can be taken from 
the numbers 9, 19, 29, 39 and 49 by deleting the corresponding 
8 + 19 + 19 + 19 + 19 = 84 digits. We cannot make the next 
digits equal to nine because in that case to "arrive" at the nearest 
digit nine contained in the number 59 we should delete 19 more 
digits; this means that we should delete 84 + 19 = 103 > 100 di­
gits. 

Among the remaining numbers the nearest (counting from left 
to right) digit 8 is contained in the number 58; in order to make 
this digit stand immediately after the 5 nines we should delete 
17 more digits, which we are not allowed to do because 84 + 17 = 
= 101 > 100. Therefore the best way to achieve our aim is to d~· 
lete 15 more digits preceding the digit 7 in the number 57. Theh 
the total number of the deleted digits will be 84 + 15 = 99, an.1· 
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we are allowed to delete only one more digit. It is evident that we 
should delete the digit 5 contained in the number 58, and thus the 
required number is 

9999978596061 . . . l 00 

(b) We can make the number obtained after 86 digits have been 
deleted begin with 5 noughts: these noughts are contained in the 
numbers 10, 20, 30, 40 and 50, the number of the deleted digits 
being equal to 10 + 19 + 19 + 19 + 19 = 86. We cannot make 
the next (the sixth) digit be equal to 0 because that nought is 
contained in the number 60 and to arrive at this nought we must 
altogether delete more than 100 digits. However, we can delete 
oniy one digit 5, after which we obtain the digit l following the 5 
noughts which we have already obtained in the resultant number. 
The next digit cannot be made equal l. However, on deleting one 
more digit 5 we can make the next digit of the resultant number 
be equal to 2. This argument can be continued and we see that on 
deleting 86 + 1 + 1 + 1 + 1 = 90 digits we arrive at a number 
beginning with the combination 000001234 which is followed by 
the digits 55565758596061... . It is evident that the digit fol· 
lowing the first nine digits 000001234 of the sought-for number 
can be equal to five but cannot be less than 5; for this digit to be 
equal to 5 no additional digits should be deleted. Finally, after the 
operations we have performed we can arrive at 0 by deleting the 
10 digits preceding this digit 0, which we are allowed to do. 
Therefore the number we are interested in is 

00000123450616263 ... 100 

This number has five noughts at the beginning; on discarding 
these noughts we obtain the required 87-digit number. 

121. (a) The first digits of the three sought-for numbers must 
have the least possible values; consequently in the decimal nota· 
tion these numbers have the form 

lAa, 2Bb and 3Cc 

where the symbol xyz designates the number written with the aid 
of the digits x, y and z. 

Let us prove the following three facts: ( l) A < B < C; 
(2) a < b < c and (3) each of the digits a, b and c is greater 
than each of the digits A, B and C. 

(1) If, for instance, we had A > B then we should have 
Aa > Bb and 1Aa·2Bb - 2Aa· 1Bb = (100 + Aa) · (200 + Bb)­
-(200 + Aa) • (100 + Bb) = lOO(Aa - Bb) >0 and, consequently, 
we should have 1Bb·2Aa·3Cc < 1Aa·2Bb·3Cc, which is impos­
:Sible. 



Solutions 181> 

(2) If, for instance, we had a > b, then we should have­

IAa · 2Bb - 1Ab · 2Ba =(IO· fA +a) (10 · 2B + b)-

- (IO· IA+ b) (10 • 2B +a)= (10 · 2B - IO· IA) (a - b) > 0 

whence it should follow that 1Ab·2Ba·3Cc < 1Aa·2Bb·3Cc. 
(3) If there were C > a, that is C = a + x where x > 0 (by 

virtue of (1) and (2), the digit C is the greatest among A, B and 
C while the digit a is the smallest of the digits a, b and c) then 
we should have 

1Aa · 3Cc - !Ac· 3ac = 1Aa · (3ac + IOx) - (lAa + x) (3ac) = 
= x (IO· 1Aa - 3ac) > 0 

whence it would follow that 1AC·2Bb·3ac < 1Aa·2Bb·3Cc. 
From (I), (2) and (3) it follows that 

A<B<C<a<b<c 

and hence the sought-for product is of the form 
147. 258. 369 

(b) The sought-for product must have the form 

9Aa·8Bb·7Cc 

By analogy with the solution of Problem 121 (a), we can prove 
that (I) A < B < C, (2) a< b < c and (3) each of the digits 
a, band c is less than each of the digits A, Band C. 

From (I), (2) and (3) it follows that 

a<b<c<A<B<C 

Consequently, the sought-for product has the form 

941 . 852. 763 

122. By the condition of the problem, we have m + ( m + I)+ 
+ ... + (m + k) = IOOO. According to the formula for the sum of 
the terms of an arithmetic progression, we have 

2m: k (k + l) = IOOO 

that is 
(2m+k)(k+ 1)=2000 

Since the number 

(2m + k) - (k + l) = 2m - l 

is odd, one of the factors in the above equality is even and the 
other is odd. Besides, we obviously have 2m + k > k + 1. We see 
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-that the problem has the following solutions: 

2m + k = 2000, k + 1 = 1, m = 1000, k = 0 

2m + k = 400, k + 1 = 5, m = 198, k = 4 

2m+k=80, k + 1 = 25, m = 28, k=24 
and 

2m+k=l25, k+l=l6, m=55, k=l5 

123. (a) Let the number N be different from any power of 2. 
Then we have the equality 

N = 2k (2l + 1) 

where 2k is the highest power of 2 by which N is divisible (the 
number k can be equal to zero) and 2/ + 1 is the greatest odd 
divisor of the number N. Further, we have 

(2" - l) + (2k - l + 1) + ... + (2k - l + 2! - 1) + (2k - l + 2l) = 

= (2! + I) (2k - ~ + 2k - l + 2!) = 2k (2! + 1) = N 

If sever al of the first of these (2l + 1) consecutive integers are 
negative (that· is if l > 2k), then they and the corresponding 
first several positive numbers mutually cancel, and N can again 
be represented as a sum of a number (smaller than 2l + l) ot 
positive integers. 

Now let us suppose that a number of the form 2k can be re­
presented as a sum of m consecutive positive integers n, n + l ,_ ... 
... ,n+m-2,n+m-l. 
Then 

2k+ 1 =2[n+(n+ l)+ ... +(n+m-2)+(n+m- I)]= 

=m(n+n+m- l)=m(2n+m- l) 

The difference (2n + m - 1) - m = 2n - 1 being odd, one of 
the numbers m and 2n + m - 1 is odd (and both numbers are 
different from l because m > l and n > 0). Consequently the 
last equality cannot hold since 2k+I has no odd divisors different 
from l. 

(b) We have 

(2n+ 1)+(2n+3)+(2n+5)+ ... +(2m- l)= 

= (2n + I)~ (2m - I) • (m - n) = (m + n) . (m - n) 

Therefore if N is a number which can be represented as a sum of 
consecutive odd numbers it must be composite (because it can be 
represented as a product of two factors m + n and m - n). On 
the other hand, every odd composite number N can be written in 
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the form of a product of two odd factors a and b (a ? b), and 
consequently we have N =ab= (m + n) (m - n) where m = 
=(a+ b) /2 and n =(a - b) /2; this means that N is equal to 
the sum of the odd numbers from a - b + 1 to a+ b - 1. 

Further, the factors m + n and m - n in the formula N = 
= (m + n) (m - n) are simultaneously even or odd; if the num­
ber N is even, these factors must obviously be even, and in this 
case N is divisible by 4 (and both m + n and m - n are divisible 
by 2). Consequently if an even number N is not divisible by 4 it 
cannot be represented as a sum of consecutive odd numbers. In 
case N is of the form N = 4n (that is N is divisible by 4), the 
number N can be represented as the sum of the two consecutive 
odd numbers 2n - 1 and 2n + 1. 

( c) It is clear that 

(nk- 1 - n + 1) + (nk-1 - n + 3) + ... + (nk-1 - I)+ 

+(nk-1+ 1)+ ... +(nk-1+n-3)+(nk-1+n- l)= 

(nk-1 - n + !) + (nk-1 + n - 1) k 
= 2 · n=n 

(all the summands in this sum are odd since nk-I and n are· si­
multaneously even or odd). 

124. Let us denote four consecutive numbers as n, n + I, n + 2 
and n + 3. The sum of their product plus unity can be written in 
the form 

n (n +I) (n + 2) (n + 3) +I= [n (n + 3)] [(n +I) (n + 2)] +I= 

= (n2 + 3n) (n2 + 3n + 2) + I = (n2 + 3n)2 + 2 (n2 + 3n) + 1 = 

= (n2 + 3n + 1)2 

and consequently this sum is the square of the whole number 
(n2 + 3n +I). 

125. Let us prove that these numbers assume not more than four 
different values. Suppose that, on the contrary, there are five num­
bers a1, a2, aa, a4 and as among the given 4n numbers which are 
pairwi'se different. Let us suppose that a 1 < a2 < a3 < a4 < a:,. 

We shall start with considering the numbers a1, a2, a3 and a4. 
By the hypothesis, they can be arranged as a geometric progres­
sion. Therefore the product of two of them (which are the ex­
tremes of the proportion) is equal to the product of the other two 
numbers (the means of the proportion). But this is only possible 
when 

ll1ll4= ll2ll3 

(the equality a1aa = a2a4 is impossible because a1 < a2 and 
aa < a4; it is evident that the equality a1a2 = a3a4 cannot hold 
either). 
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Now let us consider the numbers a,, a2, a3 and as. In just the 
"Same manner we can prove that a,as = a2a4. Consequently, 
a 1a4 = a1a5 whence it follows that a4 = as, which contradicts the 
hypothesis. 

We have thus proved that each of the 4n numbers assumes one 
.of not more than four different values. Therefore not less than n 
numbers among the 4n given numbers assume one of these values. 

126. Let us take nine weights weighing n2, (n+ 1) 2, (n+2) 2, ••• 

. . . , (n + 8) 2 respectively and divide them into the following 
three groups: 

Ist group: n2, (n + 5)2, (n + 7)2: 

n2 + (n + 5)2 + (n + 7)2 = 3n2 + 24n + 7 4; 

2nd group: (n + 1)2, (n + 3)2, (n + 8)2
: 

(n + 1)2 + (n + 3)2 + (n + 8)2 = 3n2 + 24n + 74; 
3rd group: (n + 2)2

, (n + 4)2
, (n + 6)2: 

(n + 2)2 + (n + 4)2 + (n + 6)2 = 3n2 + 24n + 56 

We see that the total weight of the first group and the total 
-weight of the second group are equal and that the third group is 
lighter by 18 than each of the former groups. Next we take nine 
weights weighing (ii+ 9) 2, (n + 10) 2, (n + 11) 2, ••• , (n + 17)2 
-and divide them in a similar manner into three groups so that the 
first and the third groups are of the same weight while the second 
group is lighter by 18 than each of the former groups. Finally, let 
us take nine weights weighing (n + 18) 2, (n + 19) 2, (n + 20)2, ... 
. . . , (n + 26) 2 respedively and divide them into three groups so 
ihat the second and the third groups are of one weight while the 
first group is lighter by 18 than each of them. Next, on combining 
the first groups, the second groups and the third groups which we 
.have formed we see that any 27 weights weighing n2 , (n + I) 2, 

. (n + 2) 2, ••• , (n + 26) 2 respectively can be divided into three 
groups of equal weight for any n = 0, 1, 2, 3, .... 

127. First of all we note that the conditions of the problem 
imply that all the weights simultaneously weigh an even or an 
-odd number of grams. Indeed, since any 12 of the weights can be 
divided into two groups of the same weight, it follows that the 
total weight of any group of 12 weights is expressed by an even 
number. Besides, the weight of a group of 12 weights rem.ains 
even when any of them is replaced by the remaining 13th weight, 
which is only possible when the weight of each of the 12 weights 
and the weight of the remaining 13th weight are simultaneously 
·even or odd, whence follows what was said above. 

Now let us consider a new set of weights weighing the number 
.of grams the former weights weigh minus the number of grams 
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the lightest of them weighs (or minus the sum of the weights of 
the lightest of them in case there are several such weights). It is 
evident that the new set of weights also satisfies the conditions of 
the problem, and consequently, the numbers of grams they weigh 
are simultaneously even or odd. Among the new weights there 
are some whose "weight" is equal to zero, and hence the weights 
in the new set must be even. Now let us pass to a third set of 
weights which weighs the number of grams the second weights 
weigh divided by 2. The third set of weights also satisfies the con­
ditions of the problem. 

Next let us suppose that not all of the original weights weigh 
an equal number of grams. Then not all the weights in the second 
set are equal to zero. Therefore we can continue the process of the 
consecutive division of the number of grams all the weights weigh 
by two and arrive eventually at a set of weights some of which 
weigh an even number of grams (for instance, they can be of 
"zero weight") while the other weigh an odd number of grams. 
However, as has been shown, there exists no such set of weights 
satisfying the condition of the problem. The contradiction we have 
arrived at proves the assertion of the problem. 

Remark. In the condition of the problem it is required that the weights should 
be expressed by integral numbers. However, it can easily be seen that if they 
are expressed by rational numbers instead of integers the result remains the same. 
Indeed. on multiplying all the weights by the common denominator of the ra· 
tional numbers we reduce the problem to the case of integral weights. Moreover, 
in case the weights are expressed by irrational numbers we can also prove that 
they are equal to one another using the fact that it is possible to find rational 
numbers which are arbitrar;Jy close to the given irrational numbers (let the rea· 
der carry out the proof for this general case; by the way, the rigorous proof 
is rather intricate). 

128. First of all we note that if two four-tuples ak, bk, ck, dk 
and a1, bi, Ct, di obtained for some natural numbers k and l (k=l=l) 
in the described manner coincide then either all the numbers 
ak = a1, bk = bi, ck = Ct and dk = di are equal to zero or they 
all are positive. Indeed, if at least one of the numbers a, b, c and 
d is equal to zero then at least at the fourth "step" we arrive at 
a four-tuple consisting of zeros which then repeats indefinitely, 
and there are not 2 four-tuples among the preceding four-tuples 
which coincide. For, if there is exactly one number equal to zero, 
say a = 0, then the first 4 four-tuples are of the form 

0, b, c, d; 0, be, cd, O; 0, bc2d, 0, O; 0, 0, 0, 0 

and there are not 2 four-tuples among them which coincide be· 
cause zeros contained in them occupy different places. It is also 
clear that if more than one number among a, b, c, d is equal to 
zero then we also arrive at a four-tuple of zeros not later than at 
the 4th step, and it can again be easily checked that the preceding 
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four-tuples not all of whose members are zeros must necessarily 
be pairwise different. 

What has been said exhausts the investigation of the case when 
abed = 0. Now let us suppose that abed =I= 0. It is obvious that 
in this case all the numbers contained in all four-tuples are dif­
ferent from zero. Further, if among the numbers a, b, c, d there 
is only one negative number, say the first one, then denoting the 
positive numbers by the symbol "+" and the negative numbers 
by the symbol "-" we can describe the alternation of the signs 
in the first five four-tuples with the aid of the following scheme: 

-+++; -++-; -+-+; ---- ++++ 
Thus, here the 5th four-tuple consists only of positive numbers, 
and there are not two four-tuples among the preceding ones which 
coincide because the alternation of the signs in these four-tuples 
is different. This scheme also shows that if among the numbers 
a, b, c, d there are two negative numbers standing side by side 
(for instance, this is the case for the 2nd of the above four-tuples 
because the numbers in the four-tuples are considered as being 
arranged in a "cyclic" order and therefore the 1st and the 4th 
numbers should be regarded as "standing side by side") or if 
there are two negative numbers not adjoining each other (see the 
3rd four-tuple) or four negative numbers (for instance, see the 
4th four-tuple) then we again arrive at a four-tuple consisting 
only of positive numbers not later than at the 4th step (and the 
preceding four-tuples are all different). The case of a four-tuple 
containing three negative numbers and one positive number is 
considered in a similar way: such a four-tuple is transformed into 
the 2nd of the above four-tuples immediately after the first step; 

+---; -++-; -+-+; ---- ++++ 
Thus, in our further argument we can assume that all the num· 

bers a, b, c, d are positive. Let us put abed = p; we obviously 
have 

a1b1c1d1 =(ab) (be) (cd) (da) = (abcd) 2 = p2 

and, similarly, a2b2c2d2 = (a1h1c1d1) 2 = p4; a3b3c3d3 = p8; general· 
ty we can write akbkckdk = (p)2k where k = 0, I, 2, ... (here ao, bo, 
c0 , do designate the original numbers a, b, c, d respectively). 
Therefore if the four-tuples ak, bk, ck, dk and a1, b1, ci, di (where 
l > k) coincide then 

2k b d 'b d 21 
p = ak kck k = a1 1C1 1 = P 

and hence p21
- 2k =I, that is p = 1 
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Now let us suppose that abed = 1 (it is clear that it is suffi­
dent to investigate this case only). Then, since cd = 1/ab, one 
-Of the two numbers ab and cd is not less than l and the other is 
not greater than I. For definiteness, let us suppose that ab=a;::::: 1 
and cd = 1/a.. ~ I. Similarly, among the numbers be and da = 
= I/be one is not less and the other is not greater than I. For 
definiteness, let us suppose that be= ~;::::: 1 and da = l/~ ~ 1 
and that a;::::: ~ (all the other possible cases do not essentially 
differ from the one under consideration). In this case we obtain in 
succession the following number four-tuples: 

I I ~I a A2 1 I a2 
a, b, C, d; a, ~. a, fl; a~, a. Ui3", B; t' ' (t2, fr. 

Here the greatest number in the 2nd four-tuple is equal to a, the 
greatest number in the 3rd four-tuple is equal to a~ (a~?: a..), 
the greatest number in the 4th four-tuple is equal to a..2 (a2 ?: a..~) 
etc. (it should be noted that the only difference between the 4th 
four-tuple and the 2nd four-tuple is that in the former the role 
of a and ~ is played by the numbers a 2 and ~2 respectively). 

Thus, we see that the greatest number belonging to a four-tuple 
.does not decrease when the operation of forming new four-tuples 
is performed repeatedly. If a > 1 and ~ > 1 then this greatest 
number even permanently increases, and therefore in this case 
there are not two four-tuples each of which is different from the 
1st one that coincide with each other. Moreover, if at least one or 
the two numbers a and ~ is different from 1, then in this case as 
well there are not two-four-tuples different from the 1st one which 
coincide. Indeed, if a > 1 and ~ = 1 then the 2nd four-tuple and 
the following four-tuples have the form 

I I I I 
a, 1, a' 1; a, a' a' a; 1,Ci2, 1, a2 

Thus, in this case the greatest number belonging to a four-tuple 
increases after two operations have been performed and therefore 
the resultant four-tuple cannot coincide with any of the preceding 
four-tuples, and the numbers contained in the first two four-tuples 
are also different. Consequently, if the kth and the lth four-tuples 
coincide (where l > k > 1) then a = ~ = 1; in this case all the 
four-tuples coincide with one another beginning with the 2nd one 
(these four-tuples consist of ones only). 

Up till now we have not considered the 1st four-tuple a, b, c, d 
in our argument; it is also necessary to find whether this four­
tuple can coincide with one of the following four-tuples. It turns 
out that such a coincidence is impossible because, as has been 
shown, all the four-tuples, beginning with the 2nd one, contain 
pairs of numbers whose products are equal to 1, and therefore if 
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the four-tuple a, b, c, d coincides with one of the following four· 
tuples and, say, be= ~ > 1 and ab = ct ~ ~ > 1 then, since 

I I 
cd =a < 1 and da = lf < 1, we must assume that ac= bd= 1. 

This assumption leads to the following values of the numbers 
belonging to the first four-tuple: 

I 

.Ya~ 

(why?), which again allows us to compare the greatest numbers 
a and -y'a~ belonging to the 1st and to the 2nd four-tuple respec· 
tively. These greatest numbers coincide only when ~ = ct, that is 
only when the 1st four-tuple coincides with the 2nd four-tuple cor· 
responding to the case ~ = 1 and when this 1st four-tuple under· 
goes the further transformation analogous to that of the 2nd four· 
tuple. The case ~ = 1 is investigated analogously. 

This consideration concludes the proof of the theorem. 

Remark. The solution of the problem also allows us to estimate the number 
of operations which are necessary for all resulting four-tuples of number to be· 
come coincident with one another (in the case when not all four-tuples are 
different). As we see, in the case when abed = 0 all the four.tuples coincide be­
ginning with the 4th one, in the case when the numbers a, b, c, d are positive 
and satisfy the conditions ab = be = cd = da = 1 all four-tuples coincide be· 
ginning with 2nd one (and if these equalities are not fulfilled there are not 
two four-tuples coinciding with each other) as in the case when the numbers 
are not necessarily positive four more steps may be needed in order to trans· 
form all the numbers into positive ones. 

J29. Since the square of each of the numbers a; (where i = 
= 1, 2, ... , N = 2k) is equal to 1, the first three number sequen· 
ces have the following form: 

a1; 

a1a2; 

a1a~a3 = a1a3; 

... ' 
a2a3; ••• , aN-laN; aNa1 

a2a~a4 = a2a4; ••• ;aN_1a1a1 = aN_1a1; aNaia2 = aNa2 

Thus, every number belonging to the 3rd sequence is equal to the 
product of the corresponding number belonging to the first se­
quence by another member of that sequence whose serial index 
exceeds the index of the former by 2 (the numbers in the sequence 
a1, a2, .•. , aN are regarded as being ordered in a cyclic way, that 
is the number aN is followed by the number a1 after which the 
number a2 follows again ·and so on). Similarly, after two more 
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steps we arrive at a sequence which is obtained from the 3rd one 
in the same way as the 3rd sequence is obtained from the 1st one, 
that is we obtain the sequence 

(a,a3) (a3a5) = a1a5; (a2a4) (a4a5) = a2a6; ... , (aNa2) (a2a4) = aNa4 

Every number belonging to the last sequence is obtained from 
the corresponding number belonging to the 1st sequence (ordered 
in the cyclic manner) by multiplying it by the number whose 
serial index exceeds that of the former by 4. After 4 more steps 
we arrive at a sequence which is obtained from the 5th one in just 
the sgme manner as the 5th sequence is obtained from the 1st one, 
that is we obtain the sequence 

... , 
whose every member is obtained from the corresponding number 
of the original sequence by multiplying it by the number whose 
serial index exceeds that of the former by 8. 

Generally, after 2P steps we arrive at a sequence of the form 

a1a2p+1; a2a2p+2; ... , aNa2p 

whose every member is obtained by multiplying the corresponding 
number belonging to the original sequence by the number whose 
index exceeds by 2P that of the former. It follows that after 2" 
steps we arrive at a sequence obtained from the original sequence 
(regarded as being ordered in the cyclic manner) by means of the 
pairwise multiplication of the numbers belonging to that sequence 
whose indices differ by 2k = N, that is we obtain the sequence 

a1a1 =ai= I; a2a2 =a~= l; ... ; aNaN=ai= 1 

consisting of ones only. 
130. First of all let us show that when we pass from the ori­

ginal number sequence a1, a2, ... , a" to the "derived" sequence 
al, a2, ... , a~, the differences between the numbers are "smooth­
ed" in the sense that under this transformation from one sequence 
to the other the difference between the greatest and the smallest 
numbers does not increase. Indeed, since half the sum of two 
numbers (that is their arithmetic mean) is always not greater 
than the greatest of them (it is equal to the greatest number only 
in the case when these numbers coincide), the greatest of the num­
bers al, a2, ... , a~ which is equal to half the sum of some two 
numbers belonging to the original sequence does not exceed the 
greatest of these two numbers and therefore it does not exceed 
the greatest of all n numbers a;. Hence, when we pass from the 
sequence a; to the sequence al the greatest number can only de­
crease. Moreover, this argument shows that the greatest of the 

7 -60 
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numbers ai can be equal to the greatest of the numbers ai only 
in the case when the greatest number A among the numbers ai 
is repeated in the sequence a1 several times and when in this se· 
quence (which is considered as being ordered in a cyclic manner 
so that the number an is again followed by at) there are two 
neighbouring numbers equal to A. Further, it can easily be seen 
that if the longest chain of numbers equal to A contained in the 
sequence ai is of length k (where k < n), then the sequence af 
contains a chain of k - l numbers equal to A which follow one 
another. For instance, if a;+1 = a;+2 = ... = a1+k = A (while 
a;< A and a;+1e+1 <A) then ai+ 1 = ai+2 = ... = ai+k-1 =A 
(while ai <A and ai+k <A). Therefore after k - l steps we ar· 
rive at the numbers a\k-n, ... , a~k-I) among which there are not 
two numbers equal to A that stand side by side, and at the next 
(the kth) step the greatest of the numbers under consideration 
decreases. Consequently, if not all the numbers a; are equal to 
one another then after the (n - l) th repetition of the procedure 
described in the condition of the problem the greatest of the num­
bers under consideration must decrease. In just the same way it 
can be proved that the smallest among the numbers under consi­
deration can never decrease, and if not all the numbers are equal 
to one another then after the (n - l) th repetition of the procedure 
the smallest number must increase. 

If the numbers a1, a2, ... , an and all the following numbers ob­
tained from them in succession are integers then their "smooth­
ing", that is the decreasing of the difference between the greatest 
and the smallest of them, must eventually lead to the case when 
this difference becomes equal to zero, which means that all the 
numbers become equal to one another. Indeed, the original dif -
ference A - a= max a1 - min a1 is equal to a positive integer p; 

i i 
when A= max a1 decreases or when a= min a1 increases this dif-

1 i 

f erence decreases by not less than unity, and consequently, after 
not more than p such steps it must become equal to zero. Thus, 
the assertion of the problem will be proved if we show that in 
the case when the original numbers ai, az, ... , an are not all equal 
to one another we can never arrive at a sequence of equal numbers. 

Now let us study in which way equal numbers b1 = a1ml, 
b2 =a~ml, ... , bn=a~m) can be obtained from the numbers 

C = a(m-1) 
I I ' 

c =a(m-1) 
2 2 

among which not all are equal. 

... , c =a(m-1) 
n n 

It is clear that to this end it is necessary that the numbers with 
odd indices belonging to the sequence Ci. c2, c3, .••• should coincide 
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with one another and the numbers with even indices should coin­
cide with one another, that is it is necessary that the equalities 

C1 = C3 = C5 = ... = c and C2 = C4 = C5 = ... = c (*) 

should be fulfilled. However, since the numbers c1, c2, c3, ••• are 
ordered in a cyclic manner, that is the number Cn+i should be con­
sidered to be coincident with c1, equalities (*) (where C =I= c) 
cannot hold when n = 2! + 1 is an odd number (that is when the 
number n + 1 = 2! + 2 is even). Therefore it only remains to sup­
pose that the number n is even: n = 2!. Now let us make one 
more (backward step), that is let us consider the numbt'rs 
d, = ar-2), d2 = a~m- 2>, ... , dn = a~m- 2> preceding the numbers 
c1, C2, .•. , Cn. We obviously have 

(* *) 

and 
d2 + d3 d4 + ds d2l + d1 (***) C2 = 2 C4 = 2 , • • • , C21 = 2 

Equalities (*) and (**) imply that d1 + d2 + da + ... + d21=2lc 
and equalities (*) and (***) imply that d1+ d2+ d3+ ... + d21= 
= 2lC =I= 2lc. We have thus arrived at a contradiction, which com­
pletes the proof. 

131. First of all let us find for what numbers x, y and z the 
coincidence of the triples (x,,, Yn, Zn) and (x, y, z) is possible. 
Since all the triples, beginning with (x,, Y1, z1), must be nonnega­
tive the numbers x, y and z must themselves be nonnegative. 
Further, let us assume that x ;;::: y ;;::: z and X; ;;::: y; ;;::: z; for all 
i = 1, 2, 3, .... Since we obviously have x; = X;-1 - z;_1 for all 
i ;;::: 1 (where by x0 and z0 are meant the numbers x and z respec­
tively), there must be x?x1?x2?xa, ... , and if at least one 
of the numbers z; (i = 0, 1, 2, ... ) is positive then X;+ 1 < X; < x, 
(and also Xi < x for all j > i). Therefore if Xn=X, then Z;=O 
for i = 0, 1, ... , n - 1. Thus, we must have z = 0 and z1 = 0, 
whence it follows that either y = x (and then z 1 = x - y = 0) 
or y = z = 0 (and then z1 = y- z = 0). Hence, we see that for 
the triple (x, y, z) to coincide with some triple (xn, Yn, Zn) it is 
necessary that (for x = 1) the original triple should have the 
form (1, 1, 0) or (1, 0, 0). The second case can be immediately 
discarded because from the triple (1, 0, 0) we pass to the triple 
(1, 1, 0) distinct from the original triple. Therefore if x = 1 and 
the triple (x, y, z) coincides with (xn, Yn, Zn), then (x, y, z) coin­
cides with the triple ( 1, 1, 0) (and the triples (xn, Yn, Zn) are of 
the same structure for all n). 

132. (a) It should be noted that a difference of two numbers is 
even or odd depending solely on whether the minuend and the 

7* 
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subtrahend are even or odd. Let us agree to symbolize an even 
number by the letter e and an odd number by the letter o. Using 
this notation we can indicate (symbolically) the following six es­
sentially different combinations of the original numbers A, B, C, 
D: 1° - e, e, e, e; 2° - e, e, e, o; 3° - e, e, o, o; 4° - e, o, e, o; 
5° - e, o, o, o; 6° -· o, o, o, o; all the other combinations can be 
obtained from these six combinations with the aid of cyclic permu­
tations of the numbers (that is by permutations which do not 
change the order of the numbers; here the 1st number is consider· 
ed as following the 4th one). Let us show that in all the cases we 
need not more than four steps to pass to a four-tuple of even 
numbers. Indeed, combination 1° itself consists of four even num­
bers; from combination 6° we pass to combination 1° after one 
step; from combination 4° we pass to combination 6° after one 
step and, consequently, to obtain combination I 0 from 4° we need 
two steps; from combination 3° we pass to combination 4° on 
making one step and therefore we need three steps to arrive at 
combination 1°; finally, from combinations 2° and 5° we arrive at 
combination 3° on making one step (in the case of combination 5° 
we arrive at a combination obtained from 3° with the aid of a 
cyclic permutation) and hence four steps are needed to obtain 
combination I 0 • Thus, in all the cases it is sufficient to perform 
four operations to arrive at a four-tuple of even numbers. 

Now let us continue the process of forming new four-tuples. As 
before, we easily show that on making four more steps we• arrive 
at numbers divisible by 4 and that on making again four ad· 
ditional steps we obtain numbers divisible by 8 and so on. Thus, 
on continuing this process sufficiently long we can arrive at a 
four-tuple of numbers divisible by any preassigned power of two 
with an arbitrarily large exponent. On the other hand, since the 
absolute values of the numbers do not increase, this means that 
eventually we must arrive at a four-tuple consisting of zeros only 
(if all the numbers A, B, C, D are less than 2n then it is clear 
that we must arrive to a four-tuple of zeros on making 4n steps 
or, perhaps, a smaller number of steps). 

Remark. We can similarly show that if there are 8 or 16 ... or any other 
number of the form m = 2k (different from 4) of positive integers then, perfor­
ming operations analogous to the above, we arrive after a finite number of steps 
~t m numbers equal to zero. If m is not equal to a power of two, the situation 
can be different; for instance, starting with the triple of numbers I, I, 0 we can 
never arrive at the triple 0, 0, 0: 

(cf. the solution of Problem 131). 

1, 1, 0 

0, 1, 

l, 0, 
1, 1, 0 
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(b) It is clear that if the numbers A = aif ao, B = bif b0, C = 
= cif co and D = drfdo are rational fractions then, on multiplying 
them by a factor k (for instance, by the common denominator 
aobocodo of all the fractions) we obtain integers A' = kA, B' = kB, 
C' = kC and Di = kD, and hence from the fact that the asser­
tion of Problem 132 (a) is true for the numbers A', B', C' and D' 
it follows that it is also true for 
the numberis A, B, C and D. 

In case A, B, C, and D are irra­
tional numbers the assertion of 
Problem 131 (a) may be false. To 
prove what has been said it suf­
fices to indicate at least one four­
tuple of numbers, A, B, C, D for 
which it is false. Let us put A = 
:=l, B=x, C=x2 and D=x3 where 
x is a positive number which can 
be chosen arbitrarily. Then we ob­
viously have 

A1=lx- l I, 
B1 =I x2 -x l=xl x-11, 

C1=lx3 -x2 l=x2 lx- l I, 
D1=lx3 -1 I= 

=(x2 +x+l)!x-ll 
that is the numbers A1, B 1, C1 and 
Di are proportional to 1, x, x2 

!J 

Fig. 13 

I 
I 
I 
I 
I 
I 
I 
t 
I 
I 
I 
I 
I 
I 

y=x3 l 

and x2 + x + 1 respectively. Therefore if we manage to choose x 
so that the equality 

(*) 

:is fulfilled then the numbers Ai. Bi, C1 and D1 will be proportional 
to A, B, C and D and the process of forming new consecutive 
fou -tuples of numbers will last indefinitely. As is seen from 
Fig. 13 where the graphs of the functions 

y=x2 +x+ t=(x++)2 + ! 
:and y = x3 are shown (the former graph is a (quadratic) para­
bola and the latter is a cubic parabola), the corresponding curves 
intersect at a point M (xo, Yo). Hence, x = xo is a (positive) root 
of equation (*). We have thus shown that the numbers A= I, 
B = x0, C = x~ and D = x6 = x~ + x0 + I (which are· obviously 
irrational) are such that the assertion of Problem 132 (a) is false 
for them. 
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133. (a) lt can easily be seen that the following array of the 
first 100 whole numbers satisfies the condition of the problem: 

10 9 8 7 6 5 4 3 2 20 19 18 17 16 15 14 13 12 1 I 

30 29 28 27 26 25 24 23 22 21 40 39 38 37 36 35 34 33 32 31 

50 49 48 47 46 45 44 43 42 41 60 59 58 57 56 55 54 53 52 51 

70 69 68 67 66 65 64 63 62 61 80 79 78 77 76 75 74 73 72 71 

~o 89 88 87 86 85 84 83 82 81 100 99 98 97 96 95 94 93 92 91 

(b) Let ap> be the first (the leftmost) of the numbers written 
as 3 sequence consisting of the 101 numbers from 1 to 101; let 
a~1) be the first among the other numbers in the sequence which 
exceeds ap>; let aio be the first of the numbers following ag> which 
exceeds a~1 > and so on. In this way we obtain the increasing num-· 
ber sequence ap>, a~l), a~l), ... , a)'.>. If there are more than 10 num­
bers in this sequence (that is if i1 > 10) then we obtain a solu­
tion of the problem. In case i1 :;:;; 10 we delete all the numbers. 
ap>, a~1 >, a1l), ... , a(:~ and choose a new increasing number se-
quence a~2), a~2>, ai2>, ..• , a;:> from the remaining 101 - i1 num­
bers by performing just the same operation. On continuing this 
process we select from the given 101 numbers a set of increasing· 
sequences. If at least one of these sequences contains more than 
10 numbers we obtain a solution of the problem. Hence it only 
remains to consider the case when none of the sequences we have 
selected contains more than 10 numbers. 

Since the total number of the given integers is equal to 101, in 
the general case the total number k of the increasing number se· 
quences we have selected cannot be less than 11. In the case un­
der consideration we can assert that from the given 101 numbers 
it is possible to choose 11 numbers arranged in a decreasing 
order. These numbers are chosen beginning with the end of the 
sequence in the following manner. Let the last number of that se· 
quence be equal to the last number a~k) of the last of the above 

k 
increasing sequences. Next we choose from the last but one se· 
quence a number which is the closest to a\kl from the left. This 

'k 
number exceeds a\kl because, if otherwise, then in the process of 

'k 
constructing the last but one sequence we should write the number· 
a(k) after that number whereas in reality the number a\kl belongs: 

1k 1k 
to another sequence. In just the same way we then take a number 
belonging to the third (counting from the end) sequence which 
lies op t_he left of the number belonging to the last but one se· 
quence £nd is the closest to it, etc. In this way we construct a 
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number sequence which increases if we read the numbers from 
right to left, that is we obtain a decreasing sequence (counting, 
as usual, from right to left); the number of the terms of this se­
quence is equal to the number k of the increasing sequences se­
lected before, and hence this number is not less than 11. 

Remark. We can prove completely similarly that, given (n - I )2 positive in­
tegers, it is possible to arrange them so that in the resultant sequence there 
are not n numbers forming an increasing subsequence or a decreasing subse· 
quence and that for any arrangement of k > (n - I )2 positive integers there 
must be n consecutive numbers among them forming an increasing suhseq_!Jence 
,or a decreasing subsequence. 

134. (a) First solution. Let us consider the greatest odd divi­
sors of the chosen 101 numbers which are equal to the quotients 
resulting from the division of each of the numbers by the highest 
power of two contained in its factorization. Since there are only 
100 different odd numbers not exceeding 200, among these greatest 
-0dd divisors of the 101 numbers there must be two which coincide. 
This means that among the 101 numbers there are two which differ 
from each other only in the exponents of the powers of the factor 
2 contained in them. It is obvious that the greatest of these two 
numbers is divisible by the other. 

Second solution. The assertion of the problem can also be proved 
with the aid of the method of mathematical induction. Let us 
show that if we choose three numbers from the four numbers 1, 2, 
3 and 4 then among these three numbers there are two such that 
one of them is divisible by the other. To this end we can simply 
consider all the possible cases which can occur here. (By the way, 
we can even start with two numbers 1 and 2: if we "choose" two 
numbers from them then one of the numbers is divisible by the 
other.) Next we shall prove that if it is impossible to choose 
n + 1 numbers from the 2n numbers from 1 to 2n so that none 
.of the chosen numbers is divisible by any other of them then it 
.is impossible to choose n + 2 numbers from the first 2 (n + l) 
positive integers so that none of the chosen numbers is divisible 
by any other of them. 

Indeed, let us consider some n + 2 numbers chosen from the 
·first 2 (n + 1) positive integers. If this set of n + 2 numbers does 
not contain the numbers 2n + I and 2n + 2 or if it contains only 
one of these numbers then there are n + 1 numbers among them 
not exceeding 2n, and, according to the hypothesis, one of these 
·numbers must necessarily be divisible by some other of them. If 
the set of these n + 2 numbers contains both numbers 2n + l 
.and 2n + 2 and also contains the number n + 1 then the numbers 
.n + 1 and 2n + 2 form a pair of numbers one of which is divisible 
by the other. Finally, if the set of these n + 2 numbers contains 
:the numbers 2n + 1 and 2n + 2 but does not contain the number 
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n + I, we exclude the numbers 2n + I and 2n + 2 and add the 
number n + I to obtain n + I numbers not exceeding 2n among 
which, according to the hypothesis, there is one number divisible 
by some other. If that number differs from n + I we obtain a pair 
of numbers belonging to the n + 2 numbers we have chosen such 
that one of them is divisible by the other. If that number is equal 
to n + 1 then 2n + 2 is also divisible by one of the chosen num­
bers. 

(b) To choose the required numbers we can take the following 
numbers: the odd numbers from 101 to 199 (50 numbers), the pro­
ducts of all odd numbers from 51 to 99 by 2 (25 numbers), the 
products of all odd numbers from 27 to 49 by 4 ( 12 numbers), the 
products of all odd numbers from 13 to 25 by 8 (7 numbers), the 
products of all odd numbers from 7 to 11 by 16 (3 numbers) and 
three more numbers 3 · 32, 5 · 32 and 1·64. 

( c) Let us suppose that we have chosen 100 whole numbers 
not exceeding 200 none of which is divisible by any other. Let us 
prove that none of the numbers from 1 to 15 is contained among 
these 100 numbers. 

As in the first solution of Problem 134 (a), let us consider all 
the greatest odd divisors of the chosen numbers. It is obvious that 
these divisors form the set of all odd numbers not exceeding 200 
(see the solution of Problem 134 (a)). In particular, these odd 
divisors include the numbers 1, 3, 9, 27 and 81. Since among the 
numbers corresponding to these odd divisors there are not two. 
numbers which are divisible by each other, the number containing 
the odd factor 27 must be divisible by a power of 2 whose ex­
ponent is not less than 1, the number containing the odd factor 9 
must be divisible by a power of 2 whose exponent is not less 
than 2, the number containing the factor 3 must be divisible by a 
power of 2 with exponent not less than 3 and the number contain­
ing the factor 1 must be divisible by a power of 2 with exponent 
not less than 4. This means that the numbers 1, 2 = 1·2, 3, 4 = 
= 1 ·22, 6 = 3·2, 8 = l ·23, 9 and 12 = 3·22 are not contained 
among the 200 given numbers. 

In just the same way we can consider those of the given num­
bers whose greatest odd divisors are 5, 15 and 45 and prove that 
the given numbers do not contain the numbers 5, 10 = 5 · 2 and 
15; similarly, the investigation of those of the given numbers 
whose greatest odd divisors are 7 and 21 shows that there is no 
number equal to 7 among the 200 numbers. Further, the investi­
gation of those of the given numbers whose greatest odd divisors 
are 11 and 33 shows that the given numbers do not contain the 
number 11, and the investigation of those of the given numbers 
whose greatest odd divisors are 13 and 39 shows that the given 
numbers do not contain the number 13. 
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Remark. By analogy with the solutions of Problems 134 (a), (b) and (c), 
we can show that it is impossible to choose n + I numbers from 2n (or less) 
first positive integers so that among them there are not two numbers divisible 
by each other and that, at the same time, it is possible to choose n (or less) 
such numbers. Besides, if 3k < 2n < 3k+ 1 then among the 2n first positive in­
tegers there are not n numbers such that at least one of them is less than 2k 
so that among these n numbers there are not two numbers divisible by each 
other, and, at the same time, it is possible to choose n such numbers the smal­
lest of which is equal to 2k (for instance, among the 200 first positive integers it 
is possible to choose 100 numbers the smallest of which is equal to 16 so that 
none of these numbers is ct.visible by another). 

135. (a) Let us consider the remainders with the smallest abso­
lute values which are obtained when the given numbers are divid· 
ed by 100 (here it is meant that if the division of a number a by 
100 leaves a positive remainder exceeding 50 then we consider 
the corresponding negative remainder -r, that is we represent 
the number a in the form a= lOOq - r where 0 < r < 50). Since 
there are exactly 51 nonnegative integers not exceeding 50 (na­
mely, 0, 1, 2, ... , 50) while the number of the remainders we are 
considering is equal to 52, there are two among these remainders 
whose absolute values coincide. In case these two remainders are 
of one sign the difference of the corresponding numbers is divi· 
sible by 100; in case the remainders have opposite signs the sum 
of these numbers is divisible by 100. 

(b) Let a,, a2. a3, ... , a100 be the given numbers (they can be 
arranged in an arbitrary order). Let us consider the sums 

s1 =a" Sz = a1 + a2, s3 = a1 + az + a3, 
... , s10o=a1 +a2+a3+ •.. +a100 

Since the number of these sums is equal to 100, it follows that if 
none of them is divisible by I 00 then there are at least two among 
these sums whose division by 100 leaves equal remainders (be· 
cause there can only be 99 nonzero different remainders resulting 
from the division by 100). Let us take these two sums whose di­
vision by 100 leaves equal remainders and subtract the smallest 
of them from the other; this results in a sum of the form ak+I + 
+ ak+2 + ... + am which is divisible by 100. 

Remark. It is clear that the method of the solution of this problem can be in 
just the same way used to prove that among any n integers (where n is an 
arbitrary natural number) there are always several numbers whose sum is di· 
visible by n. 

( c) In the case when all the numbers in question are equal 
(and, consequently, they are all equal to 2) the assertion stated 
in the problem is quite evident because the sum of any 50 of these 
numbers is equal to 100. If, for instance a1 ¥= a2 then let us con• 
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sider the following sums (cf. the solution of Problem 135 (b)) ~ 

s 1 =al> s2 = a2, S3 = a1 + a2, 

S4 = a1 + a2 + a3, ••• , S100 = a1 + a2 + ... + a9g. 

As before, we conclude that one of these sums is divisible by 
l 00 or there are two sums among them such that their division 
by 100 leaves equal remainders; in the latter case the difference 
Si - si of these two sums determines a subset of the given set of 
numbers the sum of whose members is divisible by 100. (It should 
be noted that since a1 =i= a2 and ai, a2 ~ I 00, the remainders re­
sulting from the division of the "sums" s1 = a1 and s2 = a2 by 
100 cannot coincide.) Further, if a sum of some of the given num· 
hers is divisible by 100 (this sum does not include all the numbers 
because at least one number, for instance, the number a100 is not 
contained in it) then, since this sum is positive and is less than 
200, it must be equal to I 00. 

( d) First of all we note that among any four integral numbers 
there are always two numbers whose sum is divisible by 2 and 
that among any ten integral numbers there are always five num­
bers whose sum is divisible by 5. These auxiliary assertions are 
similar to the one we have to prove but are of course simpler 
(besides, they will be used in the proof of the assertion stated in 
the problem). By the way, all the indicated estimates (including 
the result of the present problem) can be made more precise: it 
can be shown that among any three numbers there are two num­
bers whose sum is divisible by 2 and that among any nine num­
bers there are five numbers whose sum is divisible by 5; further, 
among any 199 numbers there are 100 numbers whose sum is 
divisible by 100 (see the remark at the end of the solution of the 
problem). 

Thus, we shall prove in succession the following three facts. 
1°. Given 3 numbers a1, a2 and a3, there are 2 numbers among 

them whose sum is divisible by 2. This proposition is quite obvious 
because as these two numbers we can take the numbers which are 
simultaneously even or odd; it is clear that there are always two 
such numbers among the given three numbers. 

It is clear that this simple argument is in fact based on the 
possibility of replacing the numbers a1, a2 and a3 by the corres­
ponding remainders ri, r2 and r3 resulting from the division of the· 
given numbers by 2: if the sum of two of these remainders is di·· 
visible by 2 then the sum of the corresponding numbers them­
selves is also divisible by 2. As to the numbers r 1, r2 and r3, they 
can only assume the values 0 and I, and therefore it is clear that 
among them there are always two values whose sum is divisible 
by 2. 
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2°. Now let us consider 9 numbers a1, a2, ... , a9; we assert 
that there are 5 numbers among them whose sum is divisible by 5. 
To prove the assertion we again replace the numbers ai them­
selves (where i = 1, 2, ... , 9) by the corresponding remainders rt 
resulting from the division of these numbers by 5. Each of the 
numbers ri can only assume one of the five values 0, 1, 2, 3 and 4 
(it is more convenient to consider these smaller numbers than the 
original numbers a;). Besides, if we add to all the 9 numbers ri 
one and the same arbitrary number c or subtract c from the 9 
numbers ri, the remainder resulting from the division of the sum 
of any 5 of the numbers by 5 does not change, and in our further 
argument we shall use the indicated property. (Let us agree that 
after the operation of "shifting" the remainders by +c or by -c 
we again replace the resultant numbers ri = ri +c by the remain­
ders obtained when the numbers ri are divided by 5 and then 
change the notation and, as before, designate the new remainders 
by the letters r;.) What has been said allows us to assume that 
among the 9 numbers r; (each of which can assume one of the 
values 0, 1, 2, 3 and 4) the number 0 occurs more seldom than 
the other values because of a number k > 0 occurred more often 
among the numbers ri we could simply subtract k from all these 
numbers. It is also clear that the number t of zeros must lie 
within the limits from 2 to 9: 2 ~ t ~ 9 (we have t > 1 because 
among the nine remainders at least one occurs twice). It should 
also be noted that in the case when t ~ 5 the assertion is evident 
and no proof is needed because for t ~ 5 we have 5 numbers di· 
visible by 5 whose sum is of course divisible by 5. 

The further course of the argument is simple but rather lengthy. 
If t = 2 then none of the nine remainders r; is repeated more 

than twice; in other words, there are 4 remainders among the 
nine numbers ri each of which is repeated twice and only one 
remainder which occurs only once. Therefore using the same me­
thod of "shifting" the remainders by one and the same number 
+c we can make this "single" remainder be equal to the number 4. 
Then the new remainders can be denoted and arranged as 
r1, r2, ra, ... , rg, so that their values are equal to the numbers 0, 0, 
1, 1, 2, 2, 3, 3, 4 respectively, and, for instance, in this case the 
sum r1 + r2 + ra + r4 +rs+ r6 + r1 is divisible by 5 (it is simply 
equal to 5). If t = 3 or t = 4 then let us assume that r 1 = r 2 = 
= ra = 0 and that all the numbers r5, r6, ••• , r9 are different from 
zero; here the number r4 can be equal to 0 or can be greater than 0 
(this is of no importance). Further, in the collection of 5 numbers 
rs, r6, r1, rs and r9 (which are different from 0) there are always 
several (more than one!) numbers such that their sum is divisible 
by 5 (this can be proved by analogy with the solution of Problem 
135 (b); cf. the remark at the end of the solution). Finally, to the 
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collection of the remainders obtained in this way (their sum is 
divisible by 5) we can add the necessary number of zeros belong­
ing to the set of the numbers r1, r2 and r3 (it is however possible 
that no additional numbers are needed) to obtain a collection of 
five numbers whose sum is divisible by 5. 

3°. Now we can show that any collection of arbitrary 199 in­
tegral numbers a1, a2, ... , a199 always contains 100 numbers whose 
sum is divisible by 100. It is evident that among these 199 num­
bers there are always 99 pairs of numbers simultaneously even or 
odd; these pairs can be chosen from the 199 numbers in succes­
sion; after 98 pairs have been chosen there remain 3 numbers 
among which, by virtue of item 1° of the solution of the present 
problem, there are 2 numbers which can be chosen in the required 
manner. Let us index the 198 numbers we have chosen so that at 
and a2, as and a4, ... , a191 and a19s are pairs of simultaneously 
even or odd numbers. Further, let us replace every pair of num­
bers a 2i-I and a2; (where i = 1, 2, ... , 99) by half their sum 
bi =(a2i-1 + a2;)/2. It is evident that if from the 99 (integral) 
numbers bi it is possible to choose 50 numbers whose sum is di­
visible by 50 then the sum of the numbers_ a; corresponding to 
these 50 numbers bi which we have chosen (the latter sum is twice 
as great as the former) is divisible by 100. Hence, for our aims ii 
is sufficient to show that any collection of 99 integral numbers 
contains 50 numbers whose sum is divisible by 50. To this end, by 
analogy with the above, let us choose 49 pairs of numbers from the 
99 numbers bi so that the numbers forming each of the pair are 
simultaneously even or odd. Let us index these pairs as b1 and 
b2, b3 and b4, ... , bg1 and bgs and then replace every pair of num· 
bers b2k-J and b2k (where k = 1, 2, ... , 49) by one number ck 
equal to half the sum of b2k-1 and b2k: ck = ( b2k-1 + b2k) /2. Then 
if a sum of some 25 numbers ck is divisible by 25 then the sum of 
the 50 numbers b; corresponding to them is divisible by 50. Fur­
ther application of this method is impossible because 25 is an 
odd number; therefore in our further argument we shall 
choose not pairs but five-tuples of numbers from the set of 
the numbers ck. 

As is already known, any 9 numbers contain 5 numbers whose 
sum is divisible by 5. Therefore among the 49 numbers ck there 
are 5 numbers (we shall denote them as Ci, c2, c3, c4 and c5) whose 
sum is divisible hy 5. From the remaining 49 - 5 = 44 numbers 
we can choose 5 more numbers whose sum is divisible by 5 and 
then continue this process. On choosing in this way 8 five-tuples 
of numbers such that the sum of the numbers forming each five­
tuple is divisible by 5, we arrive at the remaining collection of 
49-8·5 = 9 numbers from which, according to item 2° of the 
present solution, it is possible to choose the last (the ninth) of 
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the required five-tuples. Next we replace each of the five-tuples 
consisting of the numbers Cs1-4, Cs1-s, Cs1--2, csi-1 and C51 by their 
arithmetic mean di = (csi-4 + Cs1-s + ... + cs1) /5. It is clear that 
if we find 5 numbers d1 whose sum is divisible by 5 then the sum 
of the numbers c_,, corresponding to them (the latter sum is 5 
times as great as the former) will be divisible by 25, and it is our 
aim to prove the possibility of the choice of such numbers ck. To 
complete the proof we note that, according to item 2° of the pre· 
sent solution, among the 9 numbers d 1, d2, d3, d4, d5, de, d1, ds and 
dg there must be five numbers whose sum is divisible by 5. 

Remark. Items 1°, 2°, 3° of the solution and the statement of Problem 135 
(d) admit of the following generalization. It can be proved that among any 
2n - 1 integers (where n is an arbitrary natural number) there are n numbers 
whose sum is divisible by n. The proof of this general fact is, however, much 
more complicated than the derivation of its special cases corresponding to· n = 
= 2, n = 5 and n = 100. 

136. Since the sum of the numbers in question is equal to 1 anrl 
the greatest of them is equal to l/2k, the total number of the given 
numbers is not less than 2k. We shall prove the assertion stated 
in the problem by contradiction; to this end let us suppose that 
in any group of k numbers belonging to the given sequence the 
smallest number does not exceed half the greatest number and 
then show that this assumption leads to a contradiction. Under 
this assumption, for the group a1, a2, ••• , ak of k numbers (where 
a1 = l/2k is the greatest number and a" is the smallest number) 
we can write the inequality ak ~ aif2. Similarly, for the group 
ak, ak+1, ... _, Ct2k-1 we have a2k-1 ~ ak/2 ~ a1/22, for the group 
a2k-1, a2k, ... , ask-2 (this group of numbers exists only when 
3k - 2 ;::, n) we have ask-2 ~ a2k-i/2 ~ ai/23 etc. On adding to· 
gether all these inequalities we conclude that 

S = a1 + ak + a2k-1 + a3k-2 + ... ~ a1 + ; a1 + J2 a1 + ... < 

< ( 1 + ; + ;2 + ... ) a1 === 2a1 (*) 

(the first two sums on the left involve only finite numbers of terms 
while the third sum 1 + 1/2 + 1/22 + ... is understood as an 
infinite geometric progression). Since the given sequence ai, a2, 

a 3, ••• is nonincreasing we have 

a2 + ak+1 + a2k +aak-1 + ~S<2a1 

I aa + ak+2 + a2k+ 1 + ask + ~s < 2a1 . (**) 

• . . . 
ak-1 + a2k-2 + aak-3 + ~s < 2a" 
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Finally, on adding together inequality (*) and all inequalities 
(**) we obtain 

a1 + a2 + a3 + ... + an < 2a1 + 2a1 + . . . + 2a1 = 2ka1 = 
~---·-' 

k summands 

=2k. ;k = 1 

whereas, by the condition of the problem, there must be a1 + a2 + 
+ ... +an = !. We have thus arrived at a contradiction, which 
proves the required assertion. 

137. Let us move along the given circle of crosses and noughts 
beginning with a nought until we come to that very nought again 
(for definiteness, let the motion along the circle be in clockwise 
direction). Then the number of all the passages from a nought to 
a nought or to a cross is equal to the total number of the noughts, 
that is to q. Among these passages there are a number of pas­
sages from a nought to the next nought: the number of these 
passages coincides with the number of pairs of noughts standing 
side by side, that is it coincides with the number b. It follows that 
the number of the passages from a nought to a cross is equal to 
q-b. 

Similarly, when moving along the circle we can find the number 
of the passages from a cross to a nought: this number is equal 
to p- a. 

Further, the number of the passages from a nought to a cross 
is equal to that of the passages from a cross to a nought because 
we stop moving along the given circle of crosses and noughts 
when we arrive at the initial nought. Therefore q - b = p - a 
whence 

a-b=p-q 

138. It is obvious that if we have ik = k for one of the given 
numbers then the product under consideration is equal to zero 
(that is this product is even). Further, if we take the sequence 
i1 = 2, i2 = 1, i3 = 4, i4 = 3, ... , i2m-1 = 2m, i2m = 2m - 1 
(which is a permutation of the numbers 1, 2, 3, 4, ... , 2m - 1, 2m) 
then the product 

(1 - i1) (2 - i2) ... (2m - i2m) = 

=(-1)- 1·(-1)·1 · ... · (-1) · 1 =(-l)m · lm=(-1r 

!s odd. Therefore it only remains to prove that for any odd num­
ber n = 2m + 1 the product in question is always even. 

First proof. The total number of even numbers in the sequence 
1, 2, .. ., n = 2m + 1 is equal to m (m < n/2 = (2m + 1)/2) 
:(these even numbers are 2, 4, ... , 2m). Therefore the number of 
·the even numbers in the sequence i1, i2, ... , in with odd indices 
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is not greater than m (because the total number of the even num­
bers is equal to m) and the number of the odd numbers with even 
indices is not greater than m either (because there are only tn: 
even indices). Therefore the collection of all indices of the first 
and of the second type does not exhaust all n = 2m + 1 indices. 
Consequently, there is an index l such that either both i1 and l 
are even or both i1 and l are odd. Now, since the difference 
ii - l is even in both cases, the product of all factors k - ik where 
k = 1, 2, ... , 2m + 1 must be even. 

Second proof. The sum of the factors we are considering is 

(1 - i1) + (2 - i2) + (3 - i3) + ... + (n - in)= 

=(1 +2+3+ ... +n)-(1 +2+3+ ... +n)=O 

Therefore all these factors cannot be odd for an odd n (because 
a sum of an odd number of odd summands is always odd). Con­
sequently, among these factors there is at least one even number 
and hence the product of the factors is even. 

139. It is clear since each of the products X1X2, x2x3, ••• , XnX1 

is equal to +1 or -1, the sum of all these products can only be 
equal to zero when the number n = 2m of the summands in that 
sum is even and when some m of the summands are equal to + 1 
while the other m summands are equal to -1. Since there are 
exactly m products among X1X2, X2X3, X3X4, ••• , Xn-1Xn, XnX1 that 
are equal to -1, there are m changes of sign in the number se­
quence X1, X2, X3, ••• , Xn-i. Xn, X1. It follows that the number m must 
be even (that is m = 2k) and hence n is divisible by 4 (n = 4k} 
because the first and the last members of this sequence coincide, 
and consequently the number of the changes of sign cannot be 
odd. 

140. We shall divide the numbers in question into two groups: 
let the first group include all the numbers whose decimal represen­
tations contain even numbers of ones and let the other group in­
clude all the numbers whose decimal representations contain odd 
numbers of ones. Let A and B be two different 10-digit numbers 
belonging to one of the groups. Let us suppose that the decimal 
representations of A and B contain one and the same number n 
of ones (here 1 ~ n ~ 9 because if n = 0 or n = 10, the num­
bers A and B cannot be different). If the ith digit in the decimal 
representation of A is equal to 1 while the ith digit of B is equal 
to 2, then some other digit of A (say the jth one) must be equal 
to 2 while the jth digit in the representation of B is equal to l 
because the decimal representations of both numbers contain the 
same number of ones. In this case the ith and the jth digits of the 
decimal representation of the sum A+ B are equal to 3, that is 
this representation must contain not less than two threes. Now 
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let us suppose that the decimal representation of the number ,4 
contains n ones while that of B contains m ones (m =I= n); for 
definiteness, let n > m. Then since the numbers n and m are si­
multaneously even or odd (because A and B belong to one of the 
two groups), we must have n - m ~ 2, whence it follows that 
there are at least two numbers k and l such that the kth and the 
!th digits in the decimal representation of A are equal to I and 
the kth and the Ith digits in the representation of B are equal to 
2. Therefore it again follows that the kth and the Ith digits in the 
decimal representation of the sum A + B are equal lo 3, that is 
the digit 3 occurs not less than twice in the decimal representa­
tion of the number A + B. 

141. Let us write down the given five 100-digit numbers as a 
column and consider all the possible pairs of digits standing in 
each decimal place. The number of pairs of digits which can be 
formed of 5 digits is obviously equal to I 0; therefore the total 
number of the pairs of digits is equal to 10· 100 = 1000. In each 
of the columns of digits there must be contained both different 
digits I and 2; if in a column there is one digit I and four digits 2 
(or, conversely, one digit 2 and four digits I) then the number 
of the pairs of identical digits is equal to 6, and if a column of 
digits contains two digits I and three digits 2 (or, conversely, 
two digits 2 and three digits I) then the number of the pairs of 
identical digits is equal to 4. Thus, the total number Qf all pairs 
of identical digits (in all )()0 decimal places) can vary within 
the limits from 4 · l 00 = 400 to 6 · 100 = 600. 

On the other hand, if A = a1a2 ... a100 and B = b1b2 ... b100 
(the bars designate the numbers consisting of the corresponding 
digits) are two of the given five numbers then, as we know, among 
the pairs of digits ai, b,; a2, b2; ... ; a100, bioo there are exactly r 
pairs of identical· digits. Since the number of pairs which can be 
formed of 5 digits is equal to I 0, we thus find I Or pairs of 
identical digits. Hence, we arrive at the inequalities 

400 ~I Or~ 600 

whence it follows that 40 ~ r ~ 60. 
Remark. It is evident that if we are given five n-digit numbers then the num­

ber r defined in the same way as above must lie within the limits from 2n/5 to 
3n/5: the inequalities 2n/5 ~ r ~ 3n/5 can be proved by using the same argu­
ment. Let the reader investigate analogous estimates for the number r in the 
case when the number of the given integers differs from 5. 

142. It is obviously sufficient to show that by means of the ope· 
rations described in the condition of the problem we can change 
any sign belonging to the first set without changing any other 
sign. Indeed, if this is true then it is possible to change consecu­
tively all those signs of the first set which are different from the 
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signs of the second set occupying the same places to transform the 
first set into the second. To prove this auxiliary assertion we first 
of all note that it is possible to change simultaneously two ar­
bitrary signs of the first set, say the ith sign O'i and the jth sign <Ji· 
To this end it is sufficient to add to these two signs any 10 signs 
ak,, all,, ••• , ak,, of the first set to form the two groups a 1, <Ik,, 
CTk,, ••• , ak10 and a1, ak,, ak,, ••• , <Jk" of 11 signs each and to 
change consecutively the signs 01, ak,, ak,, ••• , <Yk,, and then to 
change the signs Of. ak,, <Yk,, ••• , <Yk,,. Now, let <Jp be an arbitrary 
sign belonging to the first set; let us add IO more signs aq,, 
aq,, ••• , aq,. of the first set to the sign <Jp to form the group ap, 
aqp ••• , aq" of 11 signs. Next we change all these 11 signs and 
then apply the above technique to change simultaneously the signs 
<Yq, and aq,, then the signs <Jq, and aq,, ••• and, finally, the signs 
<Yq, and aq". After these operations all the signs of the first set 
remain unchanged except the single sign <Jp which is changed to 
the opposite. We have thus proved the auxiliary assertion whence 
follows the assertion of the problem. 

143. Let us suppose that the chess-player plays a 1 games of 
chess on Monday, a2 games during Monday and Tuesday, a3 

games during the first three days etc., and, finally, a71 games dur­
ing 77 days. 

Now let us consider the following number sequence: 
a1; a2; a3; ... ; an; a1 + 20; a2 + 20; ag + 20; ... ; an + 20. This 
sequence contains 2 · 77 = 154 numbers each of which does not 
exceed 132 + 20 = 152 (the number a77 is not greater than 
11·12 = 132 because a period of 77 days consists of exactly 
11 weeks). Consequently, at least two of these 154 numbers are 
equal to each other (cf. what was said on page 9). However, 
there are not two numbers equal to each other among the numbers 
a 1, a2, a 3, ••• , a77 because the chess-player plays not less than one 
game of chess every day. By the same reason, there are not. two 
numbers equal to each other among the numbers a 1 + 20, a2 + 20, 
a3 + 20, ... , an + 20. Thus, for some k and l there must hold the 
equality 

which means that ak - a1 = 20 whence if follows that during 
k - l days from the (l + 1) th day to the kth day inclusive the 
chess-player plays exactly 20 games. 

144. First solution. Let us consider the remainders resulting 
from the division by N of the numbers forming the sequence 

I; 11; Ill; ... ; 1111 ... 1 
~ 

Nones 
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Since this sequence contains N numbers and the number of dif­
ferent nonzero remainders resulting from the division by N cannot 
be more than N - 1, it follows that if none of the given numbers 
is divisible by N (if otherwise, the assertion of the problem would 
be proved), there are two among these numbers, say 

K = 11 ... l and L = 1111 . . . 1 (l > k) 
'--v--" '-r---1 

k ones / ones 

whose division by N leaves one and the same remainder. In this 
case the difference 

is divisible by N. 

L - /( = 11 . . . l 00 . . . 0 
'--v--" '--v--" 
l-k ones k noughts 

If N is relatively prime to l 0 then the divisibility of the number 
L - K = 11 ... 1 · IO" by N implies that the number 11 ... 1 is 

'--v--" '--v--" 
l-k ones 1-k ones 

also divisible by N. 
Second solution. Let us write the fraction l/ N as a periodic 

decimal: 

+ = 0 • b1b2 ••• bk (a 1a2 ... a1) (where a1a2 ••• a1 is the period) 

According to the rule for changing a fraction to a periodic de· 
cimal, we have 

1 b 1b2 ••• bka1a2 ••• a 1 - b 1b2 •.• bk 

Ii = 999 ... goo ... o 
'-.-~'­

l nines k noughts 

It follows that the number A = 999 ... 900 ... 0 is divisible 
'--v--" '--v--" 

I nines k noughts 
by N. Further, we have A = 9A 1 where A1 = 11 ... 100 ... 0. Now 

'--v--" '--v--" 
l ones k noughts 

let us consider the number 

B = 11 . . . 100 . . . 0 11 l 00 . . . 0 . . . 11 . . . l 00 . . . 0 
'--v---J '--v--" '--v--" '--v--" '--v--" '--v--" 

l digits k digits I digits k digits l digits k digits 

which is obtained when we write the number A 1 nine times re­
peatedly. It is obvious that B equals the product of the number A1 
by the number 

l 00 . . . 0 l 00 . . . 0 . . . l 00 . . . 01 
"---...---'----...---' '---...---' 

(l+k) (l+k) (IH) 
digits digits digits 8 ~e-s ______ _, 
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According to the test for divisibility by 9, the last number is di­
visible by 9. Consequently, the number B written with the aid of 
ones and noughts only is divisible by 9A 1 = A and hence it is 
·divisible by N as well. 

In case N is relatively prime to 10 the fraction 1/N is written 
:as a (pure) periodic decimal of the form l/N = O.(a1a 2 ••. az) 
where a1a2 ••• az is the period. Then the number B is written with 
foe aid of ones only. 

Remark. It is clear that if the decimal representation of the number A con­
:sists of p ones and that of B consists of pq ones then B is divisible by A. The­
refore under the assumption that N and 10 are relatively prime we can even 
assert that there is an infinitude of numbers satisfying the condition of the 
problem; by the way, in the general case this also remains true. 

145. Let aN and aN+1 = aN + d be two consecutive terms of an 
arithmetic progression. Then the distance between the correspond­
ing points AN and AN+i representing the numbers aN and aN+t on 
the number line is equal to the common difference d of the pro­
gression. Let d > O; if d is not an integral number we shall 
denote by a= {d} = d - [d] > 0 the fractional part of the num­
ber d (cf. page 37) and if d is an integer we shall put a equal 
to 1 (in all the cases the number a is equal to the difference 
between d and the greatest of the integral numbers less than d). 
Our aim is to construct a system of line segments of length 1 each 
on the number line which do not overlap and possess the property 
that at least one of the points AN falls inside one of the line seg­
ment belonging to this system. In other words, we must prove 
that it is possible to exclude the case when all the points AN are 
located in the intervals between these line segments. Suppose that 
this unfavourable case takes place. Then each of the line segments 
ANAN+I of length d consists of an integral number of line seg­
ments belonging to the given system (the total length of these 
segments is of course expressed by an integer) and of a number 
of intervals between the line segments (including two parts of 
such intervals). It is clear that the total length of all these inter­
vals between the line segments (including the two parts of two 
intervals) cannot be less than a. Therefore if we manage to con­
struct a system of line segments of length l which do not overlap 
and possess the property that for sufficiently large numbers N the 
number a is always greater than the sum of the lengths of the in­
tervals (and of their parts) between the line segments of the 
system, then this system will satisfy the requirement indicated in 
the conditions of the problem. 

What has been said allows us to make the following construc­
tion. Let us choose line segments of unit length on the positive 
number axis beginning with the segment (1, 2) so that the in· 
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tervals between the neighbouring segments form, say, a geometric 
progression with common ratio I/2d. This means that after the 
segment (1, 2) we choose the segment (3, 4), then the segment 

( 4 f, 5 +), then the segment ( 5 ~, 6 f) , then the segment 

( 6 ~ , 7 ~) etc. (see Fig. 14). In this construction every line 

segment is twice as short as the preceding one. Then the sum of 
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the lengths of all the intervals between the segments is equal to 
the sum 1 + 1/2 + 1/4 + 1/8 + ... = 2 and the sum Ri of the 
lengths of all the segments beginning with the (i + I) th one is 
equal to l/2i + l/2i+I + 1/2i+2 + ... = 1/2i-1• The latter sum can 
be made arbitrarily small for a sufficiently large i. Therefore for 
any number a= {d} (or a= 1) corresponding to the arithmetic 
progression in question with positive common difference d there 
is always an index i0 such that a> 1f2i0

-
1, that is a> R; .. There· 

fore, if N is so large that all the intervals up to the i0th inclusive 
lie to the left of the point AN (this can always be achieved be· 
cause ford> 0 the sequence A1i A2 , A3, ••• , An, ... is not bounded 
and its terms increase indefinitely) then the line segment ANAN+I 
of length d can only contain the intervals beginning with the 
(i0 + l)th one whose lengths are 1/2i0, l/2io+I, 1/2ia+2, .... Now 
since the sum R1, of the lengths of all these intervals is less 
than a, both points AN and AN+t cannot simultaneously belong to 
all these intervals, that is at least one of them must necessarily 
fall inside a segment belonging to the system. 

Up till now we have supposed that d > O; to prove the asser· 
tion of the problem for the arithmetic progressions with negative 
common differences d it is sufficient to extend the system of the 
line segments we have constructed to the negative part of the 
number line. For instance, the system of line segments on the ne· 
gative number axis can be taken symmetric about the origin 0 
to the one we have constructed for the positive number axis. 

146. First of all, it is evident that none of the given fractions 
is equal to an integral number. Indeed, if, for instance, a fraction 
of the form k (m + n) /m (where k is equal to one of the numbers 
1, 2, 3, ... , m - I) were an integral number then the numbers 
m + n and m would have common divisors (because k is less 
than m and cannot be divisible by m); then the number n = 
= (m + n)- m would not be relatively prime to m either. 
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Further, there are not two fractions among the given fractions 
that are equal to each other. For, if there were 

k (m + n) = l (m + n) 
m n 

(where k is equal to one of the numbers I, 2, ... , m - I, and l is 
equal to one of the numbers 1, 2, ... , n - 1) then we would have 

k l th t . k r;z=-;, a 1s m= 7 n 

whence it would again follow that m and n cannot be relatively 
prime (because l is less than n and cannot be divisible by n). 

Now let us consider a positive integer A less than m + n. The 
fractions 

m+n 
m 

2 (m + n) 
m ' ... , k (m + n) 

m 

are less than A when k(m + n) <Am, that is when k < 
< Am/ (m + n); the number of such fractions is obviously equal 
to the integral part [Am/(m+n)]* of the number Am/(m+n). 
Similarly, the fractions 

m+n 
n 

2 (m + n) 
n ' ... , l (m + n) 

n 

are less than A when l < An/ (m + n); the number of such frac, 
tions is equal to the integral part [An/ (m+n)] of the number 
An/(m+n). Both numbers Am/(m+n) and An/(m+n) are not 
integral because the numbers m, n, and m + n are pairwise rela­
tively prime. The sum of these two numbers is equal to A: 

Am + An -A 
m+n m+n -

Further, if a sum of two numbers a and ~ which are not in­
tegral is equal to an integral number A then 

[a]+[~]= A - 1 
This readily follows from what is shown in Fig. 15. Thus, 

[~]+[~]=A-1 m+n m+n 

whence we conclude that there are exactly A - 1 fractions among 
the given fractions which lie within the interval (0, A) on the 
number line. 

• On the notation see page 36. 
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What has been proved readily implies the assertion stated in the 
problem. Indeed, let us first put A = 1; it follows that there are 
no fractions we are interested in among the given fractions which 
lie within the interval (0, 1). Further, let A = 2; since among the 
given fractions there is one fraction lying within the interval 
(0, 2) it follows that the interval ( 1, 2) also contains one of the 
fractions. Next we put A = 3; since the interval (0, 3) contains 
two of the fractions, that is one fraction more than the interval 
(0, 2) contains, it follows that there is one fraction we are in­
terested in among the given fractions which is contained in the 
interval (2, 3). Continuing the same argument we complete the 
proof of the required proposition. 

0 
\ 

[a] 

v 

" 

[,s] 
~--~ 

A 2 A --------v I 

{J 

Fig. 15 

147. First solution. If a number ai satisfies the inequalities 
1000/m ~ ai > 1000/(m + 1), the total number of positive in­
tegers not exceeding 1000 and multiple of ai is equal to m 
(namely, these numbers are ai, 2ai, 3ai, ... , mai). Therefore if we 
denote by k1 the number of those of the given numbers which sa· 
tisfy the inequalities 1000 ~ ai > 1000/2, by k2 the number of 
those of the numbers which satisfy the inequalities 1000/2 ~ ai > 
> 1000/3, by k3 the number of those of the numbers which satisfy 
the inequalities 1000/3 ~ ai > 1000/4 etc., then the total number 
of positive integers not exceeding 1000 and multiple of at least one 
of the given numbers is equal to the sum 

k1 + 2k2 + 3k3 + ... 
By the condition of the problem, all these multiples are different; 
consequently 

k1 + 2k2 + 3k3 + . . . < 1000 

Now it only remains to note that the sum of the reciprocals of 
all the given numbers is less than 

k I k I I 2k 1 + 3k2 + 4k3 + 
1 1000 + 2 1000 + k3 1000 + . . . = 1000 
-2- -3- 4 
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(here we have replaced the k1 greatest of the given numbers by 
1000 1000 . 
2 , the next k2 numbers by - 3-, the ka numbers following these 

1000 . 
k2 numbers by -

4
- etc.). Smee we have 

2k1+3k2+4k3+ ... = 

= (k1 + 2k2 + 3k3 + ... ) + (k1 + kz + k3 + ... ) = 
= (k 1 + 2k2 + 3k3 + ... ) + n < 1000 + n < 2000· 

it follows that the sum of the reciprocals of the given numbers is 
less than 2. 

Second solution. Let us consider another variant of the same ar­
gument. The number of the members in the sequence 1, 2, ... , 1000 
divisible by an integral number ak is obviously equal to the in­
tegral part [1000/ak] of the fraction 1000/ak. Since the least com­
mon multiple of any two of the numbers a1, a2, ... , an is greater 
than 1000, there is no number in the sequence I, 2, 3, ... , 1000 
which is simultaneously divisible by two of the numbers 
al> a2, a3, ... , an is equal to the sum 

[ 1~~0] + [ 1~~0] + [ 1~~0] + ... + [ 1~~0] 
Since the sequence I, 2, 3, ... , 1000 contains 1000 numbers we 

must have 

[ 1~~0] + [ 1~~0] + [ 1~~0] + ... + [ 1~~0] < 1000 

Further, the integral part of a fraction differs from the fraction 
itself by less than I, and therefore we have 

[ 1000] > 1000 _I, 
a1 a1 

Consequently 

( 1 ~~o _ 1 ) + ( 1 ~~o _ 1 ) + . . . + (1 ~~o - I ) < 1000 

that is 

1000 + 1000 + 1000 + 
a1 a2 aa 

+ IOOO < 1000 + n < 2000 
an 

and hence 

_1 +-1 + ... +-1 < 2 
a1 a2 an 

Remark. The estimate derived in the present problem can be made more pre­
cise. Let us consider all the multiples of the given numbers not exceeding 500. 
It is evident that k1 of the given numbers are themselves greater than 500, 
k2 + k3 numbers are not greater than 500 but exceed 500/2, k4 + k5 numbers 
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are not greater than 500/2 but exceed 500/3 etc. Using the same argument as 
in the first solution of the problem we conclude from what has been said that 
-the tetal number of positive integers not exceeding 500 and multiple of at 
least one of the n given numbers is equal to 

(k2 + k3) + 2 (k4 +ks)+ 3 (ka + k1) + ... 

and consequently 
(k2 + ka) + 2 (k4 +ks)+ 3 (ks+ k1) + ... < 500 

Now we note that the difference 500 - [ (k2 + k3) + 2 (k4 +ks) + 3 (ks+ + k7 ) + ... ] is equal to the number of integers which do not exceed 500 and 
are not multiple of any of the given numbers and that the difference 1000 -
- (k 1 + 2k2 + 3k3 + ... ) is equal to the number of integers which do not ex­
ceed 1000 and are not multiple of any of the given numbers. Consequently, 

500 - [(k2 + k3) + 2 (k4 +ks)+ 3 (ks+ k1) + ... ] < 
< 1000 - (k1 + 2k2 + 3k3 + ... ) 

whence we obtain 

(ki + k2) + 2 (k3 + k4) + 3 (ks+ ks) + ... < 500 

Now it only remains to observe that 

2k1+3k2 + 4k3 + 5k4 + 6ks + 7k6 + ... < 
< (ki + 2k2 + 3k3 + 4k4 + 5ks + 6k6 + ... ) + 

+ [(k1 + k2) + 2 (k3 + k4) + 3 (ks+ k6 ) + ... ] < 1000 + 500 = 1500 

and, consequently, the sum of the reciprocals of the given numbers which is less 
1 

ihan (2k1 + 3k2 + 4ka + ... ) /1000 must be less than 1 2 . 
Analogously, the consideration of the multiples of the given numbers not ex­

ceeding 333 shows that the sum of the reciprocals of the given numbers is even 
1 

less than I 5 . 
It should also be mentioned that the number 1000 in the condition of the 

-problem can obviously be replaced by any other number. 

148. Let us consider the process of changing the common frac­
tion q/p to a repeating decimal. We have 

q_A P - . a1a2 •.. aka1a2 .•• aka1a2 ••• 

where A is a whole number and ai. a2, ... , ak are the digits form­
ing the period of the decimal. It is obvious that A is equal to the 
.quotient resulting from the division of q by p, that is we have 

q=Ap+q1 

where q1 is a remainder less than p. Further, Aa1 is the quotient 
resulting from the division of lOq by p (the number Aa1 con.sists 
-0f the digits of the number A and the digit a 1): 

lOq = Aa1 • p + q2 where q2 < p 
Similarly, 

. ~~ k 
102 

• q = Aa1a2 · p + q3, ..• , 10 • q = Aa1a2 ..• ak • p + qk+I 
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The period of the fraction starts to appear again when the re­
mainder qk+i resulting from the division of a number of the form 
JQkq by p coincides with the remainder q1 resulting from the divi­
sion of the number q by p: qk+1 = q1. Hence, the number k of the 
digits in the period of the decimal is equal to the smallest power· 
of 10 such that the division of 1Qkq by p leaves the same remain­
der as the division of q by p. This means that the difference­
! Qkq - q = ( 1 Qk - 1) q is divisible by p, that is the difference 
1Qk - 1 is divisible by p (because the number q is relatively prime 
to p). 

Now let us suppose that k is an even number; k = 21. The 
divisibility of the difference I 021 - I = (I 01 - 1) ( 101 + I) by p 
implies that either 101 - 1 or 101 + I is divisible by p. The dif · 
ference 101 - I cannot be divisible by p because, if otherwise, the· 
remainder resulting from the division of I Q1 by p would coincide 
with the remainder resulting from the division of q by p and the 
period of the fraction q/p would consist of I digits and not of 
k = 21 digits. We thus conclude that IQ1 +I is divisible by p. 

The property we have proved shows that the sum 101 q/p + q/p 
is an integral number. Further, we have 

lOlq q 
-P-+P=Aa1a2 ..• az.a1+1a1+2 .•• a21a1a2 .•. az .•. + 

+A.a1a2 ••• a1a1+1 ••• az1 

and consequently the sum of the fractions 

O.a1+1a1+2 .•. a21a1a2 •.. a1 ..• + O.a1a2 •.• a1a1+1 ••• a21 ..• 

is an integral number. Since each of these fractions is less than l 
and greater than 0, their sum must be equal to I = Q.999 ...• 
which is only possible when 

a1+a1+1=9, a2 + a1+2 = 9, ... , a1+a21=9 

The last relations readily imply that 

a1 + a2 + ... + a21 9 
21 -2 

a 1 + a2 + ... + ak S· 
In case k is an odd number the equality k 

2 
is obviously impossible because the denominator of the fraction on 
the left-hand side of this equality is not divisible by 2. 

149. The numbers of digits in the periods of the fractions an/Pn 
and an+i/Pn+i are equal to the smallest positive integers k and l 
s,uch that IO" - 1 is divisible by p 11 and 101 - I is divisible by 
pn+i (see the solution of the foregoing problem). Now let us con.,. 
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sider the difference 

(101 
- 1) - (lOk - 1) = 10k (101-k - 1) 

The divisibility of this difference by pn implies that 101-k - 1 is 
divisible by pn. Now let us show that from the divisibility of 
101-k - 1 and of 1 Ok - 1 by pn it follows that 1 Qd - 1 where d is 
the greatest common divisor of the numbers l - k and k is also 
divisible by pn. 

Indeed, let l - k = qk + r. Then we have 

101-k - 1 = lOqk+r - 1=10' (lOqk - 1) + (10' - 1) 

Since the number lOqk - 1 = (lOk)q - lq is divisible by IQk -1, 
it follows that this number is divisible by pn, and consequently 
10' - 1 is also divisible by p '.·In just the same way we can show 
that the number 10'' - 1 where r1 is the remainder resulting from 
the division of k by r is also divisible by pn, the number 10'' - I 
where r2 is the remainder resulting from the division of r by r 1 

is divisible by pn, the number 10'' - 1 where r 3 is the remainder 
resulting from the division of r1 by r2 is divisible by pn etc.* 
Further, it can easily be shown that the sequence of the numbers 
r, r1, r2, r3 , ••• must end with the number d. Indeed, since l - k 
and k are divisible by d, the number r = (l - k)- qk is also di­
visible by d; since k and r are divisible by d the number r 1 is also 
divisible by d; since r and r1 are divisible by d the number r 2 is 
also divisible by d etc.; consequently, all the numbers in this se­
quence are divisible by d. On the other hand, if rk is the last num­
ber of that sequence (this means that r1<-1 is exactly divisible by 
rk, that is the remainder following rk is equal to zero) then rk-t 
is divisible by rk; the number rk-2 is divisible by rk (because both 
rk-I and rk are divisible by rk); the number rk-3 is divisible by rk 
(because both rk-2 and rk-1 are divisible by rk) etc., ahd, finally, k 
and l - k are divisible by rk. Therefore the inequality rk > d con­
tradicts the fact that d is the greatest common divisor of l - k 
and k. 

According to the definition, k is the smallest positive integer 
such that I Qk - 1 is divisible by pn. Therefore the divisibility of 
1 Qd - 1 by pn implies that d = k and l - k is multiple of k, 
whence it follows that l is multiple of k: l = km. 

Now let us factor the expression 101 - 1: 

101 - 1 = lOkm - 1 = 

= (lOk - 1) (1o<m-r> k + 10<m-2> k + ... + lOk + 1) 

* This procedure in which a sequence of consecutive remainders ri, r2, r3, • , • 

is obtained is known as the Euclidean algorithm. 
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Since lQk - 1 is divisible by pn, the division of 1Qk by pn leaves 
a remainder of 1; it follows that the remainder resulting from the 
division of 102k = l Ok· lQk by pn is equal to l, the remainder re­
sulting from the division of 103k = 102k · lQk by pn is equal to 1, 
and so on. Consequently, the division of each term of the sum in 
the parentheses by pn leaves a remainder equal to 1, and thus 
when the whole sum is divided by pn we obtain m in the remain· 
der. It follows that if lQk - 1 is not divisible by pn+1, then the 
least number l such that 101 - 1 is divisible by pn+i is equal to pk 
and 10Pk - 1 is divisible by pn+I and is not divisible by pn+2 (be· 
cause the expression in the parentheses is not divisible by p2 ), 

whence we conclude that the assertion of the problem is true. 
150. (a) Let a and b be the first and the last digits of the 

sought-for number N respectively. Then this number is equal to 
1000a + 100a + lOb + b=1100a + l lb=l 1 (lOOa + b). Since the 
number N is a perfect square its divisibility by 11 implies that it 
must be divisible by 121 as well, that is N/11 = 100a + b is di· 
visible by 11. Further, we have 

lOOa + b = 99a +(a+ b) = 11 · 9a +(a+ b) 

and consequently a + b is divisible by 11. Since neither a nor b 
exceeds 9 and a is not equal to 0 we must have 1 ~ a+ b ~ 18· 
and therefore a+ b = 11. · 

It follows that 

1 OOa + b = 11 · 9a + 11 = 11 (9a + 1) 
whence 

....!!__ = 1 OOa + b = g + l 
121 11 a 

Since N is a perfect square the number N /121 is also a perfect 
square. Among the numbers of the form 9a + l where a varies 
from 1 to 9 only the number 9· 7 + 1 = 64 is a perfect square. 
Consequently, N = 121 ·64 = 7744 = 882• 

(b) Let a be the digit in the tens place of the number in 
question and let b be the digit in the ones place of the number. 
Then this number is equal to lOa + b, and the number written 
with the aid of the same digits taken in the reverse order is equal 
to l Ob + a. By the condition of the problem, we have 1 Oa + b + 
+10b+a=11(a+b)=k2• -

It follows that k2 is divisible by 11 and therefore a + b is also 
divisible by 11. Since a+ b ~ 18, this is only possible when 
a+ b = 11 and k2 = 121. Thus, the sought-for numbers are 

29; 38; 47; 56; 65; 74; 83; 92 

151. Let us denote by a the two-digit number formed of the first 
two digits of the sought-for number N and by b the number-
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for med of the last two digits of N. Then N = lOOa + b, and the 
condition of the problem yields 

lOOa + b =(a+ b}2 

whence 
99a =(a+ b)2 - (a+ b) =(a+ b) (a+ b- 1) (*) 

Thus, the product (a+ b) (a+ b - 1) must be divisible by 99. 
Now let us consider separately the following 5 cases which can 
take place here. 

1°. a+ b = 99k and a+ b - 1 = a/k. Since a and b are two. 
digit numbers, there must be k ::::;;;; 2, and it is readily seen that the 
relation k = 2 is impossible because it leads to the values a = 99 
and b = 99 which do not satisfy basic equality (*). Hence we 
.should assume that 

k=l, a+b=99, a=a+b-1=98, N=9801=(98+1)2 

2°. a+ b=l lm, a+ b - 1 =9n and mn=a. In this case we 
have 9n = 1 lm - 1. The divisibility of llm - 1 by 9 implies that 
the remainder resulting from the division of the number m by 9 
is equal to 5 (it can be verified directly that if the division of m 
by 9 left some other remainder then 1 lm - 1 would not be di­
visible by 9). Thus, m = 9t + 5, whence it follows that 9n = 
= 99t + 54, that is n = 1 lt + 6. Now we can write 

a= mn-:--- (9t + 5) (1 lt + 6) = 99t2 + 109t + 30 

Since a is a two-digit number, it readily follows that t = 0. 
Consequently, a=30, a+ b= l lm=55, b=25 and N=3025= 
= (30 + 25) 2• 

3°. a+ b = 9m, a+ b - 1 = 1 ln and mn = a. The investiga­
-tion analogous to that carried out for case 2° yields the single so­
lution N = 2025 = (20 + 25) 2• 

4°. a + b = 33m, a + b - 1 = 3n or a + b = 3m, a+ b - 1 -:--­
= 33n. This case is impossible because a+ b and a+ b - 1 are 
relatively prime numbers. 

5°. a+ b - 1 = 99k and a+ b = a/k. In this case we have 
a + b - 1 = 99, a + b = 100 and a = (a + b) (a + b - 1) /99 = 
= 100, which is impossible. Thus, the only numbers satisfying the 
condition of the problem are 9801; 3025 and 2025. 

152. (a) A four-digit number written with the aid of four even 
digits may begin with the digits 2, 4, 6 or 8; in other words, it 
lies between 1999 and 3000 or between 3999 and 5000 or between 
5999 and 7000 or between 7999 and 9000. Accordingly, the square 
root of this number lies between 44 and 55 or between 63 and 71 
or between 77 and 84 or between 89 and 95. It should also be 
noted that since we have (!Ox+ y) 2= IOOx2 + 20xy + y2, the di· 
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git in the tens place of the number (lOx + y) 2 and the digit in 
the tens place of the number y2 are simultaneously even or odd in 
the case when 0 ~ y ~ 9. Therefore the last digit of the square 
root of the sought-for number cannot be equal to 4 or to 6. 

Since the square root of the sought-for number is even it can be 
equal only to one of the foliowing 10 numbers: 

48; 50; 52; 68; 70; 78; 80; 82; 90; 92 

It can be verified directly that the numbers satisfying the condi­
tion of the problems are 

682 = 4624; 782 = 6084; 802 = 6400; 922 = 8464 

(b) The argument analogous to that used in the solution of Pro· 
blem 152 (a) shows that there are no four-digit numbers written 
with the aid of four odd digits which are perfect squares. 

153. (a) Let us denote the digits in the hundreds, tens and ones 
places of the sought-for number N as x, y, and z respectively; 
then we have N = lOOx + lOy + z. The condition of the problem 
yields the relation 

lOOx + lOy + z=x! + y! + z! 

Since 7! = 5040 is a four-digit number, none of the digits of 
the number N can exceed 6. Consequently, the number N itself 
does not exceed 700, whence it follows that none of its digits can 
exceed 5 (because 6! = 720 > 700). Further, at least one digit of 
the number N is equal to 5 because N is a three-digit number and 
3·4! = 72< 100. It is clear that x cannot be equal to 5 since we 
have 3 · 5! = 360 < 500. It also follows that x cannot exceed 3. 
Further, we can assert that x does not exceed 2 since 3! + 2 · 5! = 
= 246 < 300. Further, the number 255 does not satisfy the condi­
tion of the problem, and if only one digit of the sought-for number 
is equal to 5 then x cannot exceed 1 because 2! + 5! + 4! = 
= 146 < 200. Moreover, since 1 ! + 5! + 4! = 145 < 150 we con­
clude that y cannot exceed 4; consequently z is equal to 5 because 
at least one of the digits of the number N must be equal to 5. 
Thus, we have x = 1, 4 ~ y ~ 0 and z = 5, which allows us lo 
easily find the single solution of the problem: n = 145. 

(b) The sought-for number N cannot consist of more than 
three digits because even 4 · 92 = 324 is a three-digit number. 
This allows us to write N = lOOx + lOy + z where x, y and z are 
the digits of the number N; here x can be equal to 0 and it is even 
possible that x and y are simultaneously equal to 0. 

The condition of the problem implies lOOx + lOy + z = x2 + 
+ y2 + z2 whence 

(100-x)x+(lO-y)y=z(z-1) (*) 
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From the last equality it follows that x = 0 because, if other­
wise, the number on the left-hand side of the equality would not 
be less than 90 (in case x ~ 1 we have 100 - x ~ 90 and 
( 10 - y) y ~ 0) whereas the number on the right-hand side would 
not be greater than 9·8 = 72 (since z ~ 9). Consequently, equa­
tion(*) has the form (IO-y)y=z(z-1). It can easily be 
verified that the last equality cannot be fulfilled for any positive 
integers z and y not exceeding 9 unless y =I= 0. If y = 0 we have 
a single solution: it is obvious that in this case z = I. 

Thus, the only number satisfying the condition of the problem 
is N = 1. 

154. (a) It is evident that the sought-for number N cannot have 
more than four digits because the sum of the digits of a five-digit 
number does not exceed 5 · 9 = 45 and 452 = 2025 is a four-digit 
number. Further, since 4·9 = 36 and 362 = 1296, the first digit 
of N does not exceed 1 in case N is a four-digit number. But we· 
have 1 + 3·9 = 28, and 282 = 784 is a three-digit number, whence: 
it follows that N cannot be a four-djgit number. Thus we can as­
sume that N = lOOx + lOy + z where x, y and z are the digits of 
the sought-for number; it is possible that x=O or even x=y=O·~ 

The condition of the problem can now be written in the form 

lOOx + lOy + z = (x + y + z)2 

whence 

99x + 9y = (x + y + z)2 
- (x + y + z) = (x + y + z) (x + y + z- I) 

We thus see that either x + y + z or x + y + z - 1 is divisible: 
by 9 (it is impossible that each of these two numbers is divisible 
by 3 since they are relatively prime). Besides, 1 ~ x + y + z ~ 
~ 27. 

Now let us consider separately the following six cases which: 
can take place here. 

1°. x + y + z - 1 = O; 99x + 9y = O; x = y = 0, z = 1 ~ 
N = 1. 

2°. x + y + z = 9; 99x + 9y = 9 · 8 = 72; x = 0, 9y = 72,. 
y=8, z=l; N=81=(8+1) 2• 

3°. x + y + z- I = 9; 99x + 9y = 9-10 = 90, x = 0, 9y = 90. 
which is impossible. 

4°. x + y + z = 18; 99x + 9y = 18· 17 = 306, x = 3, y = 1~ 
z = 18 -(3 + 1) = 14, which is impossible. 

5°. x + y + z - 1 = 18; 99x + 9y = 19· 18 = 342, x=3, y=5, 
z = 19 -(3 + 5) = 11, which is impossible. 

6°. x + y + z = 27; 99x + 9y = 27 ·26 = 702, x = 7, y = l" 
z = 27 -(7 + 1) = 19, which is impossible. 

Thus, the condition of the problem is satisfied only by the num­
bers 1 and 81. 
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(b) A cube of a three-digit number consists of not more than 
nine digits; therefore the sum of the digits of the cube of a threc­
digit number does not exceed 9 · 9 = 81 < l 00. It follows that the 
sought-for number cannot have three digits; it can similarly be 
proved that it cannot contain more than three digits either. Thus, 
the sought-for number must contain one or two digits. 

A cube of a two-digit number cannot have more than six digits; 
therefore the sum of the digits of the cube does not exceed 
6 · 9 = 54. Thus, the sought-for number cannot exceed 54. Further, 
if a cube of a number not exceeding 54 has six digits, its first 
digit must be equal to l; therefore the sum of the digits of the 
cube does not exceed 5 · 9 + l = 46. Hence, the sought-for number 
does not exceed 46. 

If a number does not exceed 46, its cube consists of not more 
than five digits, and since the cube is less than 99 999, the sum of 
the digits of the cube does not exceed 4 · 9 + 8 = 44. Since the 
cube of the number 44 is a five-digit number whose last digit is 
equal to 4, the number 44 also exceeds the sum of the digits of its 
cube. Thus, the sought-for number does not exceed 43. 

Further, since the remainder resulting from the division by 9 
of the sum of the digits of any number coincides with the remain· 
der resulting from the division by 9 of the number itself, the di­
vision of the sought-for number and of its cube by 9 must leave 
the same remainders. But this is only possible when the division 
.of the sought-for number by 9 leaves a remainder equal to -1, 0 
or 1. 

Thus, the sought-for number does not exceed 43 and its division 
by 9 leaves a remainder equal to -1, 0 or l. These conditions are 
satisfied only by the following 13 numbers: 

l; 8; 9; 10; 17; 18; 19; 26; 27; 28; 35; 36; 37 

The direct verification shows that among them the numbers satis­
fying the condition of the problem are 

1(l3=1); 8(83 =512); 17(173 =4193); 

18 (183 = 5832); 26 (263 = 17 576); 27 (273 = 19 683) 

155. (a) We can readily check that for x < 5 the given equa­
tion has the only solutions x = l, y = + l and x = 3, y = + 3. 
Now let us prove that there are no solutions for x ;;:::: 5. Indeed, 
the expression 1 ! + 2! + 3! + 4! = 33 ends with the digit 3 while 
all the factorials 5!, 6!, 7!, ... end with noughts. Consequently, for 
x ;;:::: 5 the last digit of the sum l ! + 2! + ... + xi is equal to 3 
and therefore this sum cannot be equal to a square of a whole 
number y (because a square of a whole number cannot end 
with 3). 
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(b) Let us consider the following two cases that can take place 
here: 

1°. z is an even number: z = 2n. This case can easily be re­
duced to the foregoing problem because y2n = (yn) 2• Thus, for an 
even z we have the following solutions: 

x = 1; y = + 1; z is an arbitrary even number 
and 

x = 3; y = + 3; z = 2 

2°. The number z is odd. If z = 1 then we can take any value 
of x, and in this case y = 1 ! + 2! + ... +xi Now let z ~ 3. We 
have 1! + 2! + 3! + 4! + 5! + 6! + 7! + 8! = 46 233. The number 
46 233 is divisible by 9 and is not divisible by 27 while the num­
ber n! is divisible by 27 for n ~ 9. The sum 9! + 10! + ... + x! 
is divisible by 27; however, since 1 ! + 2! + ... + 8! is divisible 
by 9 and is not divisible by 27 the entire sum 1 ! + 2! + ... + x! 
is divisible by 9 and is not divisible by 27 for x ~ 8. For the num­
ber yz to be divisible by 9 it is necessary that y should be di­
visible by 3. In that case yz is divisible by 27 (because z ~ 3), 
and consequently there are no integral solutions for x ~ 8 and 
z ~ 3. Now it remains to consider the case x < 8. We have 
1 ! = 1 = iz where z is any natural number; further, 1 ! + 2! = 3, 
that is this sum cannot be equal to any integral power (with ex­
ponent different from 1) of any natural number. We also have 
I!.+_ 2! .+ 3! = 32 and 

1 ! + 2! + 31 + 41=33 
11+21+ +5!= 153 
I! + 2! + ... + 6! = 873 
11+21+ ... +7!=5913 

None of the numbers 33; 153; 873 and 5913 is equal to an in­
tegral power (with exponent different from 1) of any natural num­
ber. Hence, for odd z we have the following solutions only: 

x = l, y = 1, z is an arbitrary odd number 
and 

x is an arbitrary natural number, y = 1 ! + 2! + ... +xi, z = 1 

156. Let 
a2 + b2 + c2 + d2 = 2n 

We shall denote by p the greatest exponent of the power of 2 
by which all the four numbers a, b, c and d are divisible. On can­
celling both members of the given equality by 22P we obtain 

aT + bi + cT + dT = 2n-
2
p 
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where there is at least one odd number among the four numbers 
ai. b1, CJ and dJ. 

If among the four numbers aJ, bJ, CJ, and dJ there is one or 
three odd numbers, then the number ai + bT + cT + dT is odd and the 
equality aT + bT + cT +di= 2n-2

p cannot be fulfilled. If among 
the numbers ai, bi. c1 and d 1 there are two odd numbers, say 
UJ = 2k + 1 and bJ = 21 + 1, while the other two numbers CJ = 
= 2m and dJ = 2n are even, then we have 

ai + bi + ci + di= 4k2 + 4k + I + 412 + 41 + I + 4m2 + 4n2 = 

=2[2(k2 +k+12 +1+m2 +n2)+ IJ 

The last relation contradicts the condition that the number aT + 
+ bT + cf + di = 2n-2

P has no odd divisors (the expression in 
square brackets cannot be equal to I because, if otherwise, we 
would have k = l = m = n = 0, CJ = dJ = 0 and c = d = 0). In 
case all the four numbers a1 = 2k + I, bJ = 2/ + I, CJ= 2m + 1 
and dJ = 2n + I are odd we have 

ar + bi + ci + d~ = 

= 4 'i2 + 4k + I + 412 + 41 + I + 4m2 + 4m + I + 4n2 + 4n + I = 

=4[k(k+ I)+l(l+ l)+m(m+ l)+n(n+ I)+ lJ 

A product of two consecutive whole numbers is always even 
(because one of the factors must necessarily be even). Conse­
quently, the expression in the square brackets is ocld :rn<1 hence it 
is equal to 1. Thus, n - 2p = 2, n = 2p + 2 and k = l = m = 
= n = 0, aJ = b1 = CJ = dJ = I, a= /J = c = d = 2µ. 

We see that if n is an odd number then 2n cannot be written as 
a sum of four squares; if the number n is even (n = 2p) then 2·-i 
admits of only one expansion 

22p = (2P-1)2 + (2'J-l)2 + (2P-1)2 + c2p-J)2 

157. (a) First solution. The equation 

x2 + y2 + z2 = 2xyz 

is satisfied by the values x = 0, y = 0, z = 0. Besides, if one of 
the numbers x, y and z is equal to 0 then the other two numbers 
must also be equal to 0 because in this case the sum of their 
squares is equal to 0. 

Now let us suppose that all the three numbers x, y and z satis­
fying the given equation are different from 0. These numbers can 
be represented in the form 

x = 2axl> y = 2fly1> z = 2"z1 

8- 60 
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where x1, Yi and z1 are odd numbers (if one of the numbers x, y 
and z is odd then the corresponding exponent of the power of 2 
is equal to 0). 

Since x, y and z play equivalent roles in the given equation we 
can assume that x is divisible by the lowest power of 2 and z is 
divisible by the highest power of 2 (this assumption does not 
restrict the generality of the argument), that is we suppose that 

a~~~V 

Let us determine the exponent of the power of 2 by which the 
left-hand member of the equality is divisible. 

1°. If ex < ~ ~ y or ex = ~ = y then, on taking 22a out of the 
brackets, we obtain in the brackets a sum of one odd and two even 
numbers or a sum of three odd numbers respectively, that is this 
sum is equal to an odd number. 

2°. In case ex = ~ < v we can write 

X = 2a (2k + I), y = 2a (21 + 1), z __.: 2a · 2m 

Then we have 

x2 + y2 + z2 = 22a [(2k + 1)2 + (21 + 1)2 + (2m)2] = 
= 22a ( 4k2 + 4k + 1 + 412 + 41 + 1 + 4m2

) = 
= 22a+1 [2 (k2 + l2 + m2 + k +I)+ 1] 

Hence, in this ca"se the sum obtained in the brackets (after 22a+1 

has been taken out of the brackets) is an odd number. 
On the other hand, the right-hand member of the equality x2 +. 

'+ y2 + z2 = 2xyz is divisible by 2a+Hv+1, and the left-hand mem­
ber of the equality must be divisible by the same power of 2 as 
the right-hand member. 

It follows that in case 1° there must be 2ex = ex + ~ + v + l. 
Since ex ~ ~ ~ v, the last equality implies the inconsistent rela­
tion 2ex ;;:::: 3ex + I which cannot hold. 

It also follows that in case 2° we must have 2ex + 1 = ex + ~ + 
:+ v + 1. Since a = ~ < v, this implies the inequality 2ex + 1 > 
> 3a + 1 which cannot hold either. 

Consequently, the equation x2 + y2 + z2 = 2xyz has no integral 
solutions other than the solution x = 0, y = 0, z = 0. 

Second solution. Since the sum of the squares of the numbers 
x, y and z is even we conclude that either all the numbers arc 
even or one of them is even while the other two are odd. However, 
in the latter case the sum x2 + y2 + z2 is divisible by 2 and is not 
divisible by 4 whereas the product 2xyz is divisible by 4, which is 
impossible (cf. the first solution of the problem). Hence, we can 
assume that the numbers x, y and z are even: x = 2xi, y = 2y1 
and z = 2z1• On substituting these values into the original equa-
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tion and cancelling by 4 we obtain 

xi+ YT+ zi = 4x1y1z1 

In just the same way, repeating the same argument for the 
last equation, we conclude that all the three numbers Xi. y 1 and z1 

are even. Therefore we can put x1 = 2x2, y 1 = 2y2 and z 1 = 2zi 
and write the equation 

x~ + y~ + z~ = 8x2y2z2 

for the numbers x2 = xi/2 = : , y2 = ~ , z2 = : . As before, from 

this equation we conclude that the numbers x2, y2 and z2 are also 
even. 

Continuing the same process we conclude that all the numbers 

x _}!_ z x 
x, y, z; x1 = 2 , Y1 - 2 , z, = 2; Xz = 4, 

_}!_ z x y _z. 
Y2 - 4 , Zz = 4; X3 = s , Ya = 8 , Z3 - 8 , · · · 

x y z 
· · ·, Xk = Zk , Yk = Zk , Zk = Zk ; 

are even (the numbers Xk, Yk and Zk must satis.fy the equation 
x% + Y% + z% = 2k+Ixkykzk). But this is only possible when x = 
= y = z = 0. 

(b) Using the same argument we can show that the only in­
tegral solution of the equation x2 + y2 + z2 + v2=2xyzv is x=O, 
y = 0, z = 0, v = 0. 

Here it is necessary to consider separately the case when the 
highest powers of 2 by which x, y, z and v are divisible have equal 
exponents, that is the case when 

x = 2!l (2k + 1), y = 2'1 (2! + 1) 

z=2a(2m+ 1), v=2'1(2n+ 1) 

where a is a nonnegative integral number and k, l, m and n are 
some integers. 

In this case we have 

x2 + y2 + z2 + v2 = 22
0. [(4k2 + 4k + 1) + (4l2 + 4l + 1) + 

+ ( 4m2 + 4m + 1) + ( 4n2 + 4n + 1)] = 
= 21a+ 2 (k2 + k + l2 + l + m2 + m + n2 + n + I)= 

= 22a+2 [k (k +I)+ l (l +I)+ m (m + 1) + n (n + I)+ 1] 

The expression in the square brackets must necessarily be odd 
(cf. page 225). Therefore the exponent of the highest power of 2 by 

8* 
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-which the left-hand member of the equality is divisible is equal to 
2a + 2. As to the right-hand member, it is divisible by 24a+1• Con­
.sequently there must hold the equality 2a + 2 = 4a + 1, which is 
impossible for integral a. 

The second solution of Problem 157 (b) is analogous to the se­
·cond solution of Problem 157 (a); let the reader consider this 
solution. 

t 58. (a) Let x, y and z be three positive integers satisfying the 
equation 

x2 + y2 +z2 =kxyz (*) 

First of all let us show that it is allowable to assume (without 
loss of generality) that the inequalities 

kyz 
x:;;;;;-2-· 

kxz 
y:;;;;;-2-, 

_,_ kxy 
z~-2- (**) 

take place. This assumption simply means that none of the sum­
mands on the left-hand side of equation (*) exceeds half the right-

hand side. Indeed, if, for instance, we had z > k~y then we could 

replace the numbers x, y, z by the smaller numbers x, y and 
z1 = kxy - z which, as can easily be seen, also satisfy equa­
tion (*): 

x2 + y2 + (kxy - z)2 = kxy (kxy - z) 

lf one of the new numbers is again greater than the product of the 
other two numbers multiplied by k/2 then we can again carry out 
an analogous replacement and continue this process until we 
arrive at a triple of numbers for which conditions (**) are fulfilled 
(after this the continuation of the process no longer leads to fur­
ther decrease of the numbers x, y and z). 

Let us suppose that x ~ y ~ z. It is readily seen that the ine­
,qualities y ~ z ~ kxy/2 imply 

1 ~ k
2
x, that is kx~2 

Equation (*) can obviously be rewritten in the form 

x2 + y2 + ( k~y - z r = ( k~y r 
Since z ~ kxy/2 we see that when the number z in the left-hand 
member of the last equality is replaced by y ~ z the left-hand 
member increases (in the case when y = z it does not change). 
<Consequently, 

2 + 2 + ( kxy )2 ......_ k2x2y2 x y -2--y ~-4-
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On opening the parentheses in the last inequality we obtain 

x2 + 2y2 ~ kxy2 

By the hypothesis, x ~ y and therefore we must have 

y2 + 2y2 ~ kxy2 
that is 

kx~3 

Thus, 2 ~ kx ~ 3, that is kx is equal to 2 or to 3. In the case 
when kx = 2 equation (*) takes the form 

x2 + y2 + z2 = 2yz, that is x 2 + (y - z)2 = 0 

whence we conclude that x = 0 and that kx is not equal to 2 but 
is equal to 0. Consequently, there must be kx = 3, whence it fol· 
lows that k can only be equal to 1 or to 3. Simple examples (cf. 
the solution of Problem 158 (b)) show that these values of k are 
admissible. 

(b) Let us continue the argument used in the solution of Pro· 
blem 158 (a). In that solution we had the inequality x2 + 2y2 ~ 
~ kxy2

; since kx = 3, this inequality can be rewritten in the 
form 

x2 + 2y2 ~ 3y2
, that is x2 ~ y2 

Since we assumed that x ~ y, it follows that x = y. Now we 
put x = y and kx = 3 in the original equation (*) to obtain 

2x2 + z2 = 3xz, that is (z -· x) (z - 2x) = 0 

Thus, we have z=x or z=2x. Since z ~ kxy/2=3y/2=3x/2 
the number z cannot be equal to 2x, and consequently z = x. 

Thus, if conditions (**) are fulfilled we must have x = y = z. 
Now, since kx = 3, the number x can only be equal to 1 or 3. Ac· 
1:ordingly, we obtain the following two solutions of equation (*): 

x=y=z= l (k=3) 
and 

x=y=z=3 (k=l) 

As was shown in the solution of Problem 158 (a), any triple 
of numbers x, y, z satisfying equation (*) can be transformed with 
the aid of consecutive substitutions of the form z1 = kxy - z into 
a triple of numbers satisfying inequalities (**). Now, since z1 = 
= kxy - z implies z = kxy - z1 we see that every solution of 
equation (*) can be obtained from the smallest solutions written 
above by means of consecutive substitutions of the form z1 = 
= kxy - z. In particular, in this way we obtain the following 
solutions of equation (*) not exceeding 1000: 
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1 o. The case k = 3. 

x l 2 2 2 5 5 

y l 2 5 13 34 89 233 5 29 169 13 29 

z l 2 5 13 34 89 233 610 29 169 985 194 433 

20. The case k = I. 

x 3 3 3 3 3 3 3 6 6 15 

y 3 3 6 15 39 102 267 15 87 39 

z 3 6 15 39 102 267 699 87 507 582 

(The fact that the solutions corresponding to the value k = 1 
are obtained from the solutions corresponding to the value k = 3 
by means of the multiplication of the numbers x, y and z by 3 is 
a direct consequence of the relations connecting the smallest so­
lutions of the equations x2 + y2 + z2 = xyz and x2 + y2 + z2 = 
= 3xyz.) 

159. The equality x3 = 2 (y3 + 2z3) (where x, y and z are in­
tegers) implies that x is even: x = 2x 1; this allows us to rewrite 
the given equation in the form 

8xy - 2y3 - 4z3 = 0, that is 4xf - y3 - 2z3 = 0 

Since y3 = 2 (2xf - z3), the number y is even: y = 2y1; therefore 
we have 

4xy - 8yy - 2z3 = 0, that is 2xf - 4yf - z3 = 0 

Finally, since z3 = 2 (xf - 2yT) the number z is also even: z=2z1,, 

and we obtain 

2xf - 4yy - 8zy = 0, that is Xf - 2yy - 4zy = 0 

Hence, if x, y, z is a solution of the original equation then all 
the three numbers x, y and z are even and their halves x1 = x/2, 
y1 = y/2 and z1 = z/2 satisfy exactly the same equation: 

xy - 2yy - 4zy = 0 
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It follows that Xi. y 1 and z 1 are also even numbers: x 1 = 2x2, 
y, = 2y2 and z, = 2z2; besides, the numbers X2, y2, and z2 also 
satisfy the original equation, that is they are also even etc. In 
this way we finally conclude that the integral numbers x, y, and z 
are divisible by any power of 2, which is obviously possible only 

t=3y 2 +4y+I 

t 1 
t 

I 

!J !J 

(a) (b) 

Fig. 16 

in the case when they all are equal to zero. Thus, the original 
equation has a single solution, namely 

x=y=z=O 

160. Let us multiply both members of the equation by 4 and 
add 1 to them; this results in the equivalent equation 

(2x + 1 )2 = 4y4 + 4y3 + 4y2 + 4y + 1 

whose left-hand member is a perfect square. Further, we have 

4y4 + 4y3 + 4y2 + 4y + 1=(4y4 +4y3 + y2
) + (3y2 + 4y + 1) = 

= (2y2 + y)2 + (3y2 + 4y + 1) = (P (y))2 + Q (y) 

Since the quadratic trinomial Q (y) = 3y2 + 4y + 1 possesses 
(real) roots y, = - 1 and Y2 = - 1/3 it assumes positive values 
for all integral values of y different from y = - 1 (see the graph 
of the function t=3y2+4y+l in Fig. 16a). Therefore (2x+l) 2 > 
>(P(y))2= (2y2+y)2. 

On the other hand, 

4y4 + 4y3 + 4y2 + 4y + 1 = 
= (2y2 + y + 1)2 + (2y - y2) = (P1 (y))2 + Q1 (y) 

The graph of the function Q 1 (y) = 2y - y2 is shown in Fig. 16b; 
ihe roots of the quadratic binomial Q1 (y) are equal to 0 and 2. 
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Therefore Q1 (y) < 0 for all integral values of y different from 0, t 
and 2, whence (2x + 1) 2< (P 1 (y) ) 2 = (2y2 + y + 1)2. 

Thus, for all integral values of y different from -1, 0, 1 and 2 
there hold the inequalities 

(2y2 + y + 1)2 > (2x + 02 > (2y2 + y)2 

This means that for such y the number (2x + 1) 2 lies between the­
squares of the two consecutive whole numbers Q (y) and Q1 (y). 
and th<~refore 2x + 1 cannot be equal to an integral number. 

Thus, in case y is an integral number, the number x can be in­
tegral only when y is equal to -1, 0, 1 or 2, that is when the 
right-hand side of the original equation is equal to 0, 0, 4 or 30-
respectively. It now remains to solve 3 quadratic equations of the 
form 

x2 + x = c where c is equal to 0, 4 or 30 (*) 

These equations have the following integral roots: 

x-.:::::: 0 and x = - 1 for c = O; x = 5 and x = - 6 for c = 30; 
for c = 4 equation (*) has no integral roots 

Hence, finally, we arrive at the following set of integral solutions 
of the given equation: 

(0, -1), (-1, -1); (O, O), (-1, O); (5, 2), (-6, 2) 

(here the notation (a, b) means that x = a and y = b; the total 
number of the solutions is equal to 6). 

161. If y = 1 we obtain the quadratic equation 

x2 + (x + 1)2 = (x + 2)2, that is x2 
- 2x - 3 = 0 

This equation has a single positive integral root x = 3 (the other 
root x = - 1 of the equation is negative). Now, let y > 1. It 
should be noted that since the numbers x2Y and (x + 2) 2Y are si · 
multaneously even or odd, the number (x + 1) 2Y= (x + 2) 2Y - x2Y" 

must be even; therefore the number x + 1 is even: x + 1 = 2x,. 
Further, we have 

(2x 1)
2
Y = (x + 1)211 = (x + 2)211 - x211 = (2x1 + 1)211 - (2x1 - 1)211 (*)' 

Using Newton's binomial formula we open the parentheses on the: 
right-hand side to obtain 

(2x1)
211 = 

· 2 [c (2y, 1) (2x1)211- 1 + C (2y, 3) (2x1)
211- 3 + ... + C (2y, 1) (2x1)] 
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Since C (2y, 1) = 2y, this relation can be rewritten in the form 

2 · 2y · 2x1 = 
= (2x1)

2
Y - 2 · 2y (2xi)2u-i - 2 · C (2y, 3) (2x1)

2
Y-

3 
- ••• -

- 2 • C (2y, 3) (2x1)3 

{it should be noted that 2y ;;;:: 4 since y ;;;:: 2). It is obvious that 
all the terms on the right-hand side are divisible by (2x1) 3, whence 
it follows that y must be divisible by xf. 

Further, on dividing both members of equality (*) by (2xi) 2v 
we obtain 

( 
l )2y ( l )2y 1= 1+- - 1--

2xi 2xi 

which implies (1 + l/2x1) 2Y = 1 + (1 - l/2x1) 2Y < 2. On the 
other hand, by Newton's binomial formula, 

( 1 + 2~J2y = 1 + 2y. 2~i + c (2y, 2) ( 2~i r + ... = 

=l+JL+ ... >t+...L 
Xi Xi 

Consequently, 

1 + JL < 2, that is JL < 1 whence y < x 1 
Xi Xi 

which contradicts the divisibility of y by xf. Therefore the given 
equation has no solutions such that y > 1, and all the solution:~ 
are those found above: y = 1, x = 3. 

162. Let us denote -V x + V x + ... + v x as Ay (x). Then 
---- -y square roots 

we can write 

.x+Au_ 1(x)=x+,Yx+ ... +vx =z2 that is Ay_i(x)=z2 -x 
y-1 square roots 

Hence, if the number Au (x) = z is integral then the number 
Ay-i (x) = z2 - x is also integral; in this case the numbers 
Ay-2 (x) = (z2 - x)2 - x, Ay_3 (x) ... , A 1 (x) = vx are also integ­
ral. Since 4x = t is an integral number it follows that x = t2 

(where t is an integral number). 
It is clear that for any integral value of t the numbers x = t2, 

y = 1, z = t are solutions of the given equation. Now let y > 1. 
In this case the numbers 

A 1 (x) = vx = t and A2 (x) = ,Y x + V x = -y1t2 + t =-Vt (t + 1) 
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must be integral; since the numbers t and t + 1 are relatively­
prime, it follows that the product t (t + 1) can be a perfect square­
only in the case when t and t + 1 are themselves perfect squares, 
that is only when t = 0. Finally, for t = 0 we obviously have­
x = 0 and Ay(x) = 0 for any y. 

Thus, all the solutions of the given equation are x = t2 , y = I 
and z = t where t is an arbitrary integer (if the roots are under­
stood in the arithmetical sense then we must stipulate that t can 
be equal to any natural number) and x = 0, y = t (where t is 
an arbitrary natural number) and z = 0. 

163. To solve the problem we shall use the proof by contradic­
tion. Let us suppose that the equation indicated in the condition 
of the problem possesses integral solutions x and y only for a 
finite number of prime numbers p and that the greatest of the so­
lutions is an n-digit prime number Pn· Let us form the number 
x=2·3·5·7·11·13· ... ·pn and consider the expression X=x2 + 
+ x + 1. Since the number X - 1 = x2 + x = x(x + 1) is divi­
sible by all prime numbers 2, 3, 5, ... , Pn, the number X cannot 
be divisible by any of them. Consequently, there is a prime divisor 
P of the number X exceeding Pn, that is X = Py where y is a na~ 
tural number. (Here we do not exclude the case when P = X and 
y = 1.) Thus, the given equation possesses integral solutions x, y· 
for p = P, which contradicts the assumption that Pn is the grea­
test value of the prime number p for which such solutions exist. 
This contradiction proves the assertion of the problem. 

Remark. The argument used in the above solution is very similar to the onec 
used in the well-known proof of the theorem on the existence of an infinitude 
of prime numbers (see the solution of Problem 349). 

164. Our aim is to find the positive integral solutions of the 
following system of equations: 

x
2
+y+z+u=(x+v)

2 
} 

y2 + x + z+ u=(y+w)2 

z2 + x + y + u = (z + t) 2 

u2 + x + y + z= (u + s)2 

(where x, y, z and u are the sought-for numbers). This system is. 
equivalent to the system 

y + z + u = 2vx + v2 
} 

x+z+ u=2wy + w2 

x + y + u = 2tz + t2 

x + y + z = 2su + s2 

(*) 
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On adding together all equations (*) we obtain 

'(2v - 3) x + (2w - 3) y + (2t - 3) z + (2s - 3) u + v2 + 
+ w2 + t2 + s2 = 0 (**) 

We first of all note that equality (**) implies that at least one 
of the numbers 2v - 3, 2w - 3, 2t - 3 and 2s - 3 is negative: in­
deed, if otherwise, we should have a sum of positive numbers on 
the left-hand side of this equality. Now, for definiteness, let us 
suppose that 2v - 3 < 0. This is only possible when v = 0 or 
v = I. In the former case the first equation of system (*) imffi'~" 
diately implies that y + z + u = 0, which is impossible when y, z 
and u are positive. Therefore we must assume that all the numbers 
v, w, t and s are positive and that v = I. Then equality (**) can 
:be rewritten in the form 

x = (2w - 3) y + (2t - 3) z + (2s - 3) u + w2 + t2 + s2 + 1 (***) 

Let us consider the following five cases which can take place 
here. 

1°. The numbers x, y, z and u are all pairwise distinct. In this 
.case the numbers v, w, t and s are also pairwise distinct; indeed, 
if, for instance, we put v = w, then, on subtracting the first two 
·€qualities (*) from each other, we obtain y - x = 2v (x - y), 
which is impossible when v is positive and x =I= y. Further, under 
the assumption that v = 1 the first equality (*) yields 2x = y + 
+ z + u - 1 where x = y/2 + z/2 + u/2 - 1/2, which contra­
dicts equalities (* **) where the coefficients in y, z and u on the 
right-hand side are positive integers (because w, t and s cannot 
be equal to I since they are not equal to v and v = I). Hence, this 
case is impossible. 

2°. Two of the numbers x, y, z and u are equal to each other 
:while the others are pairwise distinct. Here it is convenient to 
.consider the following two subcases. 

(A) z = u. In this case t = s. Equality (***) and the first 
€quation (*) take the form 

x = (2w - 3) y + 2 (2t - 3) z + w2 + 2t2 + 1 
and 

2x=y+ 2z- l 

As before, these relations cannot hold simultaneously. 
( B) x = y. In this case w = v = I. Equality (**) and the first 

,€quality (*) turn into 

2x = (2t - 3) z + (2s - 3) u + t2 + s2 + 2 
:and 

respectively. 
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The substitution of the second of these equalities into the first 
one results in 

(2/ - 5) z + (2s - 5) u + 12 + s2 + 4 = O (**** 
) 

whence it follows that at least one of the two numbers 2/ - 5 and 
2s - 5 must be negative. For definiteness, let 2/ - 5 < O; since 
t > 0 and t =f= 1 (because v = 1 and t =f= v since z =f= x), it fol­
lows that t = 2. Now, on adding the duplicated first equality (*) 
to the third equality (*), we obtain 4z + 4x + 6 = 4x + 2z + 3u, 
that is z = 3u/2 - 3. Let us put t = 2 and z = 3u/2 - 3 in equa­
tion (****); this yields 

(4s - 13) u + 2s2 + 22 = 0 

It follows that 4s - 13 < 0. Since s > 0, s =f= 1 and s =f= 2 we· 
obviously have s = 3. On substituting all these values into equa­
tions (*) we arrive at the following system of three equations of 
the first degree with three unknowns: 

x + z + u = 2x + 1 } 
2x+u=4z+ 4 

2x+z=6u +9 
From this system we easily find x = y = 96, z = 57 and u = 40. 

3°. Among the numbers x, y, z and u there are two pairs of pair­
wise equal numbers. For instance, Jet x = y and z = u. In this 
case the first equation (*) yields x = 2z - I; the substitution of 
this value into equation (**) results in 

x = (21 - 3) z + 12 + 1 
whence we obtain 

(2/ - 5) z + 12 + 2 = 0 

It follows that 2t - 5 < O; since t > 0 and t =f= 1, this means 
that t = 2. Now equations (*) reduce to the system 

x+2z=2x+ 1} 
2x+ z=4z+4 

whence x = y = 11, z = u = 6. 
4°. Among the numbers x, y, z and u there are three numbers 

which are equal to one another. Here it is also necessary to con­
sider separately the following two subcases. 

(A) y = z = u. In this case equation (***) and the first equa­
tion (*) take the form 

x = 3 (2w - 3) y + 3w2 + 1 and 2x = 3y - 1 

It is evident that the last two relations cannot hold simultane­
ously. 
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(B) x = y = z. In this case the first equation (*) yields 

2x+ u=2x+ I 

whence u = I; the last equation (*) results in 

3x = 2su + s2 = 2s + s2 whence x = s (s + 2) 
3 

Since x is an integral number, we conclude that either s or s + 'l 
is divisible by 3, that is either s = 3k whence x = k (3k + 2) or 
s = 3k - 2 whence x = (3k - 2) k; here k is an arbitrary integral 
number. 

5°. All the numbers x, y, z and u coincide with one another. Jn 
this case the first equation (*) immediately yields 3x = 2x + l 
whence x = I. 

Hence, we obtain the following solutions of the problem: 

x=y=96, z=57, u=40; x=y= II, z=u=6; 
x = y = z = k (3k + 2), u = I; x = y = z = u = I 

(the last solution corresponds to the case when we put k = 1 and 
take the sign "-" in the foregoing formulas). 

165. Denoting the sought-for numbers as x and y we can write 

x+y=xy 
whence 

xy-x-y+ 1 =I 

The last relation can be written as 

(x- I)(y-1)= I 

Since there are only two ways in which the number 1 can he 
factored as a product of two integral factors, we readily obtain 

whence 

or 

whence 

x-I=I, y-1=1 

x=2 and y=2 

x-l=-1, y-l=-1 

x=O and y=O 

166. Let the numbers in question be x, y and z, then we have 

..!...+..!...+..!...= 1 x y z 

We shall first of all show that at least one of the three numbers. 
x, y and z must be less than 4. Indeed, if all these numbers were 
not smaller than 4, then the sum 1/x + l/y + l/z would be not 
greater than 1/4 + 1/4 + 1/4 = 3/4. Hence, if we ass:11::.! ihctt 
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:c ::::::; y ~ z then x can take on only the following two values: 
x = 2 and x = 3 (because x > I). Let us consider separately 
these two possibilities. 

(I) x = 2. Then 1/y + 1/z = I - 1/x = 1/2. On reducing the 
fractions to the common denominator and discarding the denomi­
nator we obtain 

yz - 2y - 2z =~ 0, that is yz - 2y - 2z + 4 = 4 

whence 
(y - 2) (z - 2) = 4 

Since y and z exceed 1, the numbers y- 2 and z - 2 cannot 
be negative, and therefore only the following two cases are pos­
sible: 

(A) 
(B) 

(2) 

y - 2 = 2, z - 2 = 2 whence y = 4, 

y - 2 = I, z - 2 = 4 whence y = 3, 
I I I 2 

x = 3· then - + - = I - - = -
' y z x 3 

whence we obtain in succession 

z=4. 

z=6. 

2yz - 3y - 3z = 0, 4yz - 6r; - 6z + 9 = 9 and (2y-3) (2z-3) = 9 

Since y ~ x = 3, 2y - 3 ~ 3 and 2z - 3 ~ 3, only one case is 
possible, namely 

2y - 3 = 3, 2z _:____ 3 = 3 whence y = 3 and z = 3 

Hence, all the solutions of the problem are expressed by the fol­
lowing equalities: 

167. (a) From the given equation it obviously follows that 
x, y > n; let us put x = n + x 1 and y = n + y1• Then the equa· 
tion can be rewritten in the form 

I I I 
n+x1 + n+Y1 =-n 

whence 

(n2 + nxi) + (n2 + ny1) = 

= n2 + nx1 + ny1 + x1y1, that is X1Y1 = n2 (*) 

It is clear that if n is a prime number, equation ( *) possesses 
only three natural solutions, namely (xi, y 1) = (n, n), (xi. y 1) = 
= (I, n2 ) and (x1, yi) = (n2 , I), which lead to the following three 
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solutions of the original equation: 

(x, y) = (2n, 2n), (x, y) = (n + 1, n (n + 1)) 
and (x, y) = (n (n + 1), n +·1) (**) 

In case n = ab is a composite number, the equation may pos­
sess solutions in which x and y assume values different from 
those indicated by formulas (**), for instance, such is the solu­
tion corresponding to solution (x 1, yi) = (a2, b2 ) of equation (*). 

(b) If 1/x + 1/y = 1/n then, on clearing of fractions, we ob­
tain the equation 

nx+ny=xy 
which is equivalent to 

(x - n) (y - n) = n2 

(cf. the solution of Problem 167 (a)). The last equation possesses 
2v - 1 integral solutions where v is the number of the divisors 
of the number n2 (including 1 and the number n2 itself). To obtain 
all these solutions we must write down the 2v possible systems of 
the form x - n = d, y - n = n2 / d and x - n = - d, y - n = 
= - n2 /d (where d is a divisor of the number n2); the system 
x - n = - n, y - n = - n must not be considered because it 
leads to the result x = 0, y = 0 which should be discarded accord­
ing to the conditions of the present problem. 

If n = 14 then n2 = 196. The divisors of the number n2 = 196 
are 

1 · 
' 

2; 4· 
' 

7· 
' 

14; 28; 49; 98; 196 

Accordingly, we obtain the following 17 solutions of the equa-
ti on: 

x 

y 

15 16 18 21 28 42 63 112 210 13 

210 112 63 42 28 21 18 16 15 -182 

x 10 7 -14 -35 -84 

y -35 -14 7 10 12 

(c) The given equation can be brought to the form 

(x - z) (y - z) = z2 

12 

-'-84 

-182 

13 

(*) 

(cf. the solution of Problem 167 (a)). Now let t be the greatest 
common divisor of the three numbers x, y and z, that is x = x1t, 
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y = y 1t and z = zit where the numbers x1, y 1 and z1 are relati· 
vely prime. Further, let us denote by m and by n the greatest 
common divisors of the numbers x 1 and z1, and of the numbers y1 
and z1 respectively, that is let X1 = mx2, z1 = mz2 and y 1 = ny2, 
z 1 = nz~ where x2' z2 and y2' z; are two pairs of relatively prime 
numbers. The numbers m and n are relatively prime because such 
are xi. y 1 and z1. Since z1 is divisible both by m and by n we can 
put z1 = mnp (that is z2 = mp). 

Now let us substitute x = mx2t, y = ny2t and z = mnpt into 
the basic equation (*). On cancelling by mnt2 we obtain 

(x2 - np) (Y2 - mp)= mnp2 (**) 

The number x2 is relatively prime to p because m is the grea· 
test common divisor of the numbers X1 = mx2 and z1 = mnp; si· 
milarly, y2 is relatively prime to p. On opening the parentheses 
in equation (**) we find that the number x2y2 = x2mp + y2np is 
divisible by p. It follows that p = 1, and therefore the equation 
takes the form 

(x2 - n) (Y2 - m) = mn 

The number x2 is relatively prime to n because the three num· 
bers x 1 = mx2, !J1 = ny2 and z, = mn are relatively prime. Con• 
sequently, the number x2 - n is relatively prime to n and there· 
fore y2 - m is divisible by n. Similarly, X2 - n is divisible by m. 
Thus, x2 - n=+ m, Y2- m=+ n whence X2=+!J2= + m + n; 
consequently 

x=m(m+n)t, y=+n(m+n)t, z=mnt 

where m, n and t are arbitrary integers. 
168. (a) From the equality xY = yx it follows that the numbers 

x and y have the same prime divisors: 

- al a2 an d - 61 82 6n 
x-p, P2 ·· · Pn an Y-P, P2 ·· · Pn 

where pi, p2, ••• , Pn are prime numbers. Therefore from the equa· 
lity xY = yx it follows that 

a,y=~1X, <X2!J=~2X, ... , <Xn!f=~nX 

Let us assume that y > x; then the equalities we have written 
imply 

a, < ~,, a2 < ~2· ••. t <Xn < ~n 
Consequently, y is divisible by x, that is y = kx where k is an in­
teger. Th11 substitution of this value of y into the equality xY = Y x 
results in 
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Now, on extracting the xth root from both members of this 
equality we obtain 

xk = kx, that is xk-1=k 

Since y > x we have k > 1 whence x > 1. Further, we have 
22- 1= 2, and for x > 2 or k > 2 we always have xk-1 > k. In­
deed, for k > 2 and x ~ 2 there hold the inequalities 

xk-1~2k-1 > k 

because 23- 1 > 3, and fork= 2, x > 2 we have 

xk- 1=x > 2=k 

Therefore the given equation has a single integral solution, na· 
mely x = 2, k = 2, y = kx = 4. 

(b) Let us denote by k the ratio y/x; then y = kx. The substi" 
tution of this expression of y into the given equation yields 

Xkx = (kx)x 

On extracting the xth root from both members of the equality and 
dividing the result by x we obtain 

xk-1 = k 
whence 

I I k 

x = k k-1' y = kk k-1 = k k-1 

Let the rational number 1/ (k - 1) be equal to an irreducible 
fraction p/q. The substitution of p/q for l/(k- 1) into the for­
mulas we have derived yields 

k-1=!!.... k=l+g_=p+q k p+q p' p p • k-l =-q-; 
p p+q 

x = ( p ~ q ) q . y = ( p ~ q )-q -
Since p and q are relatively prime we conclude that for x and y 

to be rational numbers it is necessary that the whole numbers p 
and p + q should be equal to the qth powers of integral numbers; 
this is only possible when q = 1 because for q ~ 2 and p = n~ 
we have the inequalities 

nq<p+q<(n+l)q=nq+qnq-1+ q(q
2
- 1> nq-2+ ... 

Thus, all the positive rational numbers satisfying the given 
equation are expressed by the formulas 

x = ( p ~Ir. y = ( p ~ 1 r+' 
where p is an arbitrary integer different from 0 and -1. 
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169. Let n be the number of the pupils of the 6th form and m 
be the number of points received by each of them. Then the num· 
ber of points received by all the participants of the tournament is 
equal to mn + 8. This number is equal to the number of games 
played in the tournament. Since the total number of the partici· 
pants of the tournament is equal to n + 2 and each of them played 
one game with each of the other n + 1 participants, the total 
number of the games played by the participants is equal to 
(n + 2) (n + 1) /2 (in the product (n + 2) (n + 1) every game is 
taken into account twice). Therefore we obtain the equality 

mn + 8 = (n + 2) (n + I) 
2 

which, after simple transformations, yields 

n (n + 3 - 2m) = 14 

Here n is a whole number; the expression in the parentheses is 
also a whole number because m is either a whole number or a 
fraction with denominator 2. 

Since n is a divisor of 14 the number n can be equal to one of 
the numbers 1, 2, 7 and 14. The values n = 1 and n = 2 should 
be discarded because in these cases the total number of the par­
ticipants does not exceed 4 and hence if n were equal to 1 or 2 
the two pupils of the 5th form could not receive together 8 points. 

Hence, we h<:\ve n = 7 or n = 14. 
If n = 7 then 7(7 + 3 - 2m) = 14; m = 4. 
If n = 14 then 14(14 + 3 - 2m) = 14; m = 8. 
170. -Let the number of the pupils of the 5th form be n and 

the number of points they received by m. Then the number of the 
pupils of the 6th form is lOn and the number of points they re· 
ceived is 4.5m. The total number of the participants of the tour· 
nament is 11 n and the number of points they receive is 5 · 5m. 

The total number of points received by all the participants is 
equal to the number of the games they played. This number of 
the games is equal to 11 n ( 11 n - 1) /2 whence 

55 =lln(lln-1) 
. m 2 

Consequently 
m=n(lln-1) 

Each of the pupils of the 5th form played 1 ln - 1 games (be­
cause the number of the participants of the tournament is equal 
to 1 ln) and therefore the n pupils of the 5th form can receive 
n (11 n - 1) points only in the case when each of them wins all 
the games. This is only possible for n = 1 (since two pupils of 
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ihe 5th form cannot simultaneously win from each other). Thus, 
we obtain the single solution n = 1, m = 10. 

171. By the condition of the problem we have 

,Y p (p - a) (p - b} (p - c) = 2p 

where a, b and c are integral numbers and p =(a+ b + c) /2. 
Let us denote p - a = x, p - b = y and p - c = z; then we 
have 

"l/(x + y + z) xyz = 2 (x + y + z) 

On squaring both members of the equality we obtain 

xyz = 4 (x + y + z) 

Here x, y and z are either positive integers or halves of odd in­
tegers. The latter case is obviously impossible because in this case 
we have a fractional number on the left-hand side and an integral 
number on the right-hand side. Thus, x, y and z are integers. 

Now let us assume that x ~ y ~ z. From the equation we have 
derived it follows that 

and consequently 

4y + 4z x = -"--'---
y z - 4 

4y + 4z ~ 
yz-4 ~y 

Now we can multiply the last inequality by yz - 4 (it is clear 
that yz - 4 > 0 because, if otherwise, x would be negative) and 
consider the resultant quadratic inequality with respect to y: 

y2z - 8y - 4z ~ 0, that is (y - Yi) (y - Yz) ~ 0 (*) 

where y 1 and y2 are the roots of the quadratic equation 
zy2 - 8y - 4z = 0 (these roots depend on z): 

4 + ,Y16 + 4z2 

Y1= z , 
4 - ,Y16 + 4z2 

Y2= z 

Since Yz is negative, we always have y - y2 > 0 (because y is 
positive); consequently, for inequality (*) to be fulfilled it is ne­
cessary that the inequality 

y-yi~O 
should hold, whence 

:::;:::: 4 + -v' 16 + 4z2 

y""" z 

Thus, we have yz ~ 4 + ,Y16 + 4z2 and therefore z2 
- 4 ~ 

~ ,Y 16+4z2 (because z ~ y). On squaring both members of tht» 
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last inequality we obtain 

z4 
- 8z2 + 16 =< 16 + 4z2

, that is z4 =< 12z2 

This relation can obviously hold only for z ::::::;; 3. 
Now let us consider in succession the cases that can take place 

here. 
0 4 + ,Yl6 + 4 . 4y + 4z 

1. z= 1, y=< 1 < 9; the expresston x= 4 = yz-

= 4
Y +

4
4 is equal to a positive integer only when y = 5 (in this y-

case x = 24) or when y = 6 (in this case x = 14) or when 
y = 8 (in this case x = 9). 

2°. z = 2 y ~ 4 + ,y-i5-'+-4_·_4 < 5· the expression x = 4Y + 4z = 
' '""""' 2 ' yz -4 

= 4
2

Y + 
4
8 = 2

Y +
2
4 is an integral number and is not less than y 

y- y-
only when y = 3 (in this case x = 10) or when y = 4 (in this 
case x = 6). 

o 4+,Yl6+4·9 
3 . z = 3, y =< 3 < 4. For z = y = 3 the expres-

• 4Y + 4z · t · t 1 b s10n x = 
4 

ts no an m egra num er. yz-
Thus, we have found the following five solutions of the pro­

blem: 

x y z x+y+z=p a b c 

24 5 30 G 25 29 

14 6 21 7 15 20 

9 8 18 9 10 17 

to 3 2 15 5 12 13 

6 4 2 12 6 8 to 

t 72. The numbers in the first row of the table can be rewritten 
as 0 + I, 0 + 2, ... , 0 + n and the numbers in the last column 
cari be rewritten as 0 + n, n + n, 2n + n, ... , (n - l)n + n. Then 
each of the numbers in the table is represented as a sum of two 
numbers the first of which is one and the s1me for all numbers 
belonging to one row and the second of whicll is one and the same 
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for all numbers belonging to one column. Since the set of the 
chosen numbers involves one summand from every column and one-­
summand from every row, the sum of all the first summands of 
the chosen numbers is equal to 

n 2 (n - I) 
0 + n + 2n + ... + (n - 1) n = 2 

and the sum of the second summands is equal to 

1 + 2 + + _ n (n + I) 
... n- 2 

Thus, the total sum S of all the chosen numbers is 

S- n(n2 -n) + n(n+ I)= n(n2 + I) 
2 2 2 

173. Let the number n be odd. If the table is symmetric abo11t 
the diagonal indicated in the condition of the problem (we shall 
refer to it as the "principal" diagonal and denote it by the 
letter d) then to every number lying above d there corresponds 
a number lying below d which is equal to the former number; the 
place occupied by the latter number is symmetric about d to the 
place occupied by the former. It follows that the set of the num­
bers lying above d coincides with the set of the numbers lying 
below d. Therefore every number k occurs an even number of 
times ak (it is possible that ak = 0) in the set of those numbers 
of the table which do not belong to the diagonal d. Since every 
number k occurs exactly once in each of the n rows of the table 
(because the n places in every row are occupied by the n num· 
bers I, 2, ... , n arranged in some order) the total number of 
times the number k occurs in the given table is equal to the odd 
number n. Therefore the number k occurs the odd number of 
times n - ak in the diagonal d. It follows that every number k 
(where I ~ k ~ n) occurs at least once among the numbers 
forming the diagonal d (because 0 is an even number), and since 
the total number of the places on this diagonal is equal to n, each. 
of the numbers I, 2, ... , n occurs exactly once in this diagonal. 
(In particular, it follows that a1 = a2 = ... = an = n - 1.) 

The example of the table [ ~ ~ J shows that for an even num­

ber n the assertion stated in the condition of the problem may not 
hold. Using an argument similar to the above we can show that 
for an even n this assertion cannot hold (because in this case 
every number k occurs an even number of times n - ak in the set 
of the numbers forming the principal diagonal d). 

174. Let us denote the number standing at the intersection of the 
ith row and the jth column as a;i; the number a;i can assume one 
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of the values I, 2, ... , n2 (i, j=l, ... , n). Now let l= aj,f,; then, 
by the condition of the problem, 2=aj,j,, 3 =au 4 and so on up to 

.n2 = afn•ln'+i· Here. the indices jl' j 2 , i3, ... , fn'+I are not of 
course all different because each of them can take on only one of 
the n different values 1, 2, ... , n. It should be noted that every 
concrete value k occurs in the number sequence ii' i2' j2 , i3, 

i 3 , ••• , in" jn" in'+I exactly 2n times because the given table con­
tains n numbers in the kth row and n numbers in the kth column. 
Since every number "inside" the sequence ii. i2, i2 , ia, ... , in» 
in'+ 1 (that is every number except those in the first and in 
the last places) occurs exactly twice, we conclude that the fact 
that the value h must occur in the sequence the even number of 
times 2n implies that in'+1 = i 1, which means that the last number 
of the sequence coincides with its initial number ji. 

We thus see that to solve the problem we must determine the 
difference between the sum of the numbers in the jith row of the 
table and the sum of the numbers in the jith column of the table, 
the indices of the row and of the column coinciding. From the 
rule according to which the table is formed it follows that if 
a11, = s (where i =I= in• and, consequently, the pair (j, it) is not the 
last one in the above sequence, that is s =I= n2) then s + I = aid. 
In other words, to each number s belonging to the jith column 
and different from n2 there corresponds the number s + I in the 
jith column. All numbers s + I= au, obtained in this way coin· 
cide with all numbers belonging to the jith row except only one 
number I (which obviously cannot follow any of the numbers of 
the jith column because it is the smallest number in the table). 
Therefore if we denote as s1, s2, ... , Sn-I the numbers belong·ing 
to the jith column which are different from n2 , then those numbers 
belonging to the jith row which are different from I must be equal 
to s 1 + I, s2 + I, ... , Sn-I+ 1. Now it follows that the difference 
between the sum of the numbers in the jith column and the sum 
of the numbers in the jith row is equal to 

(s1 + S2 + ... + Sn-1 + n2
) -

-[(s1+I)+(s2+I)+ ... +Csn-1+I)+l]=n2 -n 

175. It is clear that if we denote by a;1 the element of the table 
standing at the intersection of the ith row and the jth column 
(where i = I, 2, ... , m and j = I, 2, ... , n) then in all tables 
obtained from the original table with the aid of the "admissible" 
transformations this place is occupied either by the number ail 
or by the number -aii (because the admissible transformations 
of the table reduce to changes of signs of some of the numbers 
contained in the table). Therefore the total number of the "ad· 
missible" tables cannot exceed 2mn, that is this number is finite. 
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(The number 2mn is equal to the number of all the possible sets of 
mn numbers a;i each of which can assume two values.) Since the 
number of the tables we deal with is finite it follows that there 
is one table among them for which the sum of all the numbers 
contained in it assumes the maximum possible value or there are 
several tables with one and the same sum of the numbers which 
exceeds the sums of the numbers contained in all the other a<l­
missible tables. If we suppose that a row or a column of such a 
"maximum" table contains numbers whose sum is negative then, 
on changing the signs of all numbers belonging to that row or to 
that column we obtain a new "admissible" table for which the 
sum of the numbers contained in it exceeds the sum of the num­
bers in the former table, whence it follows that in the "maximum" 
table the sum of the elements of any row and of any column must 
be nonnegative. 

176. Let us denote by S the sum of all numbers contained in 
the given table, by s; the sum of all numbers in the ith row 
(where i = 1, 2, ... , 100), by cri the sum of all numbers in the ;th 
column (where j = 1, 2, ... , 80) and, finally, by aii the number 
standing at the intersection of the ith row and the jth column. 
By the condition of the problem, we have 

(*) 
whence 

s,=ail+ai2+ +a1,so= 

=s10'1 +sicr2+ ... +siO'so=si(0'1 +0'2+ ... +crso)= 
=sis (i = 1, 2, .. ., 100) 

This means that either S = 1 or all the numbers s; are equal to 0. 
If s; = 0 for all i = 1, ... , 100 then, by virtue of (*), all the 
elements a;i of the given table are equal to zero. However, since 
by the condition of the problem the "corner" element a11 is greater 
than 0, we see that S = l. 

177. The equality of the numbers placed in the squares sym­
metric about any of the two diagonals implies that among the 
given 64 numbers there are not more than 20 different numbers 
(see Fig. 17 where the numbers 1, 2, ... , 20 symbolize some num­
bers a1, a2, ••• , a20 among which not all must necessarily be 
different from one another). The numbers belonging to one of the 
rows, say to the ith row (where i = 1, 2, ... , 8) coincide with 
the numbers of the (9 - i) th row and with the numbers of the ith 
and of the (9 - i) th columns. If there is an index i such that the 
sum of the numbers in the ith row exceeds 518, then the same is 
true of the (9 - i) th row, of the ith column and of the (9 - i) th 
column (see Fig. 17 where i = 3 and the corresponding rows and 
columns are shaded). On adding together these four (equal) sums 
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-Of the numbers we obtain a resultant number which cannot be less 
than 4·518 = 2072. In the resultant sum each of the four numbers 
placed in the squares which are cross-hatched in Fig. 17 occurs 
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twice while each of the numbers stand­
ing in the other shaded squares occurs 
only once. Therefore the total sum of 
all numbers occupying the squares 
which are shaded in the figure is not 
less than 2072 - a where a is the sum 
of the numbers written in those squares 
which are cross-hatched. By the con­
dition of the problem, there must be 
a:::;;; 112 (because 112 is equal to the 
sum of the numbers written in all the 
diagonal squares), and therefore the 
sum of the numbers in the shaded 

Fig. 17 squares is not less than 2072 - 112 = 
= 1960 whereas the total sum of all 

numbers written on the chess-board is equal to 1956. We have thus 
arrived at a contradiction, which proves the assertion of the problem. 

178. For difiniteness, let us index the rows in the upward di­
rection and the columns from left to right. The condition of the 

Y,+Xn 

'(!._,4 
.,+I; 'ti(;~ 

wxJ 

VtX2 -
7/J. Y/ !J, !J3 y· !Jn 

j 
(a) (b) 

Fig. i8 

-problem is equivalent to the following property: for any four in­
dices, i, j, k and l where i -=!= k and i -=!= l there holds the equality 
a;i + akt = aki + ait· In other words, for any rectangle ABCD 
(see Fig. 18a) on the board the sum of the numbers placed at its 
two opposite vertices A and C is equal to the sum of the numbers 
placed at the other two vertices B and D. Indeed, suppose that 
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two of the n rooks are placed at the vertices A and C; these rooks. 
can be of course moved to the squares B and D so that, as before,_ 
they can take a chessmen standing in the ith and in the kth rows 
and in the jth and in the Ith columns. Hence, when the rooks are-­
moved in this way the sum of the numbers written in the squares 
occupied by the rooks cannot change; that is why the sum of the 
numbers written in the squares A and C must necessarily be equal 
to the sum of the numbers written in the squares B and D. 

The further course of the solution is rather simple. Let us de­
note by Yi, Y2, ... , Yn the numbers written in the lowest row of 
the board and by Yi, Yi + X2, Yi + xa, ... , Yi + Xn the numbers 
written in its first column (see Fig. 18b). Besides, let us put 
xi = 0. It is clear that for the lowest (the 1st) row and for the 
leftmost (the 1st) column we have au =Yi =Xi+ Yi (because 
Xi = 0) and an = xi +Yi· On the other hand, if i > 1 and j > 1 
then the number aii written in a square M can be found usinv, 
the square MPOQ indicated in Fig. 18b: by what has been proved, 
we have 

a11 +Yi= (x, +Yi)+ Y1 whence a11 = x, + Y1 

It is easily seen that if there exist numbers xi, x2, ... , x,; 
yi, y2, ... , Yn such that a;; = X; + y; then the condition indicated 
in the statement of the problem which is related to the arrange­
ment of the rooks on the board (the total number of such "ad­
missible" arrangements of the rooks is equal to n!; why?) must 
necessarily hold. 

179. It is clear that for j = k = i the equation connecting X;;, 

Xjk and Xki takes the form 3xii = O; hence, Xii = 0 for all i = 
= 1, 2, ... , n. Now let k = j =I= i; then the equation takes the 
form 

X1j + Xfj + X11=0 

whence, since Xii = 0 we obtain Xii = -Xif. Finally, let us add 
together all the equalities Xii + Xjk + Xki = 0 corresponding to 
two arbitrary fixed values of i and j and to k = I, 2, ... , n; this. 
results in 

nx11 + (xn + X12 + ... + Xfn) - (x11 + X12 + ... + X1n) = 0 
(here we have used the relation Xki = - X;k). Let us denote 

1 
n-(xil+x12 + ••. +x1n)=t,, i=l, 2, ... , n 

It follows that 
X11 = f1 -ti 

180. It is clear that the assertion stated in the problem holds. 
for a "board" of dimension IX 1 (consisting of one single square; 
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in this case the assertion is trivial because the "board" contains 
a single square in which the star is placed). This makes it pos­
sible to use the method of mathematical induction. For n = 2 the 
board obviously contains a column (and, consequently, a row as 
well) in which there is exactly one star. On interchanging (if ne­
·cessary) the rows and the columns so that the empty square 
occupies the rightmost upper place we obtain a table having a 
"triangular" structure (see Fig. l 9a where the sign "+" indicates 
that in the corresponding square the star may or may not stand). 
Let us prove that for an arbitrary n as well the rows and the co­
lumns of the table can be interchanged in such a way that the 

* + * + + * + + + * + + + + * 
(a) (b) 

Fig. 19 

table takes a "triangular" form in which all the stars in the table 
are placed along the diagonal joining the left upper corner of the 
table and the right lower corner and, perhaps, below that dia­
gonal while all the places above the diagonal are empty. In.deed, 
let us suppose that this assertion has already been proved for all 
tables of dimension (n - l) X (n - 1) satisfying the required con­
ditions and let us consider a table of dimension n X n satisfying 
these conditions. The latter table contains a column in which there 
is exactly one star. Let us move this column to the last place and 
then interchange the rows so that the star occupies the lowest 
place in that column (see Fig. 19b). The resultant table of dimen­
sion n X n contains a "sub-table" of dimension (n - l) X (n - 1) 
which also satisfies the conditions of the problem. By the hypo­
thesis, the rows and the columns of this sub-table can be inter­
changed so that it takes the "triangular" form; after the rows and 
the columns are interchanged in this way the original table of 
dimension n X n also assumes the "triangular" form. 

The "triangular" structure of the tables we deal with (we can 
limit ourselves to the tables having this "triangular" structure 
because the properties of the tables we are interested in are pre­
served when the rows and the columns are interchanged in an ar­
bitrary manner) prov-es the equivalence of the rows and the columns 



Solutions 25f 

of the tabl,es, whence it follows that the assertion of the problem 
(which is quite obvious for the "triangular" tables) holds in the 
general case as well. 

181. (a) On a board of dimension 4 X 4 there are 4 columns, 
4 rows and 2 · 7 = 14 "inclined lines" of squares parallel to the 
diagonals of the table (among them there are 4 "inclined lines" 
consisting of one corner square). It can readily be seen that each 
of these 4 + 4 + 14 = 22 vertical, horizontal and inclined lines 
of squares contains an even number of squares (more precisely, 
this number is equal either to 0 or to 2) which are shaded in 
Fig. 20a. By the condition of the problem, originally only one oi 

(a) (b) (C) 

Fig. 20 

these squares contains the sign "-"; therefore under all the ad· 
missible changes of the signs the number of shaded squares 
marked with the sign "-" remains odd and hence it can never 
become equal to 0. 

(b) For any location of the sign "-" on the board we can 
always "cut out" of the given board of dimension 8 X 8 a 
"smaller" board of dimension 4 X 4 so that the arrangement of 
the signs on the latter board is as was indicated in the condition 
of Problem 181 (a) (see Figs. 20, b, c where two possible variants 
of the location of the sign "-" on the larger board are shown). 
Since the admissible changes of the signs on the larger board 
generate the corresponding changes of the signs on the "smaller" 
board which satisfy the conditions of Problem 181 (a), the re­
quired proof follows from the result established in Problem 
181 (a). 

182. (a) First of all let us find the number of the possible 
quadratic arrays of squares of dimension 3 X 3 and of dimension 
4 X 4 which can be placed on the chess-board. It is clear that the 
left lower corner of a quadratic array of squares of dimension 
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3 X 3 may coincide with any square belonging to the quadratic 
array of dimension 6 X 6 which is shaded in Fig. 21 by horizontal 
lines and that the left lower corner of a quadratic array of squares 
of dimension 4 X 4 may coincide with any square of the (smaller) 
quadratic array of dimension 5 X 5 which is shaded in the figure 
by vertical lines. Thus, the total number of quadratic arrays of 
squares of dimension 3 X 3 and of dimension 4 X 4 that can be 
placed on the board is equal to 6·6 + 5·5 = 36 + 25 = 61. Con­
sequently, starting with the board whose all squares contain the 
signs "+" and performing all the admissible operations described 
in the condition of the problem we can obtain not more than 261 

possible arrangements of the signs in all the squares of the board 
because in each of the 61 quadratic arrays 
of dimensions 3 X 3 and 4 X 4 we may or 
may not change all the signs independent­
ly of the other squares of the table. Since 
the total number of the possible arrange-

Fig. 2i 

ments of the signs "+" and "-" in the 64 
squares of the chess-board is equal to 264> 
> 261 , it is impossible to obtain all the pos­
sible arrangements of the signs on the 
board starting with the arrangement in 
which all the squares contain only the 
signs "+". Further, if we take an arran­
gement of the signs "+" and "-" which 
cannot be obtained in the way described 

above from the arrangement involving only the signs "+" then, 
conversely, starting with the former arrangement of the signs 
we can never arrive at the arrangement involving only the 
signs "+". It follows that the answer to the question posed in the 
problem is negative. 

(b) This problem is very close to Problem 182 (a). The total 
number of the quadratic arrays of squares of dimension 2 X 2 
which can be taken on the chess-board is equal to 7 · 7 = 49 and 
i:he number of pairs of neighbouring rows and of neighbouring 
-columns of the board is equal to 7 + 7 = 14; hence, there exist 
1049+14 = 1063 ways in which the last digits of the numbers placed 
in the squares of the board can be changed. (Among these 1063 

ways there is one under which none of the digits is changed.) It 
follows that starting with an arrangement of numbers such that 
all the numbers end with 0 we cannot obtain all the possible ar· 
rangements of the last digits of the numbers placed in the 64 
squares of the board because the number of such arrangement:; 
is equal to 1064 > 1063• Consequently, there are such arrange­
·ments of the last digits from which it is impossible to pass to the 
,case when all the last digits are equal to 0. 
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Remark. It is clear that this solut:on of the problem and the negative an­
-swer to the question stated in the problem remain valid in the general case when 
it is required to achieve the divisibility of all the numbers in the tab le by any 
natural number n, say by the number 1976, instead of the divisibility by 10. 

183. (a) The answer to the question is positive. It is clear that 
we can arrive at the case when at least one of the three sets con­
tains exactly one ball by performing a certain number of times 
the operation of taking simultaneously one ball from each of the 
three sets of balls. Next we duplicate the number of the balls in 
the set (or in the sets) containing 1 ball and then again take 
simultaneously one ball from each of the three sets. This results 
in a decrease by 1 of the numbers of the balls in those sets for 
which these numbers are different from 1 while those sets each of 
which contains exactly one ball retain their numbers of balls 
(equal to 1). Proceeding in this way we can arrive at the case 
when each of the sets contains exactly one ball, after which all 
the remaining balls can be taken. 

(b) This problem is quite similar to Problem 183 (a) (it should 
be noted that the numbers of balls dealt with in Problem 183 (a) 
can be arranged as a "table" consisting of one row and three 
columns in which every column contains one number). First let 
us consider the numbers belonging to only one row, say to the 
first. Then the admissible operations allow us to duplicate any of 
the numbers in that row or to subtract unity from all these num­
bers. Therefore, in exactly the same manner as in the solution of 
Problem 183 (a), we can make all the numbers in this row turn 
into 0. After this, in just the same way, we can make all the num­
bers of the second row turn into 0 and then perform the same ope­
rations on all the other rows of the table. 

184. Let us write the number a in the "binary number system" 
that is in the form 

where each of the "digits" a.o, ai, ••• , CX.n-2, CX.n-t, an is equal to 0 
or to 1 (we can of course assume that the digit an of the number a 

is equal to 1). It is clear that if a is an even number then a.0 = 0 
and a1 = a/2 =an• 2n-l +an-I • 2n-2 + an-2 • 2n-3 + ... + a1 • 1. 
If a is an odd number, we have a.0 = 1, and in this case the num­
ber a1 = (a - 1) /2 has the above structure. Thus, if the binary 
representation of the number a is written as a sequence of "digits" 
0 and 1 in the form a = CX.nCX.n-1CX.n-2 • •• a.1a.o then the binary re­
presentation of a1 has 1.he form a, = CX.nCX.n-1CX.n-2 ••• a.1. Ac­
cordingly, the number a2 is written as a2 = CX.nCX.n-1 ••• a.2, the num­
ber a3 as a 3=anCGn-1 ••• a 3 and so on up to the number an=an= 1 
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inclusive. On the other hand, we obviously have b1 = 2b, b2 = 
= 2b 1 = 22b, b3 = 23b and so on up to the number bn = 2nb. 

It is evident that the number ai =anan-I ... ai =an· 2n-i + 
+an-I· 2n-t-I + ... + ai+I · 2 +ai · 1 (where i = 0, 1, 2, ... , n) 
is odd when the digit rxi is equal to 1 (we remind the reader that 
a; can only be equal to 0 or 1). Thus, in this case we have 
b1 = 2ib = (ai · 2i) b. Therefore the sum we are interested in which 
involves all the numbers bi corresponding to the odd numbers a; 
can be written in the form 

[an·2n+an-1·2n-I+ ... -l-a1·2+ao·l]b= 

= anan-I ... a1a0 • b =ab 

where only the summands corresponding to the values of the 
"digits" tx:n, rxn-i, ... , ao equal to 1 give real inputs to the sum 
an· 2n +an-I· 2n-I + ... + a1 • 2 + ao · 1 =a. 

185. A concise solution of the problem can be obtained by using 
the method of mathematical induction. Let us agree to denote by 
Uk the kth Fibonacci number where k = 1, 2, 3, .... Let us sup­
pose that the assertion of the problem has already been proved 
for all natural numbers n smaller than the kth Fibonacci number 
Uk (by the way, the validity of the assertion for all numbers/smal­
ler than us = 5 can be verified directly). It is clear that the same 
assertion will hold for the number Uk itself as well. Further, since 
all the numbers lying between Uk and uk+1 = Uk + Uk-I can be 
represented in the form Uk + m where 0 < m < Uk-I and since, 
by the induction hypothesis, every number m smaller than Uk-- 1 
can be represented in the form of a sum of some different Fibo­
nacci's numbers whose indices are less than k - 1, the number 
n = Uk + m can also be represented as a sum of Fibonacci's num­
bers (among which the greatest number is equal to Uk while the 
other numbers have indices less than k - 1). Thus, we have shown 
that the assertion also holds for all natural numbers smaller than 
Uk+i, whence it follows that it is true for all the natural numbers. 

Remark. What has been proved implies that the sums of Fibonacci's numbers 
we have considered (in these sums we of course put 2 = u3 but not 2 = I + 
+ I = u1 + u 2 and 4 = 3 + I = U4 + u 2 but not 4 = 2 + I + I = U3 + u2 + u1 
and the like) cannot involve two "neighbouring" Fibonacci's numbers (why?). 
It can easily be shown that the set consisting of all possible sums of Fibonac­
ci's numbers satisfying the last condition is nothing but the set of all natural 
numbers and that every number occurs in the set of all such sums exactly 
once. 

186. We are interested in the sums Sk=Uk+I + uk+2 + ... + Uk+a 

of eight consecutive Fibonacci numbers. Since Fibonacci's num­
bers obviously form an increasing sequence (that is u1 = u2 < 
< u3 < u 4 < ... < Un < Un+1 < ... ) , it is clear that to prove 
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the assertion of the problem it is sufficient to show that the sum sk 
lies between Uk+9 and U11+10, that is Uk+g < sk < Uk+10. It is ob· 
vious that 

Uk+9 = Uk+s + Uk+7 < Uk+B + Uk+7 + uk+6 + ... + Uk+I = sk 

and hence it only remains to prove the inequality Sk < uk+10. It 
can easily be seen that the sum Sn = U1 + u2 + U3 + ... + Un of 
the 'fi,rst n Fibonacci numbers is smaller by unity than the 
(n + 2) th Fibonacci number Un+2· For instance, this can be proved 
with the aid of the method of mathematical induction. Indeed, we 
obviously have S2 = 1 + 1 = 3 - 1 = u4 - 1. On the other hand, 
if the assertion we have just stated holds for an index n, then on 
replacing n by n + 1 and using the induction hypothesis we ob· 
tain 

Sn+I = U1 + U2 + • • • +Un+ Un+I =Sn+ Un+I = 
= (Un+2 - 1) + Un+I = (Un+I + Un+2) - l = Un+3 - l 

which is what we intended to prove. Now we can write 

sk=uk+1+uk+2 + •.. +uk+s=Sk+s-Sk= 

= (uk+IO - l) - (uk+2 - l) = Uk+IO - Uk+2 < uk+IO 

which completes the solution of the problem. 
Remark !. Evidently, in just the same way we can prove that a sum of any 

m consecutive Fibonacci numbers cannot be equal to a Fibonacci number for 
m~3. 

Remark 2. Ihe inequality Sk < Uk+to can also be proved by using the follow­
ing consecutive 'transformations of the expression for uk+10: 

uk+IO = uk+9 + uk+B = (uk+B + uk+1) + uk+B = 

= uk+B + uk+7 + (uk+7 + uk+6) = uk+B + uk+7 + uk+6 + (uk+6 + uk+5) = 

= uk+s + uk+7 + uk+6 + uk+5 + (uk+5 + uk+4) = · · · 

· · · = uk+B + uk+1.+ · · · + uk+2 + (uk+2 + uk+1) = sk + uk+2 > sk 

187. Let us agree to denote as a" a2, aa, ... the remainders 
resulting from the division by 5 of the Fibonacci numbers 
u" u2, ua, . . . • It is obvious that from the equality Uk = Uk-·I + + Uk-2 where k = 3, 4, 5, ... it follows that 

ak= { 
ak-1 + ak-2 for ak-1 + ak-2 < 5 

ak-1 + ak-2 - 5 for ak-1+ak-2~5 

Formulas (*) make it possible to find any number of 
the sequence ak: 

(*) 

terms of 

1; 1; 2; 3; 0; 3; 3; l; 4; O; 4; 4; 3; 2; O; 2; 2; 4; I; O; I; l; 
--~~~~~~~~---~~--~~~~~~-' 

20 numbers 
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It is seen that the computation of any term of the sequence ak 
following the first 20 terms can be performed without using for. 
mulas (*) because a21 = a1 and a22 = a2, and consequently, by 
virtue of (*), a23 = a3, a24 = a4 and so on, that is the "sequence 
of the remainders" a 1, a2, a3, ... is periodic, the period consisting 
of 20 numbers. Since the first group of 20 remainders ak has zeros 
at the 5th, 10th, 15th and 20th places, the same is true of all the 
other places whose indices are multiple of 5. 

188. Let us leave only the last four digits (and discard the 
other digits) in each member of the Fibonacci sequence which is 
written with the aid of five or more digits. This results in a num· 
ber sequence whose every member is smaller than 104• Let us 
denote by ak the member of this sequence occupying the kth place. 
Note that if the numbers ak+i and ak are known, it is possible to 
find ak-I because the (k - l)th member of the Fibonacci sequence 
is equal to the differente between its (k + 1) th and kth members, 
and the last four digits of the difference can be determined from 
the last four digits of the minuend and subtrahend. It follows that 
if we have ak = an+k and ak+I = an+k+I for some indices k and n 
then Gk-I = Gn+k-1, Gk-2 = Gn+k-2, ... , a1 = Gn+I· Since a1 = 0 we 
conclude that an+i = 0, i.e. that the number occupying the 
(n + 1) th place in the Fibonacci sequence ends with four noughts. 

It remains to show that among the 108 + 1 pairs of numbers 

a10•, a10•+1 

a1o•+i, a10•+2 

there are at least two coincident pairs. But this is quite evident 
because, on the one hand, each of the numbers al> a2, a3, ... , a108+2 

does not exceed 104, and, on the other hand, using the 104 num­
bers O; 1; 2; 3; 4; ... ; 9999 we can form only 104 • 104 = 108 

different pairs of numbers (since the first number in a pair can 
assume 104 different values and the other number can also assume 
104 different values). 

Remark. It is even possible to indicate exactly the first number among the 
mem)Je_rs of Fibonacci's sequence which has four noughts at the end of its de­
cimal representation; the index of this number is equal to 7501. 

189. Since for n > 1, we have 

a~= an-I+-- =a~_ 1 +2 + - 2- > a;_1+2 ( 
1 )2 1 

an-I an-I 
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and therefore the equality ai = I implies 

a~> 1 +2=3; a~> I +2·2=5; a~> 1 +3·2=7; ... 
. . . ; ai00 > 1 + 99 • 2 = 199, 

whence it follows that a 100 > -y'l99 > 14. Similarly, using the in· 
equality 

a;= (an-1 +-1-)2 = a;_I + 2 + _2_1_ ::;;;;a;_1 + 3 
an-I an-I 

which also holds for all n > 1 (it turns into equality only for· 
n = 2) we obtain 

a~= 1+3 = 4; a~< 1+2 · 3 = 7; a~< 1+3 · 3 = 10; ... 
. . . ; af 00 < 1 + 99 · 3 = 298 

whence it follows that a 100 < -y'298 < 18. 
190. First solution. Let us add to the given sequence one more· 

number an+i such that I an+1 I= I an + I I and then square all the 
equalities given in the condition of the problem (including the 
"additional" equality connecting the numbers an and an+i): 

a; = 0; a~= ( a1 + 1 )2 = ai + 2a1 + 1; 

a~=(a2 + 1)2 =a~+2a2 +1; ... ; a;=a;_ 1 +2an_ 1 +1; 

a~+I =a~+ 2an + l 
On adding together all these relations we obtain 

ai + a~ + a~ + . . . + a~ + a~+ 1 = 0 + ai + a~ + ... 
. . . + a~_ 1 +a~+ 2 (a1 + a2 + a3 + ... +an)+ n • 1 

The last equality implies 

2 (a1 + a2 + a3 + ... +an)= - n + a~+i ~ - n 

and consequently 

Second solution. For n = I the arithmetic mean under consi· 
deration is equal to aif 1 = O; for n = 2 (in this case we obviously 
have a~= 1, and hence a2 is equal to +1 or to -1) it is equal 
to (a1+a2)/2=(0+a2)/2=a2/2, that is it is equal to 1/2 or to 
-1/2; thus, in these two cases the required inequality is fulfilled. 
Now let us use the method of mathematical induction; to this end 
we assume that in the case when the number of the members of 
the given sequence is less than n the assertion stated in the prob-

9-60 
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!em holds and then prove that under this assumption it holds for 
the c.'."!se of n members as well. Let ai, a2, ... , an be a sequence 
of n numbers satisfying the conditions of the problem and let am 
(where the index m takes one of the values l, 2, 3, ... , n) be the 
smallest of these numbers. In this case we can of course assume 
that am < 0 (if all the given numbers are nonnegative no proof 
is needed because the arithmetic mean of such numbers exceeds 
-1/2) and that am= - am-1 - 1 (because only in this case we 
have I am I= I am-1 + l I and am < am-d. This means that we can 
assume that the arithmetic mean of the numbers am-i and am is 
equal to -1/2: 

am-1 +am 
2 =-2 

Now it should be noted that if we exclude the numbers am-I 
and am from the given sequence the remaining m - 2 numbers 
also form a sequence satisfying the required conditions. Indeed, 
it is clear that m =I= 1 (because a1 = 0 and am < 0); this means 
that the number llm-t makes sense. Further, if m = 2 then am = 
= a2 = - 1 and aa = 0 (because I aa I= I a2 + l I), and therefore 
we can discard the numbers a1 and a2 and consider the sequence 
as starting with the number a3 = 0. Similarly, in case m = n we 
can discard the last two terms an-t and an, the remaining numbers 
satisfying the required equalities. Finally, if 3 ~ m ~ n - 1 then 

I llm-2+ 11=1 llm-1 l=l -am- l I and I llm+1 l=J am+ 1 :=I -am-1 I 

whence it follows that I llm-2 + l I= I am+1 I; this means that the 
numbers ai, a2, ... , llm-2, am+1, ... , an do in fact satisfy the re­
quired conditions stated in the problem. 

By the induction hypothesis which holds for n - 2 numbers we 
have 

a, + a2 + ... + am-2 + am+i + ... +·an ~ _ _!_ 
n-2 ~ 2 

that is a, + a2 + ... + llm-2 + am+t + ... + an ~ - (n - 2) /2. 
On the other hand, as we already know, there must be 

am-1 +am l th t . + l 2 =-2, a lS llm-1 Um=-

and therefore 

a,+ a2 + ... + llm-2 +am-I+ llm + llm+I + 
l I 

... +an>-2 (n-2) + (-1)= - 2n 

We thus see that (a,+ a2 + ... +. an)/n ~ - 1/2 which is what 
we intended to prove. 
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191. It is quite clear that only one of the first two numbers a0 
and a1 can be the greatest member of the given sequence (be­
cause for k ~ 2 every ak must necessarily be less than max 
[ a,,_i. ak-2] *. It can also be easily seen that in the sequence of 
maximum length the number a1 must be the greatest one because 
if a sequence starts with numbers a1, a2, a3, ... where a1 > a2 
then we can "continue the sequence to the left" without changing 
its properties by writing it as ao = a1 - a2, ai, a2 =I a1 - ao I, 
a 3, ••• (here we obviously have a1 > a0 = a1 - a 2). Therefore in 
what follows we shall limit ourselves to the investigation of the 
sequences whose first member a1 is the greatest one (however, it 
should be taken into account that when stating the final answer 
to the problem we should increase by 1 the length of the sequence 
because of the presence of the number ao = a1 - a2 having the 
"zeroth" index). 

It is evident that if the greatest member of a sequence is a 1 = 1, 
this sequence consists of not more than two numbers (it can be· 
continued by adding only one number a2 = 1). If the greatest 
member of a sequence is a1 = 2, the sequence contains not more 
than three members (in case a2 = 2 the sequence has the form 2, 
2 and in case a2 = 1 it has the form 2, 1, 1). If a1 = 3 the se­
quence contains not more than five members (if we put a2 = 3 or 
a2 = 2 or a2 = 1 we arrive at the sequences 3, 3 or 3, 2, 1 or 
3, 1, 2, 1, 1 respectively). These examples hint that the "optimal" 
sequence probably begins with the numbers a1 = n and a2 = 1, 
its initial part being of the form 

n; 1; n - 1; n - 2; 1; ... (*) 

It follows that on denoting the number of the members forming 
sequence (*) by kn we can write 

kn= 3 + kn-2 (**) 

(because, starting with the 4th member a4 = n - 2, we arrive 
at a similar sequence for which n is replaced by n - 2). 

From relation (**) we find 

k1 = 2, k2 = 3, k3 = 3 + 2 = 5, k4 = 3 + 3 = 6, 

k5 =3 + 5=8, k6 =3 + 6=9, 

All these numbers kn can be described by the formula 

kn=[3n: l] (***) 

* Cf. the footnote on page 265. 

9* 
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where, as usual (cf, page 36), the square brackets designate the 
integral part of a number. Formula (***) can obviously be simply 
derh·ed from (**) with the aid of the method of mathematical in­
duction. Indeed, as was shown, it holds for n = 1 and n = 2; if 
(***) holds for a value n - 2 then for n this relation also holds 
because 

kn= kn-2 + 3 = [ 3 (n -22) + I ] + 3 = [ 3n: I] 

Thus, we have already constructed sequence (*) (which starts 
with its greatest number) of length kn which is connected with 
the magnitude n of the greatest number by relation (***). Now 
we shall show that if the sequence described in the conditions of 
the problem starts with the greatest number a1 = n then its 
length cannot exceed the number kn defined by fnrmula (***). To 
carry out the proof it is natural to use the induction method. Let 
us assume that the proposition we have stated has already been 
proved for all n smaller than a certain value (the fact that this 
proposition is true for n = 1, n = 2 and n = 3 was already 
checked) and then show that under this assumption the proposi­
tion is true for that value as well. Indeed, suppose that we are 
given a sequence satisfying the conditions of the problem which 
starts with the numbers 

n, m, ... 

where m,,:;;:: n. Next let us consider the possible variants (corres· 
ponding to different values of m) that can take place here. 

1°. If m = n the sequence ends with the second term; the pro· 
position we have stated obviously holds for such a sequence. 

2°. If n is an even number and m = n/2 then the sequence ends 
with the third term, namely it has the form n, n/2, n/2; in this 
case the length of the sequence obviously does not exceed kn 
either. 

3°. If n > m > n/2 then after the first member n of the se· 
quence has been discarded, we obtain the sequence m, n - m, ... 
which also starts with its greatest member m. By the induction 
hypothesis, the remaining sequence contains not more than km = 
= [ (3m + 1) /2] members. Since we have discarded one member 
and since m,,:;;:: n - 1, the number of the members of the entire se­
quence is not more than 

l + [1~: I]~ l + [ 3 (n - 21) + I]= [ 3;] ~ [ 3n: I]= kn 

4°. Finally, if, m < n/2 then the beginning of the sequence is 
of the form n, m, n - m, n - 2m, m, . . . If in this case we ha vc 
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n - 2m ~ m (that is if m ~ n/3) then the sequence obtained 
after the first three members of the given sequence have been dis­
carded (this resultant sequence starts with the number n - 2m) 
is such that its greatest member is the first one; therefore, accord­
ing to the induction hypothesis, the number of terms in the resul­
tant sequence does not exceed 

k = [ 3 (n - 2m) + I ] _.. [ 3 (n - 2) + I ] = [ 3n + I] _ 3 n-2m 2 ~ 2 2 

(because m ~ I), and consequently the total number of the mem­
bers of the given sequence does not exceed [ (3n + I) /2] = kn. If 
n - 2m < m (that is m > n/3) then the sixth member of the se­
quence is equal tom -(n- 2m) and hence it is less than m. The­
refore in this case the sequence obtained after the first four terms 
have been discarded is such that its greatest member m stands at 
the beginning of the sequence and hence the number of the terms 
of the resultant sequence does not exceed km = [ (3m + I) /2] ::::;; 
:::;;; [ (3n + 2) /4]. Consequently, the total number of terms of the 
given sequence is again not greater than km + 4 ~ [ (3n + 2) / 4]+ 
+ 4,:::;; [(3n + 1)/2] =kn. 

We have thus completed the proof of the assertion for the se­
quences beginning with their greatest members. It follows that the 
sequence described in the condition of the problem cannot contain 
more than 1 + k1957=I+[(3·1967 + 1)/2] = 2952 members; the 
number of the members of the sequence is equal to 2952 if and 
only if the sequence begins with the numbers 1966; 1967; I; 1966; 
1965; 1; 1964; 1963; 1; .... 

192. In this problem we shall use the proof by contradiction. 
Let us suppose that the sequence ai. a 1a 2, a 1ct2cta, ... contains 
only a finite number of composite numbers. It is clear that in this 
case the sequence ct1, a2 , aa, ... contains only a finite number of 
even digits (because every number whose decimal representation 
ends with an even digit is a composite number), and consequently 
all the digits ctn, an+i. CXn+2. . . • (beginning with the nth digit 
where n is some index) must be odd. In just the same way we 
can show that in the given sequence cti. a.2, a3, ••• of digits there 
are only a finite number of fives (because every number having 5 
as its last digit is divisible by 5). Thus, beginning with some place 
in the sequence, the digits following this place can only be ones, 
threes and sevens (because, by the condition of the problem, this 
sequence of digits does not contain nines). Further, when 3 is ad­
ditionally written at the end of a number the remainder resulting 
from the division of the number by 3 does not change and when 
one or seven is additionally written at the end of a number the 
remainder resulting from the division of the number hy 3 in· 
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creases by 1 (because 7 = 2 · 3 + 1). Therefore, if the number of 
ones and sevens in the sequence of digits is infinite then every 
third number ending with 1 or with 7 is divisible by 3, that is it 
is a composite number. Thus, for the sequence cx1, cx1cx2, a 1cx2cx3, ..• 
to possess the property that only a finite number of its members 
are composite numbers we must additionally write at the end of 
the given numbers the digit 3 beginning with the Nth place in 
the sequence of digits ai, a2, as, ... where N is a certain value of 
the index. In this way we arrive at a sequence of numbers having 
the form 

where 

A= a 1a 2 ••• aN-l and B = 111 ... 1 (k = l, 2, 3, ... ) 
'------" 

k times 

Now let p be a prime divisor of the number A (it is possible 
that p coincides with A). We can assume that p is different from 
2 and from 5 because if N is sufficiently large the digit CXN-l is 
equal to 1 or to 7 or to 3 (the case CXN-I = 3 is not excluded here). 
Further, there are infinitely many values of k such that the number 
B written with the aid of k ones is divisible by p (see the remark 
at the end of the solution of Problem 144). To all these values of 
k there correspond composite numbers M = 10kA + 3B (which are 
divisible by A). This contradicts the assumption that among the 
numbers M there are infinitely many composite numbers, which 
proves the assertion stated in the problem. 

193. (a) The last digit of a sum of four numbers and the sum 
itself are simultaneously even or odd depending solely on whether 
the digits in the given sequence are even or odd. Let us agree to 
symbolize by the letter o an odd number and by the letter e an 
even number. It is readily seen that the beginning of the given 
sequence can be written symbolically in the form 

ooooeooooeooooe ... 

and that this sequence continues periodically: after every four­
tuple of odd numbers o there appears one even number e. It 
follows that the sequence 1234 having the structure oeoe canhot 
occur in the given sequence of digits. 

(b) The number of different four-tuples of digits each of which 
assumes the ten possible values 0, 1, ... , 9, is equal to 104• There­
fore in the sequence of 10 004 digits one and the same four-tuple 
of digits (standing side by side) must necessarily occur twice. 
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Further, if the ith, the (i + I) th, the (i + 2) th and the (i + 3) th 
digits coincide with the jth, the (j + I) th, the (j + 2) th and the 
(j + 3)th digits respectively (where we assume that j < i) then, 
by virtue of the rule according to which the given sequence is 
formed, the (i - I) th digit coincides with the (j - 1) th digit, the 
(i - 2) th digit coincides with the (j - 2) th digit etc. Conse· 
quently, the (i - j - l)th, the (i- j)th, the (i - j + l)th and the 
(i - j + 2) th digits of the given sequence must necessarily coin· 
cide with the 1st, the 2nd, the 3rd and the 4th digits respectively, 
that is they form the four-tuple 1975. 

194. The answer to the first question posed in the problem can 
be found quite simply. It is clear that among the 8-digit numbers 
and the numbers consisting of a smaller number of digits there is 
no number the sum of whose digits is equal to 9·9 = 81 and that 
among the 9-digit numbers there is exactly one such number, na· 
mely 999 999 999; accordingly, in sequence (**) the number 81 oc­
curs for the first time in the 111 111 l I Ith place; the number fol­
lowing 81 in sequence (**) is equal to 9 (9 is equal to the sum of 
the digits of the number l 000 000 008). 

The answer to the second question can also be found in a rather 
simple way. Since among the numbers belonging to sequence (**) 
which correspond to the numbers in sequence (*) consisting of 
not more than three digits the number 27 occurs exactly once (in 
the 11 lth place in sequence (**); in sequence (*) this place i:; 
occupied by the number 999), it is clear that the number 27 can 
not repeat four times here. As to the 4-digit numbers of sequence 
(*), among them there are 4-tuples of consecutive numbers whose 
sums of digits are equal to 27: these are the numbers 3969; 3978; 
3987 and 3996; it is evident that the corresponding numbers 27, 
27, 27, 27 in sequence (**) precede the first triple of the numbers 
36 in this sequence (they even precede the first number 36 corres· 
ponding to the number 9999 in sequence (*)). 

The last question of the problem is stated rather ambiguously; 
however it is closely related to the way in which the four-tuple of 
the numbers 3969; 3978; 3987; 3996 indicated above can be deter· 
mined. We do not go into detail here and only limit ourselves to 
indicating that the structure of the numbers forming sequence (**) 
is connected with the monotonicity of the sequence of digits in the 
numbers resulting from the division by 9 of the numbers belonging 
to sequence (*). In particular, the numbers 441 = 3969/9; 442; 
443; 444 corresponding to the four-tuple of numbers of sequence 
(*) considered above are such that their digits do not form in· 

.creasing sequences. Let us write down all numbers from 1 to I 10 
as the following table in which the two-digit numbers whose digits 
,(different from 0) do not increase and the three-digit numbers 
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whose digits (different from 0) do not decrease are printed in 
bold face type: 

2 3 4 5 
12 13 14 15 16 

23 24 25 26 27 

34 35 36 37 38 

45 46 47 48 49 

56 57 58 59 60 

67 68 69 70 71 

78 79 80 81 82 

89 90 91 92 93 

100 101 102 103 104 

6 

17 

28 

39 

50 

61 

72 

83 

94 

7 

18 

29 

40 

51 

62 

73 

84 

95 

8 9 

19 20 

30 31 

41 42 

52 53 

63 64 

74 75 

85 86 

96 97 

10 11 

21 22 

32 33 

43 44 

54 55 

65 66 

76 77 

87 88 

98 99 

105 106 107 108 109 110 

On multiplying all these numbers by 9 and computing the sum of 
the digits for each of them we arrive at the following remarkable 
table: 

9 9 9 9 9 9 9 9 9 9 18 

9 9 9 9 9 9 9 9 9 18 18 

9 9 9 9 9 9 9 9 18 18 18 

9 9 9 9 9 9 9 18 18 18 18 

9 9 9 9 9 9 18 18 18 18 18 

9 9 9 9 9 18 18 18 18 18 18 

9 9 9 9 18 18 18 18 18 18 18 

9 9 9 18 18 18 18 18 18 18 18 

9 9 18 18 18 18 18 18 18 18 18 

9 18 18 18 18 18 18 18 18 18 18 

There also exist some other interesting configurations of the 
numbers forming sequence (**). 

195. First of all we note that each of the collections I 0, Ii. 12, ••• 

is obtained from the preceding collection by adding to it several 
new numbers, all the numbers contained in the preceding collec· 
tion entering into the new one. Further, it is readily seen that the 
new numbers appearing when we pass from ln-i to the collection 
In are greater than n. Therefore the number 1973 does not occur 
in the collections with indices exceeding 1973, that is all such 
collections contain one and the same number of the numbers 1973. 
Now let us prove that a fixed pair of numbers a and b (where, 
for definiteness, a stands to the left of b; here two pairs of the 
form a, b and b, a are considered different) occurs in the sequence 
I 0, Ii, h ... , In . . . of the collections exactly once in case the 
numbers a and b are relatively prime and does not occur at all 
in CQ.$.e a and b are not relatively prime. This assertion is quite 
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obvious for the pairs of numbers a, b the greatest oi which does 
not exceed 2 (there are only two such pairs: 1, 2 and 2, 1; each of 
these pairs occurs only once, namely in the collection / 1 which 
consists of the numbers 1, 2, 1). We shall prove this assertion 
using the method of mathematical induction. Let us assume that 
the assertion has already been proved for all pairs of numbers a, 
b such that max [a, b] < n * and then show that under this as· 
sumption the assertion is also true for the pairs a, b such that 
max [a, b] = n. Indeed, let a, b be a pair of positive integers, 
say such that max [a, b] = b = n. It is clear that the pair a, b 
can appear in a collection I k only if the preceding collection I k-I 

contains a pair of numbers a and b - a standing side by side. 
Now, since max [a, b - a]< max [a, b] = b = n, the above as­
sumption implies that the pair of numbers a, b - a occurs exactly 
once in the collections Ii. ... , I k-I when the numbers a and b - a 
are relatively prime and does not occur in these collections when 
a and b - a have a common divisor d > 1. It follows immediately 
that the pair a, b also occurs in the collections we are considering 
exactly once when the numbers a and b are relatively prime and 
does not occur at all when a and b are not relatively prime be­
cause the numbers a and b are relatively prime if and only if so 
are the numbers a and b - a. 

Now it becomes clear that since 1973 is a prime number (let 
the reader check this), each of the pairs of numbers 1, 1972; 
2, 1971; 3, 1970; ... ; 1971, 2; 1972, 1 occurs exactly once in the 
collections under consideration because all these pairs consist of 
relatively prime numbers. It readily follows that the number 1973 
is contained in the collections In with indices n > 1973 (and, in 
particular, in the collection /1 ooo ooo) exactly 1972 times (1972 is 
equal to the number of the pairs 1, 1972; 2, 1971; ... ; 1972, 1). 

Remark. From the solution of this problem it also follows that an arbitrary 
natural number N occurs in the collections In (where n > N) exactly cp(N) 
times where <p(N) is the number of positive integers which are less than N and 
are relatively prime to N; on the computation of the number <p (N) (for any 
given N) see the remark to the condition of Problem 341. 

196. Let a 1a 2a3a4 (where each a; is equal to the digit 0 or 1; 
i = 1, 2, 3, 4) be the last four digits of the given sequence. If the 
sequence did not contain a subsequence of the digits a 1a2a3a40 
standing side by side it would be possible to continue the sequence 
by writing an additional digit 0 at its end. Similarly, if the se­
quence did not contain the five-tuple of the digits a 1a2a3a4l it 
would be possible to write an additional digit 1 at the end. There­
fore, the four-tuples of the consecutive digits a1a2a3a4 occur three 

* The symbol max [a, b] designates the greatest of the numbers a and b in 
case a =I= b and any of the numbers a and b in case a = b. 
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times in the given sequence (one of these four-tuples is followed 
by the digit 0, another four-tuple a1a2aaa4 is followed by the digit 
1 and one more four-tuple a1a2a3a4 stands at the end of the given 
sequence). Two of these four-tuples are preceded by the digits 0 
and 1 whereas the third four-tuple a 1a2a3a4 cannot be preceded by 
any digit a0 (because, if otherwise, the five-tuple of the digits 
a 0a 1a 2a 3a 4 would occur twice in the sequence). Therefore the third 
four-tuple a 1a2a3a 4 must stand at the beginning of the sequence. 

197. The number N is the product of all prime numbers from 2 
to 37 inclusive; every divisor of the number N is a product of 
some of these prime numbers. Let us show that the assertion of 
the problem is true for any number Nk = 2.3.5.7 .... ·Pk equal 
to the product of the first k prime numbers*. We shall prove what 
has been said with the aid of the method of mathematical induc­
tion (with respect to the number k). It is clear that for k = 1 we 
have the number N 1 = 2 possessing only two divisors 1 and 2 
below which the numbers + 1 and -1 are written respectively; 
in this case we have + 1 + (-1) = 0. Further, let us assume that 
the assertion has already been proved for the number Nk equal to 
the product of the first k prime numbers; in other words, we sup­
pose that it has already been proved that the number N" has an 
even number 2n of divisors (including the numbers 1 and N") 
among which there are n divisors each of which is a product of 
an even number of prime factors (let us agree to call these di­
visors "even"; in particular, the number 1 is a divisor of this kind 
since it has zero prime factors since 1 is neither a prime nor a 
composite natural number, the number zero being even) whereas 
each of the other n divisors is a product of an odd number of 
prime factors (we shall conditionally call them "odd" divisors 
of N"). We shall prove that under this assumption the assertion 
of the problem is true for the numbei: N k+I = N" · Pk+t as well 
where Pk+t is the (k + l}th prime number. It is evident that each 
of the divisors of the number N" is also a divisor of the number 
N "+1, and hence N k+t has 2n divisors (which do not exhaust the 
set of all divisors of Nk+1) among which there are n "even" di­
visors and n "odd" divisors. In addition to these 2n divisors the 
number Nk+I has a number of divisors which are not divisors of 
the number N ": these are the divisors of N k+I which are divisible 
by Pk+I· They all can be obtained by multiplying all divisors of 
the number Nk by Pk+I· The n "even" divisors of Nk thus generate 
n "new" divisors of Nk+I each of which is a product of an odd 
number of prime factors and the n "odd" divisors of N" generate 
n "even" divisors of Nk+t· Thus, the total number of the divisors 

* This assertion even holds for all natural numbers which are factored as 
products of pairwise distinct prime numbers. 
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of the number Nk+I is equal to 4n; among them there are 2n = 
= n + n "even" divisors and 2n = n + n "odd" divisors. There· 
fore for N k+I the numbers written in the lower line are 2n num­
bers +l's and 2n numbers -l's; the sum of these numbers equal 
to +1 or to -1 is equal to 0. 

Remark. The argument used in this solution allows us to state the assertion 
of the problem in a more precise manner. Namely, this argument shows that 
the number N, has 2k- 1 "even" and 2k-I "odd" divisors (in particular, the num­
ber N = N12 indicated in the condition of the problem has 211 = 2048 "even" 
and 2048 "odd" divisors) whence it follows that for Nk the sequence of num­
bers written in the lower line consists of 2k-I numbers +I (for the number N 
we have 2k-1 = 2 11 ) and of 2k-I numbers -1. 

198. The fact that the numbers p and q are relatively prime 
makes it possible to use the Euclidean algorithm to prove that 
any integer n can be represented in the form 

n = px + qy (*) 

where x and y are integers. Indeed, let p > q; then p = qd + r 
where 0 < r < q, that is 

r = p • 1 + q (- d) = px1 + qy1 

where d is the quotient and r is the remainder resulting from the 
division of p by q, xi = 1 and Y2 = - d. Further, we have q = 
= rd, + ri where 0 < ri < r (the number is equal to the remain­
der resulting from the division of q by r). On combining these 
two equalities we represent r 1 in form (*): 

r 1 = q - rd,= q - (pxi + qyi) di= 

= p (- x,d,) + q (I - Y1d1) = PX2 + qy2 

where X2 = - x1d1 = - di and Y2 = 1 - Y1d1 = 1 + dd 1 are in· 
tegers. Next we put r = r,d2 + r2 where 0 < r2 < ri and use the 
foregoing equality in order to represent in just the same way the 
number r 2 as a combination of the form px3 + qy3 of the numbers 
p and q, and so on until we arrive at the greatest common divisor 
1 of the numbers p and q. (It is readily seen that in this process 
the last remainder different from 0 is the greatest common divisor 
for any two initial numbers p and q; in the case under considera­
tion p and q are relatively prime and this greatest common divisor 
is equal to I.) Now, since the number 1 can be written in the form 
1 = pxk + qyk where Xk and Yk are integers it follows that any 
number n=n·I=n(pxk+qyk)=p(nxk)+q(nyk) can also be 
written in form (*). 

Further, the fact that p and q are relatively prime implies that 
if n can be represented in form (*) in two different ways, say 

n= px + qy = px' + qy' (**) 
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where x, y, x' and y' are integers, then the difference x - x' is 
multiple of q and the difference y - y' is multiple of p. Indeed, 
relation (**) implies that p (x - x') =-q (y- y'), that is x - x' = 
= - q(y-y')/p, and since p and q have no common prime 
factors the difference x - x' is divisible by q. The last assertion 
means that representation (*) is "unique" in the sense that every 
integer n can be uniquely represented in form (*) where 0 ~ 
o::;;x < q. Indeed, the number x in formula (*) can always be 
written in the form x = kq + xo where 0 o:::;; Xo < q (the number 
x0 is equal to the remainder resulting from the division of x by q), 
and we have 

n= px + qy = p(kq + xo) + qy= pxo + q(pk + y) = pxo+qYo (***) 

where 0 ~ x 0 < q and the numbers x0 and y~ are integers. On the 
other hand, two different representations (***), that is two equali­
ties of form (**) with 0 o:::;; x < q, 0 o:::;; x' < q and x =I= x', do not 
exist because if they existed then we should have Ix - x' I < q 
and the difference x - x' would not be divisible by q. The number 
n is obviously "good" when the number y0 in formula (***) is 
nonnegative and is "bad" when y0 is negative because if n = 
= pxo + qy0 where 0 ~ xo < q and Yo < 0 then the replacement 
of x0 and y0 by x = xo - 'Aq and y = Xo + 'Ap respectively where 
'A is an integer can never lead to representation (*) of the num­
ber \l in which both x and y are nonnegative. 

What has been said makes it possible to easily solve the pro­
blem. 

(a) It is evident that the smallest "good" number is the num­
ber 0 = O·p + O·q; by virtue of the above, the greatest "bad" 
number is a number of form (***) where x0 is the greatest of the 
"admissible" (positive) numbers, that is Xo = q - 1, and Yo is the 
smallest of the negative numbers, that is Yo = - 1. Thus, the 
greatest "bad" number is P = p(q- 1) + q(-1) = pq- p - q. 
Further, it is natural to assume that these two numbers 0 and P 
are those whose sum is equal to the number A mentioned in the 
condition of the problem, that is it is natural to put A equal to 
P = pq - p - q. Indeed, if n is a number of form (***) then the 
number 

n' = A-n= (pq- p- q)- (pxo + qyo)= 

= p (q - 1 - Xo) + q (-1 - Yo) 

is also of form (***) where the role of x0 is played by the number 
x~ = q - 1 - x0 and the role of Yo by the number y6 = - 1 - Yo· 
The relation 0 o:::;; x0 ~ q - 1 implies 0 ~ x6 ~ q - 1, and one of 
the numbers y0 and y6 is positive whereas the other is negative; 
this proves the assertion of the problem. 
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(b) First solution. From the result established in the solution. 
of Problem 198 (a) it readily follows that exactly one half of the 
numbers n satisfying the inequality 0 :::;;; n :::;;; P = pq - p - q 
(where P is the greatest "bad" number) are "bad" while the 
others are "good". Since we thus exhaust all "bad" natural num· 
bers, the number t of such numbers is given by the formula 

t = P +I = pq- p - q +I = (p - I) (q - !) 
2 2 2 

Second solution. The "bad" numbers are those natural numbers 
n which can be represented in form (***) where 0 ~ x0 < q,. 
Yo< 0 and pxo + qyo > 0 (because n 
is a positive number). Let us consi- Yo 
der the plane with coordinates Xo and 
Yo shown in Fig. 22. The straight 
lines Xo=q, Yo=O and pxo+qyo=O 
cut the triangle OAB from the plane 
(it is shaded in the figure). The prob­
lem reduces to the determination of 
the number of the points in the plane 
which have integral coordinates and 
lie within this triangle. The number 
we are interested in is clearly half 
that of the points with integral coor­
dinates lying within the rectangle 
OABC (there are no points with in­
tegral coordinates on the diagonal of 

c 

Fig. 22 

the rectangle because p and q are relatively prime). Since 
the number of the points with integral coordinates lying 
within the rectangle OABC is obviously equal to (p- 1) (q- 1), 
we arrive at the same value of the sought-for number t as 
above. 

199. First solution. We have to prove that every nonnegative· 
integer n can be uniquely represented in the form 

(x + y) 2 + 3x + y (x + y) 2 + (x + y) + 2x 
n= 2 = 2 = 

= (x + y)
2 + (x + y) + X = X (X + I) + X 

2 . 2 

where X = x + y and, consequently, since x and y are nonnega­
tive numbers, X ~ 0 and 0 :::;;; x :::;;; X. It is clear that for a fixed 
X ~ 0 and x varying within the admissible limit from Q to X the 
number n = X (X + 1) /2 + x assumes all integral values from 
Nx = X(X + 1)/2 (in this case x = 0) to Nx = X(X + 1)/2 + X 
(in this case x = X), each of these values occurring exactly once. 
The next integral number Nx + 1=X(X+1)/2 +x + 1 = 
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= (X + l) (X + 2) /2 corresponds to the value of X exceeding the 
former value by 1 (that is to the value X + 1) and to the value 
x = 0; in this case when x varies from 0 to X + 1 we again ob­
tain in just the same way all the integral numbers from N x+i = 
=(X+ l)(X+2)/2 to Nx+1=Nx+2-I etc. This argument 
proves the assertion stated in the problem. 

Second solution. Let us index all the points in the plane having 
nonnegative integral coordinates (x, y) in the way indicated in 
Fig. 23. Let us prove that the point with coordinates x, y receives 
the index n = [ (x + y) 2 + 3x + y]/2; this auxiliary assertion 
will imply the assertion of the problem because in the infinite se­
q11ence of the points (x, y) with nonnegative integral coordinates 

0 0 0 0 0 0 

.21 0 0 0 0 0 0 0 

0 0 0 0 0 

0 0 0 

0 0 0 

0 0 0 

1 

0 2 5 9 14 20 

fig. 23 

the point indexed by the number fl 

will occur exactly once. 
We shall prove the auxiliary 

assertion by induction (with re'>­
pect to n). It is evidE 1t that the 
index n = 0 is assig1 ed to the 
point (0, 0) with zero coordinates 
and the index I to the point with 
coordinates (0, I); for the coor­
dinates of these points we 
have 

(0 + 0)2 + 3. 0 + 0 
0= 2 

and 

I= (0+1)2+3·0+1 
2 

Now let us suppose that the auxiliary assertion has already been 
pro-_·ed for all points belonging to the sequence whose indices 
r2:;ge from 1 to n; let the nth point have cnrdinates x, y. If the 
coordinate y of this point is different from zero then the coordi­
nates of the (n + I) th point are equal to x + 1 and y - 1, and 
for this point we do in fact have 

[(x +I)+ (y-1)]2 + 3 (x +I)+ (y- 1) = (x + y)2 + 3x + Y +I= n+ I 
2 2 

If y = 0, the coordinates of the (n + I) th point are (0, x + I) 
and in this case we also have 

(0 + x + 1)2 + 3. O + (x + 1) = (x + 0)2 + 3x + 0 + 1 = n + 1 2 2 

200. To every irreducible fraction p/q where 

0 < p ~ I 00 and 0 < q ~ 100 (*) 
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we shall assign a point M whose coordinates are p, q; inequali­
ties (*) indicate that the point M belongs to the square j{' = 
= OA CB shaded in Fig. 24 which is bounded by the coordinate 
axes and by the straight lines x = 100 and y = 100 (the point M 
lies inside the square :Jt or belongs to one of the sides AC and BC 
of that square). The irreducibility of the fraction plq implies that 
the line segment OM contains no points with integral coordinates 
other than M (indeed, the equa­
lities p = kp1 and q = kq1 
showing that the fraction p/q 
can be reduced by a factor k 
mean that the point M1 (pi, q1) 
with integral coordinates also 
belongs to the line segment 
OM). Further, if the line seg­
ment OP which lies on a straight 
line l passing through the 
origin 0 (P is the point 
of intersection of l with the 
side AC or with the side BC 
of the square :Jt') contains n 
points (po, Qo), (2po, 2qo), 
(3po, 3qo), ... , (npo, nqo) with Fig. 24 
integral coordinates (among 
them M 0 (p0, q0 ) is the point lying at the shortest distance from 0) 
then (since np0 ::;:::;; 100 and nqo::;:::;; 100) we have 

~ 100 <~<~< < 100 
Po """ n n - I n - 2 I 

and 
~ 100 <~<~< < 100 

qo """ n n - I n - 2 I 

This means that the irreducible fraction Pol qo is taken into account 

when the terms d ( l~O), d ( l~O), ••• , d ( 
1~0 ) of the sum S 

are computed, that is the total number of times the fraction p0lqu 
is taken into account when the sum S is computed equals 11. 

(whereas the reducible fractions 2pol2qo, 3pol3qo, ... , npolnqo are 
not of course taken into account in the computation of the sum S). 
Thus, the input which the fraction Pol qo gives to the sum S is 
equal to n, that is to the number of the points with integral coor­
dinates which belong to the line segment OP. 

What has been proved implies that the total number of the frac­
tions which are taken into account when the sum S is computed 
(this number is equal to the sum S) is equal to the total number 
of all points with integral coordinates lying within the square :Jt, 
that is S = 100· 100 = 10 000. 
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201. (I) Let x be an arbitrary real number. Then we can write 
x = [x] +a where a is a nonnegative number less than I. Now 
let us represent y in the form y = [y] + ~ (0 ~ ~ < l). Then 
x + y = [x] + [y] + a + ~· Since a + ~ ~ 0 the last equality 
shows that [x] + [y] is an integer not exceeding x + y. Further, 
since (x + y) is the greatest of the integers not exceeding x + y 
we have [ x + y] ~ [ x] + [y]. 

(2) First solution. Let us represent x in the form x = [x] + o: 
where 0 ~ a < I. The division of the integer [ x] by n results in 
a quotient q and a remainder r, that is [x] =qn+r(O~r~n - l). 
Thus, we have 

l& = q + ...C., [M] = q and x = qn + r + a= qn + r1 n n n 

where r1 = r +a< n. Hence, x/n = q + rifn (0 ~ r1/n < l)' 
and [x/n] =q= [[x]/n], which is what we intended to prove. 

Second solution. Let us consider all whole numbers which do 
not exceed x and are divisible by n. The number of these whole 
numbers is obviously equal to [x/n]. Let us also consider all 
whole numbers which do not exceed [x] and are divisible by n. 
Their number is equal to [ [x]/n]. Now, since these groups of whole 
numbers coincide, the numbers of the members in these groups are 
equal, and consequently [ [x] /n] = [x/n]. 

(3). If (x) = [x] (that is x - [x] < 1/2) then [x + 1/2] = [x], 
and we have [2x] = 2 [x] and [2x] - [x] = 2 [x] - [x] = [x] = 
= [x + 1/2]. If (x) = [x] + l (that is x - [x] ~ 1/2) then [x + 1/2] = 
= [x] + l, [2x] = 2 [x] + 1, and we again have [2x] - [x] = 2 [x] + 
+ 1 - [x] = [x] + l = [x + 1/2]. 

(4) First solution. Let us write x in the form x = [x] + ci. 

Since 0:::::;:; a< 1, the number a lies between two neighbouring 
fractions belonging to the set O/n, l/n, ... , (n- 1)/n, n/n. Let 
these neighbouring fractions be k/n and (k + 1) /n, that is let 
k/n ~a< (k + l)/n; then we have 

x + n- ~ - I = [x] +a+ n - ~ - I < 

< [x] + k + I + n - k - I = [x] + 1 n n 
and 

n-k n-k k n-k 
x+--=[xJ+a+--~[xJ+-+--=[xJ+ 1 n n n n 

Further, 

x + n - I = [x] +a+ n - I < [x] + k +I + n- I= 
n n n n 

n+k 
= [x] + -n- < [x] + 2 
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It folows that 

[xl<[x+*J<[x+ ~]< ... <[x+ n-~- 1 ]<lxJ+I 
and 

[x]+I<[x+ n-;k]<[x+ n-~+1]< ... 
. . . < [ x + n: 1

] < [x] + 2 
that is 

and 

[x+ n-;k]=[x+ n-~+1]= ... =[x+ n;l]=lxJ+I 
Since the first group of the equalities involves n - k numbers 
while the second group involves k numbers we have 

[xJ+[x+ !]+ ... +[x+ n-; 1 ]= 
= (n - k) [x] + k ( [x] + I)= n [x] + k 

The integral part of the number nx is equal to the same number 
n [x] + k. Indeed, since k:::::;;; na < k + l, we have na = k + ~ 
where 0 ~ ~ < l, and consequently 

[nx] = [n [x] + na) = [n [x] + k + ~] = n [x] + k 

We have thus proved that 

[xJ+[x+ !]+ ... +[x+ n; 1]=lnx] 
Second solution. Let us consider the left-hand side of the given 

equality. If 0 ~ x < l/n, all the numbers x, x + l/n, ... , x + 
+ (n - l) /n are less than l and their integral parts are equal to 
0. In this case [nx] is also equal to 0, and consequently the equa­
lity holds for all x satisfying the condition 0:::::;;; x < 1/n. 

Now let x be an arbitrary number. If x is increased by l/n 
then all the summands on the left-hand side shift one place to the 
right and the last summand [x + (n - 1) /n] turns into the num­
ber [x + l] which exceeds [x] by l. Consequently, when x re· 
ceives an increment of 1/n the left-hand side increases by l. The 
increase of x by 1/n also results in an increment equal to 1 of 
the right-hand side of the equality. Further, for any x there is a 
number a lying between 0 and 1/n (0:::::;;; a< l/n) such that x 
differs from a by m/n where m is a whole number, whence it fol. 
lows that the given equality is valid for any x. 
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202. First solution. By virtue of the result established in the 
solution of Problem 201 (3), the sum we are interested in (it ob· 
viously contains only a finite number of terms different from zero) 
is equal to 

[;;-+-}]+[: +j]+[i+ ~]+ ... 
==([nJ-[;])+([%]-[~])+([~]-[i])+ ... =[n]=n 

Second solution. For n = I the sum under consideration is 
obviously equal to I. Further, when n is replaced by n + I every 

y 

Fig. 25 

term of the sum either remains unchanged or increases by 1. More 
precisely, there is exactly one term in this sum which increases 
by I under this operation, namely the term corresponding to the 
value of k such that 2k is the highest power of 2 by which n + 1 
is divisible. Indeed, if n + I = 2k (2m + I) then 

[ 
n + I + 2k] = [ 2k (2m + 2) ] = m + 1 2k+l 2k+l 

and 

[ 
n + 2k] [ I ] 2fi+l = m + l -

2
k+ 1 = m 

whereas for i =I= k we have [(n +I+ 2i)/2i+l] = [(n + 2i/2i+l] 
(why?). By the principle of mathematical induction, it follows that 
the sum under consideration is equal to n for all n. 

203. Let us mark all the points in the plane xOy whose both 
coordinates are integers such that I ~ x ~ q - I and I ~ y ~ 
~ p - I (here x and y are the coordinates of the points). These 
points lie inside the rectangle OABC (see Fig. 25) the lengths of 
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whose sides are OA = q and OC = p; the total number of these 
points is equal to (q - 1) (p - 1). Let us draw the diagonal OB 
-0f the rectangle. It is clear that none of the points with integral 
coordinates lies on that diagonal (because the coordinates x and 
y of the points belonging to the diagonal OB are connected by 
the relation x/y = OA/AB = q/p, and, since q and p are rela­
tively prime numbers, there are no positive integers x < p and 
y < q such that x/y = q/p). Now we note that the number of the 
points with integral coordinates whose abscissa is equal to k 
(where k is a positive integer smaller than q) and which lie below 
the diagonal OB is equal to the integral part of the length of the 
line segment MN shown in Fig. 25. Since MN= (OM/OA) ·AB= 
= kp/q, this number is equal to [kp/q]. Consequen~ly, the sum 

[:J+[2;]+[3;J+ ... +[ (q~l)p] 
is equal to the total number of all points with integral coordinates 
lying below the diagonal OB. The total number of the points with 
integral coordinates lying inside the rectangle OABC is equal lo 
( q - I) (p - 1); the symmetry of the location of these po in ts about 
the centre of the rectangle implies that exactly half of these points 
lies below the diagonal (in this argument it is important to take 
into account that the diagonal itself contains no points with in­
tegral coordinates). Thus, 

[:J+[2;]+[3;J+ ... +[(q-/)p]= (q-1)2(p-l) 
In just the same way it is proved that 

[;J+[2;J+[3pq]+ ... +[(p~l)q]= (p-1)2(q-1) 
204. First solution. For n = 1 the right-hand side and the left· 

hand side of each of the given equalities reduces to exactly one 
term equal to 1; hence, for n = 1 these equalities hold. Now let 
us prove that if the given equalities hold for a given value of n 
then they also hold for n + l; by virtue of the principle of ma­
thematical induction, this will imply that the equalities hold for 
all values of n. 

If n + I is not exactly divisible by k, that is if 

n + 1 =qk + r 
where the remainder r lies between 1 and k - 1, then n = qk + r' 
where r' = r - 1, that is 0 ::::;; r' ::::;; k - 2. It follows that in this 
case the numbers [ (n + 1) /k] and [n/k] coincide (they are both 
equal to q). In case n + 1 is divisible by k (that is n + 1 = qk) 
we obviously have [(n+ l)/k] =q and [n/k] =q-l, that is 
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[ (n + I) /k] = [n/k] + 1. Thus, 

[ntl]=[~] if k is not a divisor of the number n+ l 

and 

[ n t 1
] = [ ~] + l if k is a divisor of the number n + I. 

Now it follows that: 

(a) [ n-;- l] + [ n; I]+ ... + [ ~ ! ! ] = 

=[7]+[;]+ "' +[n~1]+-rn+I 
that is if 

then 

[ n+I] [n+I] [n+I] -I - + - 2- + • • · + n +I = Tt + T2 + · .. + Tn + Tn+t 
(b) [ n i I ] + 2 [ n ; I ] + .. . + (n + 1) [ ~ ! ! J = 

= [ 7] + 2 [ ;] + ... + (n + 1) [n ~ 1] + <Yn+I 
that is if 

[7]+2[-i]+ ... +n[~J=o-1+0-2+ ... +o-n 
then 

[ n i I ] + 2 [ n ; I ] + .. . + (n + 1) [ ~ ! ! ] = 

= a1 + <J2 + · · · + <Yn + <Yn+t 
Second solution. The number of those members of the sequence 

I, 2, 3, ... , n which are divisible by a definite number k is equal 
to [n/k] (these are the numbers k, 2k, 3k, ... , [n/k]k). The sum 
of the divisors equal to k of all such numbers is equal to k [n/k]. 
Now it follows that: 

(a) The numerical value of the sum (n/1] + [n/2] + ... + 
+ [n/k] + ... + [n/n] is equal to the number of those terms of the 
sequence I, 2, 3, ... , n which are divisible by I plus the number 
of those terms of the sequence which are divisible by 2 ... plus 
the number of the terms of this sequence which are divisible 
by n, and the sum -r1 + .-2 + .-3 + ... + Tn has the same numerical 
value. 

(b) The numerical value of the sum l · [n/1] + 2 [n/2] + ... + 
+ k [n/k] + ... + n [n/n] is equal to the sum of the divisors equal 
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to 1 of all the numbers belonging to the sequence 1, 2, 3, ... , n 
plus the sum of the divisors equal to 2 of all the numbers belong· 
ing to this sequence plus the sum of the divisors equal to 3 of the 
numbers belonging to that sequence ... plus the sum of the di­
visors equal to n of all the numbers of the sequence, and the sum 
cr1 + cr2 + crs + ... + O"n has the same value. 

Third solution. We shall also present here a simple geometrical 
solution of the problem whose basic idea is close to that of the 

y y 
•J •4 ·5 •6 ·7 ·8 .g 

•3 •4 •5 •B •7 •8 •9 

•J •4 •5 •6 •7 •8 •!J 

•3 •4 •5 •6 •7 •8 •!] 

•3 •4 •5 •6 •7 •8 •9 

•4 •5 •6 •7 •8 •9 

.5 ·6 .7 ·8 .g 

0 x 
(a) (b) 

fig. 26 

second solution. Let us consider an equilateral hyperbola des· 
cribed by the equation y = k/x (or, which is the same, by the 
equation xy = k; such a hyperbola serves as the graph represent­
ing the inverse proportionality). More precisely, we are interested 
in the part of the hyperbola lying in the first quadrant (see 
Fig. 26a). 

Let us mark all the points with integral coordinates belonging 
to the first quadrant. If x is a divisor of the number k then there 
is a point with abscissa x on the equilateral hyperbola xy = k. 
Conversely, if a hyperbola described by an equation xy = k passes 
through a point with integral coordinates whose abscissa is equal 
to x then x is a divisor of the number k. Thus, the number Tk oi 
the divisors of the number k is equal to the number of the points 
with integral coordinates lying on the hyperbola xy = k. The sum 
ak of the divisors of the number k is equal to the sum of the 
abscissas of the points with integral coordinates lying on the hy­
perbola xy = k. Further, we shall also use the fact that all the 
hyperbolas xy = 1, xy = 2, xy = 3, ... , xy = n - 1 lie below· 
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the hyperbola xy = n. Now we can draw the following conclu· 
sions. 

(a) The sum i-1 + i-2 + 't3 + ... + 'tn is equal to the number of 
all points with integral coordinates lyihg below the hyperbola 
xy = n and on the hyperbola itself. On the other hand, none of 
these points has an abscissa exceeding n; as to the number of the 
points with integral coordinates whose abscissas are equal to k 
and which lie below the hyperbola, it is equal to the integral part 
of the length of the line segment MN shown in Fig. 26a, that is 
this number is equal to [n/k] because MN= n/k (cf. the solution 
of Problem 203). Thus, we have 

(b) Let us assign to every point with integral coordinates an 
index equal to its abscissa (see Fig. 26b). Then the sum a1 + a2 + 
+u3 + ... + an is equal to the sum of the indices of all points 
with integral coordinates lying below the hyperbola xy = n. On 
the other hand, the sum of the indices of all such points whose 
abscissas are k is equal to k [ n/ k]. Thus, we have 

u1+a2+a3+ ... +an=[7]+2[;]+3[i-]+ ... +n[:] 
205. The expression (2 + 0r + (2 - -v'2r is obviously 

equal to an integral number, for, if (2 + -v'2r =an+ bn -v'2 
wh~re an and bn are whole ~um~ers, then (2 - -y'2)n =an - bn -y'2 
(this follows from Newtons binomial formula and can also be 
proved by means of the method of mathematical induction). Since 
(2 - 42r < I, it fol lows that 

[(2 + -v2rJ = (2 + -v2r + (2 - -v2)" - 1 
and, consequently, 

(2 + -v2r -[(2 + -v2rJ = 1 - (2 - -v2r 
Since (2 - ,Y2) < I, the expression (2 - -v'2r can be made 

arbitrarily small by taking a sufficiently large exponent n. If we 
chosen such that (2 - -y'2)" < 0.000001 then 

(2 + -y'2)" - [(2 + -y'2)"] = I - (2 - -y'2)" > 0.999999 

206. (a) First solution. Since (2 + -y'3)" + (2 - -y'3)" is a whole 
number and since (2 - -y'3)" < l, we have 

((2 + -y'3)"] = (2 + -y'3)" + (2 - -y'3)" - 1 
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(cf. the solution of Problem 205). Using Newton's binomial for· 
mula we can open the parentheses in the expression (2 + '\1'3f + 
+ (2 - -v'3t to obtain 

(2 + -v'3t + (2 - -v13t = 

= 2 (2n + C (n, 2) 2n-2 
• 3 + C (n, 4) 2n-4 

• 32 + ... ) 
It follows that this expression is divisible by 2, and consequently 
the number [(2 + -v'3tJ = (2 + 0t + (2 - -v'3t - 1 is odd. 

Second solution. The number (2 + -v'3t can be represented in 
the form an+ bn -y'3 where an and bn are whole numbers. Let us 
prove that 

a~ -3b~ =I 

To this end we shall apply the method of mathematical induction._ 
First of all, for n = I we have a1 = 2, b1 = I and 22 - 3-1 =I. 

Further, let us suppose that 

(2 + -y'3f =an + bn -y'3 

for some n where a~ - 3b~ = I. Then we can write 

(2 + -y'3f+l =(an+ bn -y'3) (2 + -y'3) = 

= (2an + 3bn) + (an+ 2bn) -y'a: 
whence an+I = 2an + 3bn and bn+I =an+ 2bn. Consequently, 

a~+I - 3b~+I = (2an + 3bn)2 
- 3 (an+ 2bn)2 =a~ - 3b~ = 1 

We have thus proved that a~ - 3b~ = I for any n. 
It follows that 

[an+ bn -y'3] =an+ [bn -y13] =an+[~]= 

=an+ [,Ya~ - I]= an+ (an - I)= 2an - I 

which means that the number [(2 + -y'3f] =[an+ bn -y'3] is odd .. 
(b) Let us check that 

[( . ;-)n] = { (I + -y'3f +(I - -v'3t - I for even n 
I + 'V 3 ( . 1-)n ( _ ;-)n 

1 + 'V 3 + 1 - 'V 3 for odd n 

Indeed, the sums on the right-hand side of this formula are whole 
numbers (cf. the first solution of Problem 206 (a)). For an even 11. 

we have 0 <(I --v'3t < 1 and for an odd n we have - 1 < 
< (1 - -y'3)n < 0. 
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Now let us consider separately the cases when n· is even and n 
is odd. 

(l) Let n be even: n = 2m; then 

[(l + -y'3)2m] = (l + -y'3)2m + (l - -y'3)2m - l = 

= {(l + -y'3)2t + {(l - -y'3)2}m - l = 

= ( 4 + 2 -y'3r + ( 4 - 2 -y'3t - I = 

= 2m {(2 + -V3r + (2 - -V3r} - i 

The expression in the curly brackets is obviously equal to an in­
tegral number and consequently the number [(1 + -y'3)2m] = 
= 2mN - l is always odd. Hence, when n is even the highest ex-
ponent of the power of 2 by which [(l + ,Y3t] is divisible is 
equal to zero. 

(2) Let n be odd: n = 2m + .l; then 

[(l + -y'3)2m+l] = (l + -y'3)2m+l + (l _ -y'3)2m+I = 

= ( 4 + 2 -V3r ( 1 + -V3) + c 4 - 2 -V3r c. - -V3) = 

= 2m {(2 + -V3t (1 + ,Y3) + (2- -V3r (1 -,Y3)} = 

=2m{((2+ -var+ (2--v'3r) + .y3 ((2 + -v'3r - (2--V3rn 

Let (2 + ,Y3t =am+ bm -y'3 where am and bm are integers; 
then (2 - -y'3)m =am - bm -y'3. On substituting these expressions 
into the above formula we find 

[(l + -y'3)2m+l] = 2m {am+ bm -y'3 +am - bm -y'3 + 
+ ,Y3 (am+ bm -y'3 - am+ bm -y'3)} = 

= 2m (2am + 6bm) = 2m+I (am+ 3bm) 

Now let us show that the number am+ 3bm is odd. Indeed, we 
have 

.(a + 3b ) (a - 3b ) = a2 
- 9b2 = (a2 

- 3b2 ) - 6b2 = l - 6b2 
mm mm mm mm m m 

(see the second solution of Problem 206 (a)). Since the number 
l - 6b'7n is odd such are both factors (am + 3bm) and (am - 3bm). 
Consequently, the exponent of the highest power of 2 by which 
[(I + ,Y3tl _is divisible for an odd n = 2m + I is equal to 

m+l=n+l=[.!!:_]+1 
. 2 2 



c;olullon~ 28t 

207. The fact that the expression (2 + ,Y5Y + (2 - ,Y5Y is an 
integral number and the inequalities - 1 < (2 - ,Y5)P < O (they 
hold because p is odd) imply that 

[(2 + ,Y5)P] = (2 + ,YsY + (2 - ,Y5Y 
(cf. the solutions of Problems 205 and 206). By Newton's bino­
mial formula, 

(2 + -V5Y + (2 - ,ygy = 

=2 (2v + C (p, 2) 2P-Z5 + C (p, 4) 2p-452 + ... + C(p, p-1) 2·5p~I) 
and therefore 

[(2 + -VSYJ- 2p+i = 

= 2 (c (p, 2) 2p-Z5 + C (p, 4) 2p- 452 + , .. + C (p, p - 1) 2 • 5 p;I ) 

All the binomial coefficients 

C(p 2)= p(p-1) C(p 4)= p(p-l)(p-2)(p-3) 
' 1·2 ' ' 1·2·3·4 ' •.• 

. . ., c (p, p - 1) = p 

are divisible by the prime number p because the numerator in the­
expression for C (p, k) is divisible by p whereas the denominator 
is not. Consequently, the difference [(2 + ,Y5YJ- 2P+ 1 is also 
divisible by p, which is what we had to prove. 

208. We have 

C ( ) = n (n - I) (n - 2) ... (n - p + I) 
n, p pl 

Among the p consecutive whole numbers n, n - 1, n - 2, ..• 
. . . . n - p + 1 there is only one number divisible by p; let us 
denote it by the letter N. Then we can write [n/pJ = N/p, and the 
difference mentioned in the condition of the problem assumes the 
form 

n (n - I) ... (N +I) N (N - I) ... (n - p +I) N 
pl p 

Now we note that the division of the numbers n, n - 1, .. ~ 
... , N + 1, N - 1, ... , n - p + 1 by p leaves all the possible 
remainders 1, 2, 3, ... , p - 1 (when the p consecutive whole num-
bers from n - p + 1 to n are divided by p we obtain all the re· 
mainders 0, 1, 2, ... , p- l, each of them occurring exactly oncc)­
It follows that the difference 

n(n-1) ... (N+ I)(N-1) ... (n-p+ 1)-(p- l)I 
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is divisible by p (to prove this it is sufficient to perform the term­
by-term multiplication of all the equalities n = kip + ai. n - I = 
= k2p + a2, ... , N + I = kip + a1, N - I = k1+1P + a1+1r ••• 
• . . , n - p + I = kp-1P + llp-I where ki. k2, ... , kp-t are integers 
and the numbers a1, a2, ••• , llp-I are equal to the numbers 
I, 2, ... , p - I taken in some unknown order). On multiplying 

·this difference by the whole number N /p we obtain the new dif­
ference 

n (n - I) ... (n - p +I) 
p 

N (p - I)! 
p 

which is of course also divisible by p. Finally, on dividing both 
members of the last difference by (p - 1) I we arrive at the re­
,quired result (the quotient resulting from the division by (p - 1) I 
is also divisible by p because the numbers (p - 1) I and p are re­
latively prime). 

209. Let a > 0. It is clear that the value rx = 1 satisfies the 
condition of the problem. In the case when a > I and, accordingly, 
l/a = ~ < 1, the numbers [a], (2a], (3a], ... , (Na] are all 
pairwise different, and therefore it only remains to check that all 
the numbers [~), [2~], (3~), ... , [N~] are different from one ano­
ther. Since (N~] ~N~<N we have [N~] ~N - 1, and therefore 
the N nonnegative numbers [~]. [2~), ... , [N~) can assume N 
·different values only when these values are 

[~]=0, [2~]= I, ]3~]=2, ... , [N~]=N-1 (*) 

Further, since the equality [k~] = k - 1 is equivalent to the in­
·equalities k - 1 ~ k~ < k or, which is the same, to the inequali­
ties 

I 
1 - k ~ ~ < 1 (k = l, 2, ... , N) (**) 

we conclude that the system of inequalities (*) is equivalent to 
inequalities (**),that is to the inequalities 

I 
1-N~~<l 

Hence, if a> 1 then (N - l)/N ~ ~ = 1/a < 1, and conse· 
oquently I <a~ N/(N- I), and if a< 1 then (N - l)/N ~ 
~ a < 1 (this was in fact already proved above). 

Now, taking into account the value a = I mentioned at the 
beginning of the solution of this problem we see that for a > 0 
there must be (N - l)/N ~a~ N/(N - I). It can be shown in 
.a s-imilar manner that for a < 0 there must be -(N - I)/ N ~ 
~a~-N/(N-1). 
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210. First solution. It is evident that (a)= [a+ 1/2]; conse· 
quently, the equality we have to prove can be written in the form 

N=[~ +i]+[~ + ;]+[~ +i]+ ··· 
Now, let 

N =an. 2n +an-I. 2n-I + ... + a1. 2 + ao 

(where each of the digits an, an-1> ... , a1, a0 is equal to 0 or 1) be 
the expansion of the number N in powers of 2 (this corresponds 
to the binary representation of the number N). It obviously follows 
that 

[ N + I] [ 2n-I + n-2 + + + ao + '] 2 2 = an• an-I• 2 • . . a1 - 2 - = 

=an• 2n-I +an-I• 2n-
2 + • • • + ll1 +£lo. 

[ ~ + ; J = [an• 2n-2 +an-I • 2n-3 + ... + a, i I + ~o J = 

2n-2 + 2 n-3 + =an• an-I• •. • 

[ N+I] [ +an-1+l+an-2+ +ao] + ¥ 2 = an 2 -4- . . . ¥ =an lln-1 

[~ + _.!__] = [ ao +I + an-1 + ... +--5!.!:!___] =a 
2n+I 2 2 4 2n+I n 

and 

[ 2n:2 + +] = [ 2n:3 + +] = • • • = 0 

(we remind the reader that each of the digits an, ... , a0 is equaf 
to 0 or 1). Thus, we obtain 

[ ~ + ! ] + [ ~ + ! ] + • • • + [ 2n: I + f] + • • • 
.. • =an (2n-I + 2n-2 + ... + l + l) + 

+an-I (2n-
2 + 2n-

3 + ... + I + l) + ... + a1 (l + 1) + ao = 
=an. 2n +an-I. 2n-I + ... + a1. 2 + ao = N 

which is what we had to prove. 
Second solution. It is evident that the number of those odd 

numbers which do not exceed N is equal to N /2 in case N is even 
and is equal to (N + l) /2 = [N /2] + I in case N is odd, that is. 
it is always equal to (N /2). Similarly, the number of those even 
numbers which do not exceed N and are not divisible by 4 is equal 
to (N /4] in case N is divisible by 4 or in case its division by 4-
leaves a remainder of 1 and is equal to [N /4] + 1 in case the di-
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vision of N by 4 leaves a remainder equal to 2 or 3; in other 
words, this number is always equal to (N /4). Further, the number 
of those numbers which do not exceed N and are divisible by 4 
2nd not divisible by 8 is equal to [ N /8] in case N is divisible by 
8 or in case its division by 8 leaves a remainder equal to I or 2 
or 3 and is equal to [ N /8] + I in all the other cases; hence, this 
number is always equal to (N /8). In an analogous manner we 
can prove that (N /16) is equal to the number of those numbers 
not exceeding N which are divisible by 8 and are not divisible 
by 16, (N /32) is equal to the number of those numbers not ex­
ceeding N which are divisible by 16 and not divisible by 32 etc. 
In this way we obviously enumerate all whole numbers from I to 
N, and consequently 

(~)+(~)+(~)+ ... =N 

which is what we had to prove. 
211. Since 210 = 1024, we have 2100 = 1024 10• The decimal re­

·presentation of the number 100010 = 1030 consists of one digit 1 
and 30 noughts, and 102410 > 100010; therefore the number 
2 100 = 102410 cannot have less than 31 digits. On the other hand, 

_ 1024
10 < ( 1025 )'o = (i!..)10 = i!_. ±!. 41 . i!_. 41. ±!. ±!. ±.!_. ±!. 41 < 

1000 10 1000 40 40 40 40 40 40 40 40 40 40 40 

< i!.. . .iQ.. ~.~.I!_.~.~.~.~.~=.±!..< 10 
40 39 38 37 36 35 34 33 32 31 31 

since 

i!. < .iQ. < ~ < . .. < 3323 < 3321 
40 39 38 

( 
41 I 40 1 33 1 32 

because To = 1 + To, 39 = 1 + 39, ... , 32 = 1 + 32, 31 = 

-= 1 +fi-). 
Thus, 

2100 = 102410 <IO· 100010 

whence it follows that 2100 consists of less than 32 digits. There­
fore the number 2100 has 31 digits. 

Remark .. This problem can easily be solved with the aid of the table of loga­
rithms. Since log 2 = 0,30103, we have log 2100 = 100 log 2 = 30.103, and con­
sequently the decimal representation of the number 2100 involves 31 digits. Ho­
wev'er, in thir, problem it is required to obtain the result without using the 
table of logarithms. 

212. (a) First solution. Let us denote by A the product 
(1/2) (3/4) (5/6) ... (99/100) and let us also consider the product 
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B = (2/3) ( 4/5) (6/7) ... (98/99). Since 

2 1 4 3 6 5 98 97 99 
3>2· 5>4. 7>5 .... , 99>93. 1 > 100 

we have B >A. At the same time, 

1 2 3 4 5 6 98 99 1 
A . B = 2 . 3. 4 . 5 . 6 . 7 · · · 99. 100 = 100 

It follows that 

A2 < AB= 1 ~0 , and therefore A <-fa-
Further, B < 2A = (3/4) (5/6) (7 /8) ... (99/100) because 

2 3 4 5 6 7 98 99 
3<4• 5<5. 7<g• ... , 99< JOO 

Consequently, 

A · 2A > AB = - 1
- and therefore A > - 1

-
100 10 -f2 

Second solution. As before, we denote 

1 3 5 99 
2·4·5 ··· 100 =A 

Then 

whence 

12 32 
- 1 52 

- 1 992 
- 1 < A2 < 22. -4-2 - • -6-2 - • • • 1002 

12 32 52 992 

< 22 - 1 • 42 - 1 • 62 - 1 •• ' 1002 - I 

Now let us use the formula a2 - b2 =(a+ b) (a - b) to factor the 
numerators of the fractions on the left-hand side and the denomi­
nators of the fractions on the right-hand side. This results in 

1 2·4 4·6 98·100 2 1 3.3 5.5 99.99 
2:2 . -::r:4° • 6 · 6 • ·' 100 · 100 < A < T"3. 3.5 . 5 · 7 '' · 99 ·IOI 

On cancelling the fractions we obtain 

-
1
- < A2 < - 1

- whence -
1
- < A < - 1 

- < -1
-

200 10 l ' 10 -f2 -v'iO! 10 

which is what we intended to prove. 
Remark. In just the same way we can prove a more general relation 

_l_ < _!_ • ~ • 2 2n - 1 < _1_ 
2 -./Ii 2 4 6 · · • 2n -./2n 
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(b) Let us prove that 

__!__.~ • ..§.. 2n-1 < I 
2 4 6 · · · 2n ,../3n + J 

for n > I. 
The simplest way to prove this inequality is to use the method! 

of mathematical induction. For n = I we have 

I I 
2 - -,Y-;=3=. =1 +=1 

Now let us suppose that 

I 3 5 2n- I~ I 
2 · 4 ' 6 " ' ~ """ ,Yan+ I 

for a certain value of n. On multiplying both members of the last 
inequality by (2n + I)/ (2n + 2) we obtain 

I a 5 -·-·-
2 4 6 

2n - I • 2n + I ~ 2n + I 
2n 2n + 2 """ (2n + 2) ,Yan + I 

On the other hand, we have 

( 
2n+I )2 (2n+1)2 

(2n + 2) ,Yan + I = 12n3 + 28n2 + 20n + 4 = 
(2n + 1)2 (2n + 1) 2 I 

= (12n3 + 28n2 + 19n + 4) + n = (2n + 1)2 (an+ 4) + n < 3n + 4 

whence it follows that 
2n+ I < I 

(2n + 2) ,Y3n + I ,Yan + 4 

We thus obtain the inequality 

_!_ • ~ • i 2n - I • 2n + 1 < I 
2 4 6 ' ' • 2n 2n + 2 -y'3 (n + I)+ 1 

By the principle of mathematical induction, it follows that 

_!_ , ~ • i 2n - 1 ::;:: 1 
2 4 6 2n """ ,Yan+ 1 

for any n, the sign of equality appearing only in the case when 
n,= 1. 

Now let us substitute n = 50 into the last inequality; this re­
sults in the inequality 

J...~.i_ ~< I 1 
2 4 6 '.' 100 -y'3 · 50 + I = -y'T5T - 12.288 ... 

which is even stronger than the one we had to prove. 
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213. The solution of the problem is a consequence of the two 
inequalities 

3111 < 32Il = (25)Il = 25·11 = 255 
and 

1714 > 1614 = (24)14=24·14 = 256 > 255 

which are quite evident; they imply that 31 11 < 1714• (It should 
be noted that the decimal representations of 31 11 and 1714 consi:.;t 
of very many digits, and it is rather difficult to compute these 
numbers.) 

214. (a) Since 222 = 24 = 16 < 27 = 33, we obviously have 

22· < 22· < 33· 
(n+I digits• in digits) (n digits) 

for any n > I (and, in particular, for n = 1000). (In the case 
when n = 2 the last inequality turns into an equality whereas the 
first inequality remains strict; there is only one case when the in­
equalities change their sense, namely when n = I: it is clear that 
4 = 22 > 3.) 

(b) Let us prove that the inequalities 

.4 .3 .3 
. 3· 

444 < 223 < 3aa· 
(n-1 digits) <n digits) en digits) 

hold for any n > I (and, in particular, for n = 1000). Since the 
last inequality is evident, it only remains to prove the first one. 
The proof can easily be elaborated with the aid of the method of 
mathematical induction. It is clear that when n = 2, that is when 
n - 2 = 0, we have one and the same number 4 = 22 on the left­
hand and on the right-hand sides of the first inequality. Let us 
assume that the inequality has already been proved for a certain 
value of n and show that under this assumption the inequality 
remains true for the "next" value n + 1 ~ 3. We have 

• 4 • 4 • 3 

444.. = (22)44. < (22)223 

(n fours) (n-1 fours) (n-2 threes) 

(here we use the induction hypothesis). Further, we have 

. 3 

(n-2 threes) (n-2 threes) (n-2 threes) (n-1 threes) 
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because it is evident that 

33 +1 
(n-1 threes) (n-1 digits) 

This argument completes the proof of the required inequality. 
215. Let us denote by k the number of digits in the decimal re­

presentation of the number 1974n; then IQk-1 ~ 1974n < 1Qk. 
(since 197 4n > 1 ooon = 103n' it is clear that k ~ 3n.) If the re­
presentation of the number 1974n + 2n contains more than k digits 
then 1974n + 2" ~ 10k. However, since 1974n = 2n.9a7n and 
1974n + 2n = 2n (987n +I), we obtain (on cancelling the corres· 
ponding inequalities by 2n) the relations 

987n < 2"-n • 5k and 987n + I ~ 2k-n • 5k 

which can hold simultaneously only when 987n + l = 2k-n,5k (in 
this case 987n = 2k-n,5k - 1). 

Since k -- n~3n - n = 2n, the number 2k-n.5n is multiple of 
8 (and even of 16) for n > 2. On the other hand, the division of 
987 by 8 leaves a remainder 3; therefore the division of 987n by 8 
leaves the same remainder as the division of 3n by 8. Further, on 
raising consecutively 3 to the powers 1, 2, 3, ... and replacing 
every time the resultant power by the remainder obtained when 
that power is divided by 8, we see that the division of the powers 
of 3 by 8 leaves remainders forming an alternating sequence of 
the form 3, 1, 3, 1; 3, I; .... Therefore the division of the number 
987n + I by 8 can only leave remainders equal to 4 and 2, and 
this number can never be exactly divisible by 8. We have thus 
arrived at a contradiction which proves the assertion stated in the 
problem. 

216. Since the last digit of the number 35m is 6 for any natural 
m and the last digit of the number 5n is 5 for any natural n, the 
last digit of the difference 35m - 5n is 1 when 35m > 5n and the 
last digit of the difference 5n - 35m is 9 for 35m < Sr. Therefore 
the last digit in the decimal representation of the number N = 
= I 36m - 5n I can only be 1 or 9, and the smallest possible values 
of this number can be 1 or 9 or 11. For m = I and n = 2 we ob­
viously have N = 11. Let us show that the equalities N = 9 and 
N = 1 are impossible; this will mean that it is the value N = 11 
that is the smallest one. Indeed, if we had the equality 5n_35m=9, 
it would follow that the number 5n = 35m + 9 is multiple of 9, 
which is impossible; if we had the equality 35m - 5n = 1, it would 
follow that 5n = 35m - 1 = 62m - 1 = (6m +I) (6m - 1) or, 
which is the same, 5m - 1 = 5k and 5m + 1 = 5n-k, which is im· 
possible because the number 6m + 1 ends with the digit 7 and 
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therefore cannot be equal to a power of 5. We have thus proved 
that the smallest value of the absolute value of 35m - 5n is equal 
to 11. 

217. We have 

21100 C(toO, 50)= 2so<1 ·2.3 .1.:~~r·2·s~:~~2.3 ... 5o) = 

1·2·3 ... 100 1·3·5 ... 99 
= (2·4·6 ..• 100)·(2·4·6 ..• IOO) = 2·4·6 •.. 100 

and therefore it only remains to use the result established in the 
solution of Problem 212 (a). 

218. It is required to find which of the two numbers IOtn - 9911 

and toon is greater. Let us consider the ratio 

101n - 99n (100 + l)n - (100 - l)n 
1oon - 1oon -

2 (C (n, 1) .10011
-

1 + c (n, 3). 10on-3 + ... ) 
- 10on -

= 2 (_!!:__ + n (n - 1) (n - 2) + ) 
100 31 · 100 1 ••• 

It readily follows that for n ~ 50 this ratio exceeds 1. Let us 
show that for n = 49 this ratio also exceeds 1: 

( 
49 49. 48. 47 ) ( 49 18 424 ) ( 49 1002

) 
2 100 + 3!. 1001 + • . • > 2 100+1"0Q3"" > 2 100 + 1003 = 1 

Now let us show that for n = 48 this ratio is less than 1. In­
deed, 

2 c~+ 48·47·46 + 48·47·46·45·44 + ) < 
100 31·1003 51·1005 ••• 

( 
48 483 485 

< 2 100 + (I . 2. 3). 1003 + (I. 2. 3) (2. 3) 1005 + 

431 ) 
+ (I· 2 · 3) (2 · 3) (2 · 3) 1007 + ''' = 

=2(1~~+i(1~~)3+~2 (1~8or+ ... )< 
48 

100 9600 
< 2 _ _!_ (~)2 = 9616 < 1 

I 6 100 

For n < 48 this ratio is of course also less than 1. 
Thus, finally, the number 99n + toon is greater than 101 n for 

n::::;;; 48 and is less than toln for n > 48. 
219. Let us begin with proving the following auxiliary proposi· 

tion: a product of n consecutive whole numbers is greater than the 

10 -60 
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square root of the nth power of the product of the smallest of these 
numbers by the greatest one. If we denote these numbers as 
a, a+ I, ... , a+ n - I then the kth number, counting from left 
to right, is equal to a+ k - I, and the kth number, counting from 
right to left, is equal to a+ n - k. The product of these numbers 
satisfies the relation 

(a+ k - 1) (a+ n - k) = a2 +an - a+ (k - I) (n - k) ~ 

~a2 +an-a=a(a+n-1) 

where the sign of equality can only appear when k = I or k = n. 
In other words, the product of two numbers of the form a + k - 1 
and a+ n - k (in the case when n is odd these two numbers may 
coincide with the number at the middle of the sequence a, a + I, ... 
. . . , a+ n - k) always exceeds the product of the extreme num­
bers. It follows that for the product of all numbers a, a+ I, ... 
. . . , a + n - I we have 

n 

a(a+ 1) ... (a+n- l)~[a(a+n-1)]2 =[,Ya(a+n- I)r 
where the sign of equality occurs only for n = 1 or n = 2. 

Now let us prove that 300! > 100300. We have 

and 

1 • 2 • . • 25 > ,Y252s = 525 

26 . . . 50 > ( ,Y2(f:50)25 > 3525 

51 ••• 100 > (,Y51 • 100)50 > 7050 

101 ••• 200 > ,Y100100. ,Y200100 = 10200. 250 

201 ••• 300 > ,Y200 100 • ,Y300100 = 10200. 2so. 3so 

On multiplying the left-hand and the right-hand members of the 
inequalities we obtain 

.3001 > 525 • 3525 • 7050 • l 0400 • 2100 • ·350 = 

= 550. 725. 550. 1450. 10400. 2100. 350 = 10500. 725. 1450. 3so= 

= 10500 • 2125 • 4225 • 1425 > 10500 • 2025 • 4025 • 1425 = 

= 10550 . 225. 425. 1425 = 1Q550. 11225 = 1Q600 . 1.1225 > 10600 = 1 QQ300 

.Remark. A more general result is stated in Problem 223. 

:220. Let us prove that 

1 +: ~ ( l + ~ )k < 1 + ~ + ~: 
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for any positive integer k such that k ~ n. To this end we shall 
use the method of mathematical induction. For k = l the required 
relation obviously holds. Now let us assume that it holds for 
some k and prove that under this assumption it holds for k + l 
as well. We have 

( l + ~ y+' = ( l + ~ r ( l + ~) ~ ( l + ~) ( l + ~) = 

= l + k~ 1 + :2 > l + k~ 1 

It should be noted that here we have not used the relation k ~ n, 
and consequently this inequality holds for any positive integer k. 
Now let us put k ~ n; then we obtain 

(} + ~ )k+I = (} + ~ r (} +*) < (} + ~ + ~:) ( 1 + ~) = 

= l + k + 1 + k
2 + 2k + 1 _ ~ + .!!:__ = 

n ~ ~ ~ 

= I + k + 1 + (k + 1 )
2 

_ n (k + I) - k2 < l + k + 1 + (k + I )2 

n ~ ~ n ~ 

because n(k +I)> k2 for n ~ k. 
On substituting the value k = n into the inequalities we have 

derived we obtain 

n ( 1 )n n n2 

2=1+-:::;;;; I+- <I+-+-2 =3 n n n n 

221. By virtue of the result established in the solution of Pro­
blem 220, we have 

) I 000 000 - ( 1 1 ) I 000 000 (1.000001 - + 1000000 > 2 

222. We obviously have 

(1001)999 
( 1001 )1000 1 ( 1 )1000 1 1 

(1000).1000 = 1000 • 1001 = 1 + 1000 • 1001 < 3 • 1001 < 1 

(see Problem 220), and consequently 

10001000 > 1001999 

223. Let us suppose that the inequalities indicated in the con­
dition of the problem hold for some n. To prove that they hold 
for n + l as well it is sufficient to verify the validity of the follow­
ing inequalities: 

(~)n+I. (!!:...)n (~)n+l. (!!:...)n 
2 • 2 ~n+l~ 3 • 3 

10* 
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On cancelling these inequalities by n + 1 we obtain the equivalent 
inequalities (1 + l/n)n/2 ;;;::i: 1 ;;;::i: (1+1/n)n/3 which follow from 
the inequality 2 ~ (1 + l/n)n < 3. 

Now it only remains to note that the assertion of the problem 
holds for n = 6 because 

(fr= 36 = 729, 61 = 720 and (fr= 26 = 64 

224. (a) By Newton's binomial formula, we have 

( 
I )n I I I I I+- =I+ C (n, I)-+ C (n, 2) _ + ... + C (n, n - 1)--=i + n = 
n n n2 nn n 

= 1 + . _..!_ + n (n - I) _I + n (n - I) (n - 2) + _l 
n n 2! n2 31 n3 • • • 

••• +n<n-1) ... 2_1_+n(n-l) ... 1_1 = 
(n - 1)1 nn-I nl nn 

= I + l + ;, (I - ~) +ii (I - *) (I - *) + ... 

and, similarly, 

( 1 + n ! I r+I = l + l +ii ( l - n ! l) + 

+ ~I ( 1 - n ! I ) ( l - n ! l ) + 
+ ~! ( l - n ! I ) ( l - n ! I ) · ' ' ( 1 - : ~ : ) + 

+ (n ! 1)1 ( 1 - n ! l ) (I - n ! l ) • • ' (I - : ~ : ) ( 1 - n ~ l ) 

The comparison of these expressions shows that ( 1 + 1 / (n +; + l))n+1 >(l + l/n)n, whence follows the assertion stated in the 
problem. 

(b) Let us consider the ratio 

( 
l )n+l . ( l )n _ ( n + I )n+I . ( n )n _ 1+- . 1+- - - . - -n n-1 n n-1 

= (n+l)n+1(n-l)n =(n2-l)n· n+l =(1--1 )n(1+_!_) 
n2n+l n2 n n2 n 
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For n ;:;::: 2 we have 

( 
l __ l_)n = l _ n. _l_ + n (n - l) I _ n (n - I) (n - 2) _l_ + 

n 2 n 2 21 n4 31 n6 

+ n (n - I) (n - 2) (n - 3) _l_ _ = 
4! n8 ''' 

= l _ ..!_ + ..!._ n - l -[J_ (1 - .!..) (1 - !) _1 -
n 2 n3 31 n n na 

- _!__ ( l - ..!..) ( l - ~) ( l - ~)-1 ]- ••• :;::;::: 41 n n n n4 ""'= 
l 1 1 1 l 

~ ... 1--+-2-2--2-3 n n n 
On the other hand, 

( 
1 1 1 I 1 )( l) 1 1 1 l 1--+----- l+- =1------<l n 2 n2 2 n3 n 2 n2 2 n 4 

,Consequently, (1 - l/n2 )n(l + l/n) < l, and therefore 

( 
1 )n+I ( 1 )n 

l+n : l+n-l <l, 
that is 

( l + ~ r+t < ( l + n ~ 1 r 
whence follows the assertion we had to prove. 

225. We shall use the proof by induction. 
1°. Let us show that 

nl > (;r (*) 

for any positive integer n. Indeed, for n = 1 this inequality ob­
viously holds: 1! = 1 > l/e. Now we assume that inequality (*) 
has already been proved for certain n and then show that under 
this assumption it holds for n + 1 as well; in other words, we 
must establish the inequality 

(n + 1)1 > ( n ~ 1 r+I 
By virtue of the result obtained in the solution of Problem 224 

<(a), we have 

e > (I + * r, that is 

Using inequality (*) we now find 

( 
1 )n > I l+­n 

e 

l(n + l)! = (n + 1) nl > (: r (n + 1) = ( n ~ l r+I (n ~el)n = 

= ( n ~ 1 r+I ( e Ir > ( n ~ 1 r+l 
1 +-n 
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By the principle of mathematical induction, it follows that in­
equality (*) is fulfilled for any positive integer n. 

2°. Now we pass to the inequality 

nl < n (; r (**) 

We have to prove that it holds for all integral values of n exceed­
ing 6. Using tables of logarithms (tables of natural logarithms 
are particularly convenient for this purpose) we easily check that 
inequality (**) holds for n = 7; 

7! < 7 c ~ r 
This means that 6! < (7 /e) 7 because In 6! = In 720 ~ 6.58 al)d 

In ( ~ r = 7 (In 7 - I)~ 6.62 

Now let us assume that inequality (**) has already been provect 
for a certain n. By virtue of the result of Problem 224 (b), we 
have 

( 
1 )n+l I+ n > e, that is 

From inequality (**) we now derive 

(n + 1)1 = (n + I) n! < (n + I) n (; r = 

(
n + 1 )n+l nn+le 

=(n+ 1) -e- (n+ l)n+l -

=(n+I)(n+1)n+1 e <(n+I)(n+l)n+ll 
e ( 1 )n+l e •+-n 

We see that inequality (**) with n replaced by n + I also holds .. 
Since inequality (**) holds for n = 7, by the principle of mathe-­
matical induction it follows tJ:iat (**) holds for any integer n 
greater than 6 as well, which is what we intended to prove. 

226. We shall proceed from the fact that for x > I the greatest 
term in the sum S = xk + xk-l + xk-2 + ... + x + I is the first 
one and the smallest term is the last one while, conversely, for 
x < I the greatest term i~ the last one and the smallest term i~. 
the first one. It follows that 

(k + 1) xk > S > k + 1 for x > I 
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.and 
(k + 1) xk < S < k + 1 for x < 1 

On multiplying both members of each of these inequalities by 
.x - 1 we see that 

(k + 1) xk (x - 1) > xk+ 1 - I > (k + I) (x - 1) 

for x -=F l. Let us put x = p / (p - 1) in the last inequality; this 
;results in 

(k + 1) l pk+I - (p - l)k+I (k + 1) (p - l)k 
(p _ l)k+i > (p _ l)k+l > (p _ l)k+I 

'Similarly, on putting x = (p + 1) / p we obtain 

(k + I) (p + l)k > (p + l)k+l _ pk+l > (k + 1) pk 
pk+l pk+I pk+l 

Now it follows that 

(p + l)k+l _ pk+l > (k + 1) pk > pk+l _ (p _ l)k+I . 

Next we consecutively put p = 1, 2, 3, ... , n in the last relation 
fo obtain 

2k+l - 1 k+I > (k + 1) 1 k > 1 k+l - 0 
3k+l - 2k+l > (k + 1) 2k > 2k+I - 1 k+I 

4k+ 1 - 3k+I > (k + 1) 31t > 3k+I - 2k+l 

(n + l)k+ 1 - nk+ 1 > (k +I) nk > nk+ 1 - (n - I)k+l 

()n adding together all these inequalities we find 

(n+I)k+ 1 -l>(k+I)(Ik+2k+3k+ ••• +nk)>nk+I 

,Finally, the division of all the members of the last inequalities by 
,k + 1 yields 

f(t + _.!_)k+I - _l_] _l _ nk+l > 
l n nk+1 k + 1 

> I k + 2k + 3k + + k > _I_ k+l ... n k+ln 

whence follows the inequality we intended to prove. 
227. (a) It is quite evident that 

1 1 I 1 1 1 1 
n+l + n+2 + ••• +2n>2ii""+2n"+ ... +2n"=2 

n times 
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On the other hand, we have 

This relation implies the second assertion stated in the condition 
of the problem. 

(b) We begin with the obvious relation 

1 1 1 1 I 
an+ 3n + I < 2n + 2n = n 

Now it follows that 

1 1 
n+1+n+2+ 

1 ( 1 1 ) + 3n - 1 + 3n + 3n + 1 < 
< .!...+..!..+ ... +..!..+..!._= 2n = 2 n n n n n _______ _... 

2n-1 times 

On the other hand, we have 

1 1 1 1 [( 1 1 ) 
n + 1 + n + 2 + · · · + 3n + I = 2 n + 1 + 3n + I + 

+ ( n ! 2 + 3~ ) + ( n ! 3 + 3n ~ I ) + · · · + (3n ~ 1 + n ! 1)] = 

1 [ 4n + 2 4n + 2 
= 2 (2n + 1) 2 - n 2 + (2n + 1) 2 - (n - 1)2 + 

4n+ 2 
+ (2n + 1)2 - (n - 2) 2 + 4n+ 2 ] + (2n + 1)2 - n2 > 

1 [ 4n + 2 4n + 2 
> 2 ~ + I )2 + (2n + I )2 + 4n+2 ] · · · + (2n+ 1)2 = _, 

2n+l times 

1 4n +2 
=2 (2n + 1) (2n + 1)2 = t 

228. (a) First we shall prove the inequalities 

2 ,Yn + i - 2 ,Yn < ,yk < 2 ,Yn - 2 -\in- i 
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Indeed, 
2 ,Yn + 1 -2 ,Yn = 2 h/n+:I -...Jn) h/n+T +··./ii)= 

'\l'n + 1 + -v'fi 
- 2 < 2 __ 1_ 

.y'n+1 + -v'fi .y' n + .y' n - '\f'n 
and the second inequality is proved in a similar way. 

Now we can write 

1 + -;_ + . ;_ + • .. + .y' 
1 > 1 + 2 [ ( ,Y3 - ,y2) + 

-v2 -v3 1000000 

+ (,Y4 - -Y3) + ... +(,YI OOOOOI - ,YI 000000)]= 

= 1 + 2 (,YI 000 00 I - ,Y2) > 2 • I 001 - ,y8 + 
+ 1 > 2000 - 3 + 1 = 1998 

Analogously, 

1 + . Jo + . J- + .. . + .y' 
1 < 1 + 2 [ ( ,Y2 - 1) + 

'V 2 'V 3 1 000 000 

+(-vf3--v'2)+ ... +(,Y1000000-,Y999999)]= 

= 1 + 2 (,YI 000 000 - I) = 1 + 2 • 999 = 1999 

'Consequently, the integral part of the sum 1 + I/-v'2 + l/ ,y3 + ... 
• .. + l / ,Y 1000 000 is equal to 1998. 

(b) By complete analogy with the solution of Problem 228 (a), 
we obtain 

1 + 1 + + 1 > 
.y'10 000 .y'10 001 • • • .y'1 000 000 

-and 

> 2 [ ( ,Y 1 O 00 I - ,YTOOOO) + ( ,YT0002 - ,YI o 001) + 

... +(,YI OOOOOI - ,YI 000000)]= 

= 2 (,Yi 000 001 - ,Y10 000) > 2 (1000 - 100) = 1800 

1 + 1 + + 1 < 
-y' 10 000 .y'i 0 00 I • • • .y' 1 000 000 

< 2 [ (,YI 0 000 - -vf 9999) + ( -y1f500T - ,Y l 0 000) + ••• 

.. . + (,YI 000 000 - ,Y999 999)] = 
= 2 ( ,y l 000 000 - ,y 9999) = 

= 2000 - ,Y39 996 < 2000 - I 99. 98 = I800. 02 

Consequently, the sum 1/-yilOOOO + I/,YIOOO(+ ... 
• . , + 1/ ,Yl 000 000 is equal to I800 with an accuracy of 0.02. 
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229. First of all we note that the comparison of the two rela­
tions 

and 

( 
2 1 )3 1 4 l 8 1 l+-- =1+2-+--+--3 n n 3 n2 27 n3 

shows that 

(1+;~)3>(1+~)2 
for any positive integer n. It follows that 1 + 2/3n > (1'+"1/n)213~ 
On multiplying the last inequality by n213 we obtain n2i3 :8 
+2n-''•/3 > (n + l )''• whence, finally, 

)_ > ~[4<n+ 1)2 -4n2] 
-vn 2 

Similarly, 

( 
2 l )3 l 4 l 8 1 1 l ( l )~ 1--- = 1-2-+-----> 1-2-+-= 1--3 n n 3 n2 27 n 3 n n2 n 

(because l/3n2 - 8/27n3 > l/3n2 - l/3n3 ~ 0) whence it follows. 
that 

? 

1 - - - > 1-- 3 2 l ( 1 )-
3 n n ' 

Now we can write 

2 1 2 
- 2 -- -

n3 - - n 3 > (n - 1)3 and 
3 

.. }- < ~[4n2 -4(n-1)2] 
-v n 2 

_1_+_1 + + 1 > 
44 -f/5 -fl l 000 000 

> ; [(452-442) + (462 -452) + 
... + (41000001 2 -410000002)] = 

= ; ( 41 000 002 000 00 l - 416) > ~ · 10 000 - 4 54 > 
> 15 000 > 4 = 14 99~ 

On the other hand, 
1 - l l 

44 + -f/5 + ... + -f/t 000000 < 
< % [(4 42 -432) + (452-442) + 
... + (410000002 -49999992)]= 

= % ( ~ 1 000 000 000 000 - 49) < ; ( 10 000 - 2) = 14 991" 
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Thus, the integral part of the ·sum 1/-\/4 + l/,Y5 + 
... + 1/-\/1000000 is equal to 14 996. 

230. (a) We obviously have 

1 + 1 -1- + 1 1 + 1 + + .1 
jQ2 w I o o o 10002 > To:-rr Tr:-12 o o • 1000' 1001 = 

= Ci10 - ft-) + (-IT- -k) + .. · + ( 10
1
00 - 1~01 ) = 

1 1 = 10 - 1001 > 0.1 - 0.001=0.099 

:and, similarly, 

1 1 1 1 1 1 
102 + w + . . . + 10002 < 9.10 + To:-rr + . . . + 999. 1000 =-

= ( ! - +a-) + (+a- - TI-) + . . . + ( 9!9 - 10~0) = 

1 1 
=g- 1000 <0.112-0.001 =0.111 

Consequently, the sum 1/102 + 1/112 + ... + 1/10002 is equal 
to 0.105 with an accuracy of 0.006. 

(b) First of all we note that 

1+1+1-'- 1 1 1 
10r w 12! I • ' ' + 10001 > 10I = 3 628 800 ~ 0.000000275 

On the other hand, 

1 1 1 1 1 { 9 10 11 999 } 
JOI+ Tii + 121 + ... + 1000! < 9 TOT+ w + Y2T + ... + 10001 = 

1 { 10 - 1 11 - 1 12 - 1 1000 - 1 } 
=g- -10-1-+-11-,-+-12-,-+ ... + 1000! = 

l{l 1 1 1 1 1 1 1} 
= 9 91- lOI + lOI - Ti! + TI! - 12! + . . . + 999! - 10001 = 

1(1 1) 1 1 1 c= g 9T - 10001 < g • 91 = 3 265 920 ~ 0.000000305 

Thus, the sum 1/10! + 1/11! + ... + 1/10001 is equal to 
•-0.00000029 with an accuracy of 0.000000015. 

231. Let us prove that the sum 

1 1 1 1 1 +2+a+ ... +n=-r+;t 

-:ean be made greater than any preassigned number N by taking 
.a sufficiently large value of n. Assuming that N is an integer 
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(this does not lead to loss of generality) we take n = 22N; then 

1 I I I I I (' I) 
I +2+3+4+ ··· + n-l +n-= 1+2+ 3+4 + 

(
I I 1 I) ( I I 

+ 5 + 6 + 7 + B + • • • + 22N-l +I + 22N-I + 2 + • • • 

... + 2N +2N > l +-+-+-+ ... +->N+t I I) I I I I 
2 -I 2 2 2 2 2 -----...,,----

2N times 

(according to the result established in the solution of Problem 
227 (a), each of the sums in the parentheses exceeds 1/2). 

Remark. The assertion of this problem can also be proved on the basis of 
the result established in the solution of Problem 227 (b). 

232. Let us denote by nk the number of those summands lying 
between 1/lQk and 1/1Qk+1 (including the number 1/lQk but not 
1/1Qk+1) which are not deleted. If a summand 1/q lying between 
1/lOk-l and 1/lOk is not deleted then among the summands l/lOq, 
1/(lOq+I), 1/(10q+2), ... , 1/(10q+8), l/(10q+9) lying 
between l/IOk and 1/10"+1 only the last one is deleted. In case the 
summand I/q is deleted all the summands I/IOq, I/(IOq + 1), ..• 
. . . , I/(IOq + 8), 1/(lOq + 9) are also deleted. It follows that 

nk=9nk-1 

Since n0 = 8 (becal!l.se among the summands 1, 1/2, 1/3, ... , 1/8,. 
1/9 only 1/9 is deleted), we have 

n1=8·9=72, n2 =8·92 , ••• , nk=8·9k 

Now let us take the sum 1 + 1/2 + 1/3 + ... + 1/n with 
n < 1om+1• On adding to this sum the terms needed to obtain the 
sum 1+1/2 + 1/3 + ... + 1/(lQm+i - 1) and deleting those 
summands whose denominators involve 9 we can group the re~ 
maining terms thus: 

(1+!+!+ ... +!)+ 

+(fo-+t\-+-k+ ···+fa-+ 2
1
0 + ··· + 818)+ 

The last expression does not exceed the sum 

+ 88 .
1 
.. 8) 

'--v--' m+l eights 

1 1 1 1 
l ·no+10·n1+ 100 ·n2+ + rnm-I ·nm-1+ 10m ·nm 
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because it is obtained from that expression by replacing every sum 
in the parentheses by the product of the greatest of the expressions 
in the parentheses by the number of these expressions. Further, we 
obviously have 

1 I 1 1 
I · no + - · n1 + - · n2 + . . . + --;n-T • nm-I + -m · nm= 

10 100 10 - 10 

( 
9 92 gm-1 gm ) 

-8 l +-+-+ +--+- -- 10 102 • • • 1om- 1 1om -

gm+I 
l---

1om+l 
=8. ---,,g-< 8. -~g-=8 · 10 =80 

1-10 1-10 

whence follows the assertion we had to prove. 
233. (a) Let us consider the sum 1 + 1/4 + 1/9 + ... + 1/n2 

with n smaller than 2k+1 and also the sum 1 + 1/22 + 1/32 + 
+ ... + 1/(2k+1 - 1) 2• On grouping the terms by analogy with 
the solution of Problem 231 we obtain 

1 + ( * + ~2 ) + ( 12 + -b- + -b- + i2 ) + ... 
( 

1 1 1 ) ( 1 1) + (2k)2 + (2k + 1)2 + • • • + (2k+I - 1)2 < 1 + 22 + 22 + 
(

I I 1 1) + 7+7+42+42 + ... 
( 

I 1 1 ) . . . + (2k)2 + (2k)2 + . . . + (2k)2 = 
1--1-

1 I I 2k+I I 
=1 +-+-+ ... +-k =---, -=2 --k < 2 

2 4 2 1-- 2 
2 

which is what we intended to prove. 
Remark. In a completely similar manner we can show that if a is a number 

greater than 1 then 

1+-1 +-'-+ 
2a 3a 

for any n. 
Thus, for any a > I the sum 

I +-1- +-' + ... +_!_a 
2a 3a n 

remains bounded for arbitrarily large n (from the result of Problem 231 it 
follows that for a~ I the sum 1 + l/2a + 1/3a + ... + 1/na can be made ar­
bitrarily large by taking a sufficiently large value of n). 
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(b) We obviously have 

I I I 1 1 ( 1 I) 22+32+42+52+ ... +ftT< T2-4 + 
I I I I 

+ 2-3+3-4+ ~+ · · · + (n- l)n -

(
I I I I) I 

= T2+2-3+~ + ... + (n-l)n -4 
Further, since 1/(k- l)k=l/(k-1)-1//l for all k=2, 3, ... 

• . . , n, there holds the equality 

1 1 1 1 1 
TT+ 2-3+""3."4 + · · · + (n- l)n =I -r;: <I 

and, consequently, 

1 + ;2 + ;2 + ~2 + ... + ~2 < I + ( J - ! ) = 1 ! 
which is what we had to prove. 

234. We shall first prove the inequality 

1 1 1 1 I 1 +2+3+4+ ... +n=-r-+n-< 

< (1 + ~ + ~ + + 21k )(1 + ~ + ~ + ... + 3lk) x ... 

.. . X (I + _!__ + + + ... + ~) 
Pt Pt Pt 

where k is an integer such that 2k ::;;;; n < 2"+1 and Pt is the grea· 
test prime number not exceeding n. To prove the inequality we 
open the parentheses on the right-hand side. Every integral num­
ber m from 1 to n can be represented as a product of powers of 
the prime numbers 1, 3, 5, ... , Pt in the form 

2a 3a 5a a1 m= •. 2. a ••• Pi 

where all the exponents rxi, c.t2, c.t3, ... , at are nonnegative integers 
(which, of course, do not exceed k). Therefore the sum obtained 
after the parentheses have been opened on the right-hand side in· 
volves a summand equal to 1/m which is the product of the num-
bers 1/2a', 1/3a', 1/5a' etc. taken from the first expression in the 
parentheses, from the second expression in the part;ntheses, from 
the third expression in the parentheses etc. respectively. Hence, 
after the parentheses have been opened, the sum on the right-hand 
side involves all the summands 1, 1/2, 1/3, 1/4, ... , 1/ (n - 1), 1/n 
and some other positive summands. This means that the right· 
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hand member of the given inequality is in fact greater than the 
left-hand member. 

Now, taking logarithms of both members we obtain 

log ( 1 + ; + ! + ! + · · · + n ~ 1 + ~ ) < 

<log [( 1 + ~ + ~ + ... + 2
1
k) ( 1 + ~ + ~ + · .. + ;k) X · · • 

... x(1 +-
1 +~+ ... +~)]= 

Pt Pt Pt 

=log ( 1 + ~ + ~ + . . . + 21k) + 

+log ( 1 + ~ + ~ + ... + 3
1
k) + ... 

... +log(l +-
1 

+-++ 
Pt Pi 

Further, for any positive integers k and p ~ 2 we have 

log(l +-1 +-1 +-1 + ... +-1) < 2log3 
p p2 p3 pk p 

Indeed, 

+-1) 
p~ 

1 
1- k+T 

I I I -~p--=--< I p l+ I I+-+-+···+--;;= 1 --1 =-p---1 = -p---l 
P P

2 
P I - - 1- -

p p 

and from the result established in Problem 220 it follows that 

( 
I )p-I I p-I _ ( I ) log 3 

1 + p _ l < 3, 1 + p _ I < ,Y3 , log 1 + p _ l < p _ l 

and, besides, there obviously holds the inequality 

2 log3 > log 3 
p p- l 

We thus conclude that 

I ( 1 + 
_!_ + + _!_) < 2 log 3 + 2 log 3 + 2 log 3 + + 2 log 3 _ 

og 2 • • • n 2 3 5 · · · Pi -

= 2 log 3 G + ! + ! + .. • + :J 
If there existed a number N such that the sum 1 + 1/2 + 1/3 + 
:+ 1/5 + ... .+ 1/pz were less than N for any positive integer l 
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then for any positive integer n the inequalities 

log ( 1 + ; + ! + + + · · · + n ~ l + ~) < 

(
I I 1 1 ) <2log3 2 + 3 + 5 + ... +Pi <2(N-l)log3 

would be fulfilled. Therefore on taking exponentials of the leftmost 
and the rightmost members of the las~ inequalities we would ob· 
tain 

1 I I 1 I 
l +2+3+4+ ,,, + n-1 +-n<32(N-t)=N1 

where N1 is independent of n. However, as was shown in the solu­
tion of Problem 231, such a number N1 does not exist; consequently 
a number N such that 

I I I I 
I+2+3+5+ ... +p;<N 

for any positive integer l where Pt is the lth prime number in the 
sequence of natural numbers does not exist either. 

235. It can easily be seen that (a+ b + c) 3 - aa - b3 - ca= 
= 3(a + b) (b + c) (c +a) (check it!). Therefore it is sufficient 
to show that the expression 

p (a, b, c) =(a+ b + c)333 _ a333 _ b333 _ c333 

is divisible by a+ b, by b + c and by a + c. It is evident that the 
expression P(x, b. c) = (x + b + c) 333 - x333 - b333 - c333 regarded 
as a polynomial in the variable x turns into zero when -b is sub­
stituted for x; therefore P (x, b, c) is divisible by x -(-b) = 
= x + b, and consequently P(a, b, c) is divisible by a+ b. It 
can similarly be proved that P(a, b, c) is divisible by both b + c 
and c + a (this also follows from the fact that the letters a, b 
and c are involved symmetrically in the expression P(a, b, c) ). 

236. We have 

ato + a5 + 1 = (as)a - I = a•s - I = 
a5 - I a5 - I 

(a3)5- ! (a3- !)(a12+a9+as+aa+ I) 
= (a - I) (a4 + a3 + a2 +a+ l) = (a - I) (a4 + a3 + a2 +a+ I) = 

_ (a2 +a+ I) (a 12 + a9 + a6 + a3 + I) 
- a4 + a3 + a2 + a + I 

The division shows that 

a
12 

+ a
9 

+ a
6 

+ a
3 

+ 1 _ s 7 + 5 4 + 3 + 1 
a4 + a•+ a2 + a + 1 - a - a a - a a - a 
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and consequently 

a!O + a5 +I= (a2 +a+ 1) (a8 - a7 + a5 - a4 + a3 - a+ 1) 

237. First solution. Let us denote the given polynomials as B 
and A respectively. Then we can write 

B _ A = (x9999 _ x9) + (xsss8 _ xa) + (xnn _ xr) + 

+ (x6666 _ x6) + (xssss _ x5) + (x4444 _ x4) + 

+ (x3aaa _ xa) + (x2222 _ x2) + (x1111 _ x) = 

= x9 [(x1D)999 _ l] + xa [(xlo)ass _ l] + xr [(xio)m _ 1] + 

+ x6 [ (xl0)666 _ I] + xs [ (x10)sss _ I] + x4 (xl0)444 _ 1] + 

+ xa [(xlo)aaa _ l] + x2 [(x10)222 _ 1] + [(x10)111 _I] 

Here every expression in the parentheses is divisible by x10 - I 
and, consequently, by A = (x 10 - 1) / (x - I) as well. We thus see 
that B - A is divisible by A, and therefore B is divisible by A. 

Sef,tJnd solution. We have 
xio _I 

~+~+~+~+~+~+~+~+x+l= x-1 = 

(x- l)(x-ai)(x-a2)(x-a3) ••• (x-a9) 

= x-1 = 

= (x - a1) (x - a2) ... (x - a9) 

where ak =cos 2kn/10 + i sin 2kn/10 (k = 1, 2, ... , 9) because 
the roots of the equation x10 - I = 0 (that is the tenth roots of 
unity) are expressed in just this way. Consequently, to prove the 
required assertion it suffices to check that the expression 

xgggg + xsssa + xm7 + x6666 + xssss + x4444 + x3333 + x2222 + x1111 + 1 

is divisible by each of the binomials (x - a 1), (x - a2 ), ••• 

. . . , (x - a 9). But this divisibility is equivalent to the fact that 
the equation 

x9999 + xasss + x7m + x6666 + xssss + x4444 + 

+ x3333 + x2222 + x1111 + I = o (*) 

has the roots equal to cx;i, a2, CX3, ••• , rx9• Let us verify that these 
values of x do in fact satisfy equation (*); indeed, since a1° = 1 
(k = 1, 2, 3, ... , 9) we have 

a9999 = a9990+9 = (al0)999 a9 _ a9 
k k k k- k 

arss = a~880+8 = (a10)888 ai = ai etc. 
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and 

a9999 + asass + ann + a6666 + a5555 + a4444 + a3333 + a2222 + a1111 + 1 _ 
k k k k k k k k k -

=~+~+~+~+~+~+~+~+a+I-k k k k k k k k k -

=0 (k= l, 2, ... , 9) 
238. First solution. We have 

a3 + b3 + c3 
- 3abc = 

= a3 + 3ab (a+ b) + b3 + c3 
- 3abc - 3ab (a+ b) = 

=.a3 + 3a2b + 3ab2 + b3 + c3 
- 3ab (c +a+ b) = 

=(a + b)3 + c3 
- 3ab (a + b + c) = 

=[(a+ b) + c] [(a+ b)2 
- (a+ b) c + c2

] - 3ab (a+ b + c) = 
=(a+ b + c) [(a+ b)2 - (a+ b) c + c2 

- 3ab] = 

=(a+ b + c) (a2 + 2ab + b2 
- ac - be+ c2 

- 3ab) = 
=(a+ b + c) (a2 + b2 + c2 - ab - ac - be) 

Second solution. Let us replace the letter a by x and put x + 
+ b + c = 0. On transforming the expression (x + b + c) 3 we 
conclude that x3 + b3 + c3 

- 3xbc=O when x + b + c=O. There­
fore the value x = -b - c is a root of the equation x3 - 3bcx + 
+ b3 + c3 = 0, and consequently the expression a3 + b3 + 
+ c3 - 3abc is divisible by a + b + c. On performing the division 
(to this end it is convenient to regard the expressions a3 - 3abc + 
+ b3 + c3 and a+ b + c as being arranged in ascending powers 
of the variable a) we arrive at the former result: 

a3 + b3 + c3 
- 3abc =(a+ b + c) (a2 + b2 + c2 - ab - ac - be) 

(b) Let us choose two numbers a and b such that the equality 

x3 + px + q = x3 + a3 + b3 
- 3abx 

is fulfilled. To this end it is sufficient that a and b should satisfy 
the relations a3 + b3 = q and ab = - p/3. These two relations 
are a system of two equations in the two unknowns a and b from 
which a and b can be found. We have a3 + b3 = q and a3b3 = 
= - p3 /27; it follows that a3 and b3 are the roots of the quadratic 
equation z2 - qz - p3 /27 = 0, and consequently * 

. 3/ q • I q2 Pa • 3/ q • I q2 p3 
a=\f 2+\14+ 21 • b=\f2-\12+27 (*} 

* The numbers a and b defined by formulas (*) are real when q2/4 + 
+ p3/27 ;;:;. 0. If q2/4 + p3/27 < 0 we have the third roots of complex number& 
in formulas (*). In this case the numbers a and b are also complex; they can 
be found using the formula for the nth root of a complex number. On applying 
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Now, by virtue of the result established in Problem 238 (a), we 
obtain 

x3+ px+ q=x3 + a3 + b1 -3abx= 
= (a + b + x) (a2 + b2 + x2 - ab - ax - bx} 

Consequently, the solution of the given cubic equation reduces 
to the solution of the first-degree equation 

a+b+x=O 

and the quadratic equation 

x2 
- (a+ b) x + a2 + b2 -ab= 0 

From the first equation we find 

X1=-a-b 
that is 

. a/ q • I q2 Pa 
Xi=-'\j 2+ '\j4+2f 

1t follows that 

_ a+ b + (a - b) -V3 . 
X2--2- 2 t, 

a+ b (a - b) .y3 . 
X3=-2 - - 2 t 

where a and b are determined by formulas (*). 
239. First solution. Let us denote -vi a+ x by y; then we obtain 

the following system of two equations: 

-Va+x=y, -Va-y=x 

On squaring these equations we find 

a+x=y2
, a-y=x2 

Let us subtract the second of the last relations from the first 
.one; this results in 

The last equality can be rewritten as 

x2 -y2 + x + y=(x+ y)(x-y+ 1) =0 

Now we see that there can be the following two possibilities: 
( 1) x + y = 0, y = - x and x2 - x - a = 0 whence 

1 ./-1 
X1,2=2+ ~a -j-- 4 

this formula we can take as a any of the three values of the third root of the 
.complex number qf2+,.,/q2/4+p 3/27, after which b can be found from the re­
lation ab = -p/3. 
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(2) x - y + 1 = O; then y = x + 1 and x2 + x + 1 - a= 01 
whence 

X3,4=- ~±~a -{ 

It can be verified directly that the expressions x1, x2, x3 and x4 
thus determined are in fact the roots of the given equation provid· 
ed that the signs of the radicals occurring in this equation are 
chosen appropriately*. 

Second solution. Let us eliminate the radical in the given equa· 
tion: 

and, finally, 

a--v'a+x =x2 

(a - x2
)
2 =a + x 

x4 - 2ax2 - x + a2 
- a= 0 

Thus, we have arrived at a fourth-degree equation in x; with 
respect to a it is a quadratic equation. Let us find a from it. To· 
this end we regard temporarily x as a given quantity and express 
a in terms of x: 

a2
- (2x2 + l)a + x4 -x=O 

2x 2 + 1 ± '\/4x4 + 4x2 + 1 - 4x4 + 4x 
a= 2 = 

2x2 + 1 ± ,y-4x_,,2-+-4x-+~1 _ 2x2 + 1 ± (2x +I)• 
= 2 - 2 

and, finally, 
a, = x2 + x + I, a2 = x2 

- x 

We see that the equation 

a2 - (2x2 + 1) a + x4 - x = 0 

possesses the roots 

a1=x2 +x+ l, a2 =x2 -x 

whence, by virtue of the general properties of the roots of a, 
quadratic equation, we conclude that 

a2 - (2x2 + 1) a+ x4 - x =(a - a1) (a - a2) = 

=(a - x2 
- x - 1) (a - x2 + x} 

Hence, the given equation takes the form 

(x2 -x-a) (x2 + x-a + 1) =0 

* It should be noted that if all the radicals are considered positive theru 
the equation possesses only one root x3 = - 1/2 + ,Ya - 3/4 in case a ;;;:. l 
and has no roots at all in case a < I. 
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and can easily be solved: 

X1.2=~ ±v++a =~ +~ 
X3 4=-_!_+ · l_!_+a-1 ~-_!_±·la-~ 

. 2-~4 2 ~ 4 

240. First solution. Let us denote 

x2+2ax+-k=y, -a+ va2+x--k =Y1 

The given equation takes the form 

Y=Y1 
Now let us express x in terms of Yt· Simple calculations result 

in 
1 

x =YT+ 2ay1 + 16 

We thus see that x is expressed in terms of y1 in just the same­
way as y is expressed in terms of x. It follows that the graphs of 
the functions 

and 

1 
Y-x2 +2ax+­- 16 

Y1=-a+ va2 + x--k 

are parabolas located symmetri­
cally about the bisector of the 
first quadrant (see Fig. 27; to 
every point x = Xo, y = Yo lying 
on the first graph there corre-

y 

a=1 
8 

sponds the point x =Yo, y = Xn x 
lying on the second graph 
which is symmetric to the for­
mer point about the bisector of 
the first quadrant). The points Fig. 27 
of intersection of the two graphs 
correspond to those values of x for which y =Yi. that is to the· 
roots of the given equation. These points must necessarily lie on the 
axis of symmetry of both curves, that is they satisfy the condition 

Y=X=Y1 
On solving the equation y = x which can be written as 

1 
x2 +2ax+ 16=x 
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we obtain 
1 - 2a ,J( 1 - 2a )2 1 

X1,2=-2-± -2- -15 

It can readily be verified that for 0 < a < 1/4 both roots are 
real and do in fact satisfy the original equation. 

Second solution. This problem can also be solved in a more 
traditional manner without using graphs. On eliminating the ra­
dical in the given equation we obtain 

( x2 + 2ax + a + 1
1
6 r = a2 + x - * 

Next we open parentheses and collect like terms, which yields 

.x4 + 4ax3 + ( 4a2 + 2a + ! ) x2 + ( 4a2 + ! a - l) x + 
a 1 1 

+ 8 + T6 + 162 = 0 
The left-hand member of the resultant equation can be factored as 

{x4 +(2a- l)x3+*x2]+[(2a+ l)x3 +(4a2
- l)x2 + ( ~ + * )x]+ 

+ [( 2a + !~) x2 + ( 4a2+ ~ - !~) x + ( ~ + * + 1!2 )] = 

=[x2 +(2a-l)x+*][x2 +(2a+ l)x+(2a+ !~)] 
Now we readily obtain the solutions: 

1 x2 + (2a - l)x + 16 = 0 
whence 

1 - 2a • f ( 1 - 2a )2 1 
X1,2=-2-+ /\J -2- -15 

and 

whence 
Xa 4 = _ 1 + 2a ± . /( I + 2a )2 _ 2a _ J! 

' .2 /\J 2 16 

For 0 < a< 1/4 the first two roots are real and satisfy the ori­
ginal equation; the last two roots are complex. 

24 t. For the left-hand member of the given equation to be real 
when x is real it is necessary that all the radicands should be po­
sitive. On denoting these positive radicands beginning with the 
last one (which is equal to 3x) up to the first one as YI· y~, y;, ... 



... , y!_1, ~ respectively we can write 

3x=x+2x=yi 

x + 2yl =y~ 

x+ 2y2 =y~ 

x + 2Yn-2 = Y!-1 

X + 2yn-I = Y! 
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where all the numbers y1, y2, ... , Yn are real and positive. The 
original equation itself takes the form 

Yn=X 

Let us prove that Y1 = x. Indeed, let us suppose, for definite­
ness, that x > y 1• Then the comparison of the first and the second 
of the above equalities shows that y1 > y2• Similarly, from the 
second and the third equalities we find that y2 > y3; further, we 
analogously obtain the inequalities 

Y3 > Y4 > · · · > Yn-1 > Yn 
Thus, for x > y 1 we have x > Yn, which contradicts the equation· 
y,, = x. It can similarly be shown that for x < y1 the equality 
y,, = x cannot be fulfilled either (in this case the inequality x < Yri. 
must necessarily hold). 

Since y{ = 3x, it follows that the relation 

3x=x2 

must hold, whence we readily conclude that only the following two· 
values of x are admissible: 

X1=3, X2=0 

The direct verification shows that both these values satisfy the 
given equation. 

Remark. We shall also mention one more method for the solution of the 
equation 

(*) 

n radical signs 

On replacing the last letter x on the left-hand side of equation (*) by the va­
lue of x expressed by (*) we obtain 

x = ,Y x + 2 V x + 2 ,-J x + . . . + 2 -v' x + 2x 
~~~~--~----~~~~~----2n radical signs 
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Further, let us replace the last letter x by the same t>xpression; again and 
again this yields 

x ='\/ :.±2 -Vx+2 '\f'x+ ... +2-V~ 
3n radical signs 

= '\/ x + 2 ,Y x + 2 '\!' x + . . . + 2 -V x + 2x 
4n radical signs 

On the basis of these relations we can write 

x=-.Jx+2'\f'x+2-Vx+ ... = 

= lim '\/ x + 2 ,Y x + 2 '\!' x + . . . + 2 -V x + 2x (**) 
N~oo '-

N radical signs 

whence it follows that 

_x =-.Jx+2 '\f'x+2-Vx+ 

= '\/ x + 2 [ ,Y x + 2 '\!' x + 2 -V x + . . . ] = -V x + 2x (***) 

From the last relation we find x = ffx, that is x2 = 3x, and consequently 
_x1 = 0 and x2 = 3. In particular, this method of solution readily shows that 
the roots of equation (*) are independent of n because equation (**} does 
not involve n). 

This argument cannot be, of course, regarded as a rigorous solution of the 
problem since we have not proved the existence of limit (**) and the validity 
of transformation (***). It should be noted however that it is in fact possible 
to modify this argument to elaborate a rigorous solution. 

242. Let us consecutively simplify the fraction on the right-hand 
side: 

1 + _!_ = ..:..±..! . x x t 
l +-!- = l +-x-= 2x+ I. 

x+I x+I x+I' 
x 

I x+ I 3x+2 
l + 2x + I = l + 2X + I = 2x + I ; 

X+T 
Finally we arrive at an equation of the form 

ax+ b 
cx+d =x 

where a. b, c and d are some integers yet unknown. This equation 
is equivalent to the quadratic equation x(cx + d) =ax+ b. It 
follows that the original equation possesses not more than two 
different solutions (this equation cannot turn into an identity be· 
cause, if otherwise, any value of x would satisfy it, which is false 
.since x = 0 obviously does not satisfy the equation). 



Solutions 313: 

These two roots of the equation can easily be found. Indeed, let 
us suppose that x is such that 

1 +..!..=x x 

Then, simplifying consecutively the given fraction "beginning with 
its end", we obtain 

1 +..!..=x· 1 +xi =x; x J 

I 
1 +x-=x; .... 

and finally arrive at the identity 

x=x 

Thus, we see that the roots of the equation 1 + ..!. = x (it is equi­x 
valent to the quadratic equation x2 - x - I = 0) which are equal 
to 

1 +-V5 
X1= 2 , 

satisfy the given equation, and this equation has no other roots_ 
Remark. We shall also mention another method for the solution of the prob­

lem (cf. the remark to Problem 241). Let us replace x on the left-hand sirle 
of the given equation by the expression of x in the form of a terminating con­
tinued fraction given by the equation itself. This results in an equation of the 
same form which however involves 2n fraction lines. Continuing this process. 
we consecutively obtain fractions with an increasing number of fraction lines. 
On the basis of this transformation we can write 

X=l +---
1+---

1+ I 
I 

1+~ 

=I+ lim 
N.+oo l+---

1 + I 
1+ 

+ 1 + ..!.. (*) I 

fraction line Is repeated N times 

where on the left-hand side there is a nonterminating continued fraction involv­
ing infinitely many fraction lines. The last expression implies 

x=l+---

1+---
1+---

1 + 1 
1 +. 

=l+---­

[1+--
1+---

1 + 1 
1+ 

(**) 

... ] 
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that is we arrive at the quadratic equation for x found in the former solution 
of the problem. The latter solution of the original equation shows directly that 
its roots cannot depend on n. 

This argument cannot be regarded as a rigorous solution of the problem be­
cause we have not proved the existence of limit (*), the equality between x 
and this limit and the validity of transformation (**). However, it should be 
noted that this argument can be modified to obtain a quite rigorous solution. 

243. We have 

x+3-4-Vx-l=x-I-4-Vx-l+4= 

= (-V x - 1 )2 
- 4 -V x - 1 + 4 = (-V x - I - 2)2 

and, similarly, 

x+s-6-Vx-l =x-l-6-Vx-l +9=(-Vx-1 -3)2 

Hence, the given equation can be rewritten in the form 

'\/(-Vx-1 - 2)2 +'\/(-Vx-1 - 3)2 = 1 

Since all the roots are considered positive the equation can also 
be written as 

where Jyl designates the absolute value of the number y. 
Now let us consider separately the following possible cases. 
1°. If ,yx=1 - 2;;;:: O and -V x - 1 - 3;;;:: 0, that is if 

-V x - 1;;;:: 3, then we have x - 1;;;:: 9 whence x;;;:: 10. In this case 
I -V x - 1 - 2 I= ,yx=1 - 2 and I ,yx=I - 3 I = -V x - I - 3; 
therefore the equation takes the form 

-Vx- I,-2+-Vx-1-3=1 
whence 

2 ,yx=T = 6, x - 1 = 9, x = IO 

2°. If -Vx-1-2;;;::0 and -Vx-1-3~0, that is if 
-V x - 1;;;:: 2, x;;;:: 5 but -V x - I::;;;; 3, x::;;;; IO, then 1-V x - I - 2 I= 
=-Vx-1-2, l-Vx-l-3l=-,yx=1+3 and the equation 
turns into the identity 

,yx=T-2-,yx=T +3=1 

This means that all the values of x lying between x = 5 and 
x = IO satisfy the given equation. 

3°. If -V x - 1 - 2::;;;; 0 and -V x - 1 - 3::;;;; 0, that is if 
-v'X=1::;;;; 2, then x::;;;; 5; in this case we have J -V x - 1 - 2 I = 
= - -V x - l + 2, 1-V x - I - 3 I= - ,Y x - 1 + 3, and the equa-
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tion takes the form 

-,Yx-1 +2-,Yx-1+3=1 
whence 

2-v'X=T =4, x-1 =4, x=5 

4°. The case when '\l'X=l - 2 ~ 0 and '\l'X=l - 3 ~ O is 
obviously impossible. 

Thus, the solutions of the equation are all the values of x lying 
between x = 5 and x = 10: 5::::;;; x::::;;; 10. 

244. To solve the given equation we shall first determine its 
roots lying within the interval from 2 to oo and then, consecuti­
vely, the roots lying within the intervals from 1 to 2, from 0 to I, 
from -1 to 0 and from - oo to - I. 

1°. Let x ~ 2. Then we have x + 1 > 0, x > 0, x - 1 > 0 and 
x - 2 ~ 0; therefore Ix + I I = x + 1, Ix I = x, Ix - l I = x - I 
and Ix - 21=x-2. We thus arrive at the equation 

x+ l-x+3(x- l)-2(x-2)=x+2 

which is satisfied identically. 
Hence, any number greater than or equal to 2 is a root of the 

given equation. 
2°. Let 1 ~ x < 2. Then x + 1 > 0, x > 0, x - 1 ~ 0 and 

x-2<0; consequently lx+ll=x+l, lxl=x, lx-11= 
c:: x - 1 and Ix - 2 I= -(x - 2). 

Thus, we obtain the equation 

x + 1 - x + 3 (x - 1) + 2 (x - 2) = x + 2 

From this equation we find 4x = 8, whence x = 2. Since the 
number x = 2 does not belong to the interval 1 ::::;;; x < 2, the 
given equation possesses no roots which are greater than or equal 
to 1 and are smaller than 2. 

3°. Let 0::::;;; x < 1. Then we have 

Ix+ 1l=x+1, lxl=x 
and 

lx-l l=-(x-1), lx-21=-(x-2) 
Hence, 

x + 1 - x - 3 (x - I) + 2 (x - 2) = x + 2, x = - 1 

Since the value x = 1 lies outside the interval 0::::;;; x < 1, there 
are no roots which are greater than or equal to 0 and are less 
than I. 

4°. Let -1 ::::;;; x < 0. Then Ix + 1 I = x + I. In this case 

lxl=-x, lx-11=-(x-l), lx-21=-(x-2) 
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and 
x + 1 + x - 3 (x - 1) + 2 (x - 2) = x + 2 

which is impossible, that is the interval -1 ~ x < 0 does not 
contain roots either. 

5°. Let x<-1. Then Ix+ ll=-(x+ 1), lxl=-x, 
lx-ll=-(x-1) and lx-21=-(x-2) 
We obtain 

- (x + 1) + x - 3 (x - 1) + 2 (x - 2) = x + 2, x = - 2 

Hence, there is one more root x = - 2. 

Fig. 28 

Finally, we conclude that the roots of the equation are the num• 
her -2 and all the numbers greater than or equal to 2. 

Remark. The result of the present problem becomes particularly clear if we 
.construct the graph of the function 

y = I x + 1 I - I x I + 3 I x - I I - 21 x - 21 - (x + 2) 
In Fig. 28 the thin lines represent the graphs of the functions y1 = Ix+ l J, 

Y2=-IXI, Ys=31x-ll, y4=-2lx-21 and Ys=-(x+2), and the hea­
vy line the graph ol the function y = Y1 + Y2 + Ya + y4 + Ys (here we have per­
for.med the "addition" of the graphs). As is readily seen from the figure, the 
variable y turns into zero on the ray x ;;;;i: 2 and at the separate point x = -2. 

245. Let us denote the right-hand side of the given equation of 
the nth degree as f n (x). It is easily seen that f1 (x) = 0, that is 
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the equation 1 - x = 0 has the root X1 = l; the equation f2 (x) =0 
·has the form x(x - 1)- 2x + 2 = 0 or, equivalently, x2 - 3x + 
+ 2 = O; this equation has the roots x1 = 1 and X2 = 2. Now Jet 
us prove that the equation fn(x) = 0 possesses the following roots: 

X1 = l, X2 = 2, X3 = 3, ... , Xn-1 = n - l, Xn = n (*) 

We shall make use of the method of mathematical induction. To 
this end we assume that the assertion has already been proved 
for the equation fn(x) = 0 and then show that under this assump­
tion the equation fn+i (x) = 0 possesses the same roots (*) and 
an additional root Xn+i = n + 1. First of all, since 

f ( )-f ( )+(-l)n+l x(x-l)(x-2) ... (x-n+l)(x-n) 
n+I X - n X (n + 1)1 

it is clear that if the equation fn(x) = 0 has roots (*), then the 
same roots also satisfy the equation f n+1 (x) = 0. Finally, the equa­
lity f n+1 (n + 1) = 0 can be written in the form 

I _ n + 1 + (n + I) n _ (n + 1) n (n - 1) + 
I 1·2 1·2·3 ... 

+(-l)n+l (n+l)n(n-1) ... 2·1 =O 
• •. (n + l)! 

that is 

1-C(n+l, l)+C(n+l,2)-C(n+l,3)+ ... 

... +(-I)n+1 C(n+1,n+l)=O (**) 

where C (n + 1, k) = (n + l) n (n - 1k
1 
• • • (n - k + 2) are the so-called 

binomial coefficients. By Newton's binomial formula, the right­
hand side of (**) is equal to ( 1 - 1) n+l = 0, whence it follows 
that the number Xn+t = n + 1 is also a root of the equation 
f n+I (x) = 0. 

246. Let us denote by {x} the fractional part of the number x: 
{x} = x - (x] (see page 37). It is evident that 0 ~ {x} < 1 and 
(x] .:_ x - {x}. Thus, the given equation takes the form 

x3 - (x - {x}) = 3, that is x3 
- x = 3 - {x} 

whence it follows that 2 < x3 - x ~ 3. Further, for x ~ 2 we 
have x3 -x=x(x2 --l) ~2(4-1) =6>3; for x<-1 we 
have x2 - l > 0 and x3 -x = x(x2 - l)< 0 < 2; for x = -1 
we have x3 - x = 0 < 2; for -1 < x ~ 0 we have x3 - x ~ 
~ - x < 1 and for 0 < x ~ 1 we have x3 - x < x3 ~ 1. There· 
fore there must be 1 < x < 2, and consequently [x] = 1. Now the 
original equation can be written in the form 

x3 
- 1 = 3 whence x3 = 4, that is x = ~4 
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Thus, x = V'4 is nothing other than the (single) solution to the 
problem. 

247. From the first equation of the given system we immediatel:1 
obtain 

y2=x2, y= +x 

The substitution of this expression of y2 into the second equa-
tion yields 

(x - a)2 + x2 = I (*) 

This is a quadratic equation; in the general case it determines 
two values of x. Since to every value of x there correspond two 
values of y, the total number of the solutions of the problem is 
equal to four. 

The number of the solutions of the system reduces to three when 
one of the values of x is equal to zero; to the value x = 0 (and 
only to this value) there corresponds a single solution y = 0 and 
not fwo different values y = + x. On substituting x = 0 into 
equation (*) we find 

a2 = 1 whence a = + 1 

For only these values of a the system possesses three solutions. 
The number of the solutions of the system reduces to two when 

the equation for x has only one solution. For the quadratic equa­
tion (x - a) 2 + x2 = 1 which can be written as 2x2 - 2ax + 
+ a2 - 1 = 0 to nave only one solution (in this case the two roots 
coincide) there must be 

a2 - 2 (a2 - 1) = 0 whence a2 = 2, that is a=+ ,Y2 
For these values of a the system possesses two solutions. 

248. (a) On solving the system we find 

a3 -1 -a2 +a 
X = a2 - 1 ' Y = a 2 - 1 

It follows that if a + 1 =F 0 and a - 1 =F 0 then the system has 
only one solution x = (a2 +a+ l)/(a +I), y=-a/(a + 1). If 
a = - l or a = + I the formulas we have derived do not make 
sense. In the case a = - 1 we arrive at the system 

-x+y=I} 
x-y=I 

which is inconsistent (that is it has no solutions at all) and in 
the case a= + 1 we obtain the system 

x+y=I} 
x+y=I 
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possessing infinitely many solutions (in this case x is arbitrary 
and y is expressed by the formula y = 1 - x). 

(b) On solving the system we obtain 
a4 - l -a3 +a 

X = a2 - l ' Y = a2 - l 

Thus, in this case as well the system has only one solution 
x = a2 + 1, y =-a when a2 - 1 =I= 0. As to the cases when 
a= -1 or a= 1, we arrive at the systems 

-x+y=- l} x+y= 1} 
and 

x-y=l x+y=l 

respectively each of which possesses infinitely many solutions. 
(c) From the first and the second equations we find 

y + z = 1 - ax and ay + z = a - x 

These two relations can be regarded as a system of two equations 
in the two unknowns y and z; on solving the system we obtain 

a-x-l+ax (a-l)(l+x) 
y= a-1 = a-1 

a (l - ax) - a + x - x (a 2 
- I) 

z= a-I = a-I 

Thus, if a =I= 1 then y = 1 + x, z = -(1 + a)x; the substitution 
of these values of y and z into the third equation results in 

x + (1 + x) - a (1 +a) x = a2
, x (2 - a - a2

) = 

=a2 - l, -x(a+2)(a- l)=a2 - l 

Therefore for a - 1 =I= 0 and a + 2 =I= 0 the system has a single 
solution: 

a 2 
- l a+ I 

X = - (a+ 2) (a - I) = - a+ 2 ' 

l (a+ 1) 2 

y = 1 + x = a + 2 , z = - (a + I) x = a + 2 

In the cases when a= 1 or a= - 2 we arrive at the systems 

x + y + z = 1 } - 2x + y + z = 1 } 
x + y + z = 1 and x - 2y + z = - 2 

x+y+z=l x+y-2z=4 

respectively; the first of them has infinitely many solutions where­
as the other has no solutions at all (the addition of the first two 
equations of the second system results in the equation -x - y + 
+ 2z = -1 which contradicts the third equation). 
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249. Let us subtract the second equation from the first one and 
the sixth equation from the fifth one; on equating the two expres­
sions for x2 - xa thus obtained we find 

a1 (a2 - a3) = a4 (a2 - aa) whence (a1 - a4) (a2 - a3) = 0 

In just the same way, on finding two different expressions for 
each of the differences x1 - x2 and x1 - x3, we arrive at two more 
relations: 

(a1 - a2) (aa - a4) = 0 and (a 1 - a3) (a2 - a4) = 0 

From the first of the three relations we have derived it follows 
that a:1 = a:4 or a:2 = a:3• For definiteness, let us assume that 
a:2 = a:3 = a:. From the second relation it follows that a:1 = a: or 
a 4 = a:. For each of these equalities the third relation turns into 
an identity. Thus, for the given system to be consistent it is ne­
cessary that three of the four numbers ct1> a 2, a:3 and a:4 should be 
equal to one another. 

Now Jet us suppose that a1 = a:2 = a3 = a, a:4 = ~· Using the 
expressions for the differences x1 - X2, X1 - x3 and X2 - x3 which 
we derived earlier and with the aid of which the relationships 
behyeen a: 1, a:2, a:3 and a 4 were established we immediately obtain 

Now let us denote x1= X2= xa by x and X4 by y. Then the given 
system of six equations in four unknowns goes into two equations 
in two unknowns: 

2x=a2, x+y=a~ 

From the last system we find 

x=~
2

, y=a(~-~) 
Remark. Using an analogous argument we can show that a more general 

system of the form 

x1+x2+ ... +xm-1+xm=a1a2 .•. am-1am } 
X1 + X2 + ... + Xm-1 + Xm+1 = a1a2 ••• am-1am+1 

Xn+m-1 .j. ~n·+~~2 + .. : .. + ;n~1 ·+ x~' ~~+~~1~n:~-; ~ .'. an-1an 

consisting of C(n, m) equations in n unknowns (n > m + 1) is solvable only 
in the following two cases: 

1°. a1 = a2 = ... = <Xn-1 =a, an=~ (in this case X1 = X2 = 
= .. , = Xn-1 = an/n, Xn=an-1 (~ - n-;; 1 a)). 

2°. In the sequence ct1> a:2, ••• , ctn there are n - m + I (or 
more) numbers equal to zero (in this case x1=x2= ••. =Xn=O). 
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250. From the first equation we obtain x = 2 - y; the substitu­
tion of this expression into the second equation results in the re­
lation 

2y-y2-z2 = 1 

which can be rewritten as 

z2 + y2-2y +I= 0, whence z2 + (y- 1)2 = 0 

Each of the two summands on the left-hand side of the last 
equality is nonnegative and, consequently, it must be equal t<l' 
zero. It follows that 

z=O, Y= I 
and hence 

x=I 

Thus, the system possesses a single real solution. 
251. If x4 + y4 = I then x4 = 1, y4 = 0 or x4 = 0, y4 = I or,. 

finally, 0 < x4, y4 < I (because the numbers x4 and y4 are non­
nef?ative). For x4 < I and y4 < I we also have Ix I< 1 and 
IYI< I whence 

x4 = I x4 I = I x3 I · I x I < I x3 I, y4 < I Y3 I 
and I x3 I + I y3 I > x4 + y4 = I 

It follows that two numbers x and y of one sign satisfying the 
conditions Ix I< I and I y I< I cannot serve as a solution to the 
given system. It is even more evident that two numbers x and y 
of opposite signs such that Ix I < I and I y I < I cannot serve as 
a solution either because in this case 

x3 + y3 ~ I x3 + y3 I < max (I x3 I. I y3 I ) < I 

Thus, the solutions of the system can only involve values of .x 
and y such that x4 = I and y4 = 0 or x4 = 0 and y4 = l, that 
is x = + I and y = 0 or x = 0 and y = + 1. It is clear that 
among these four pairs of values of x and y only the two pairs 
x = I, y = 0 and x = 0, y = 1 are the solutions of the system. 

252. One solution (or, more precisely, a system of solutions) 
is quite evident: x 1 = x2 = xs = X4 = Xs = 0 and x is arbitrary; 
therefore in what follows we shall assume that at least one of the 
numbers Xi (i = l, 2, 3, 4, 5) is different from zero. Further, from 
the first and the_last equations of the system we derive 

X3 :_ XX2 - X1 and X5 = XX1 - X2 

Similarly, the second and the last but one equations yield 

X4 = XX3 - X2 and X4 = XX5 - X1 

11 -60 

(*) 

(**) 
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On substituting into (**) the values of x3 and x5 expressed by 
formulas (*) we find 

X4 = (x2 - I) X2 - XX1 and X4 = (x2 - I) X1 - XX2 (***) 

Now we equate the right-hand members of equalities (***); this 
yields 

whence 
(x2 +x- I)x1=(x2 +x- I)x2 

In the further course of the solution it is natural to distinguish 
between the two cases when x2 + x - 1 =I= 0 and when x2 + 
+ x - 1 = 0. If x2 + x - 1 =I= 0 then obviously x1 = x2• Since all 
the unknowns are involved symmetrically in the given equations 
it can similarly be shown that in this case x 2=x3, x3=X4, X4= x 5. 

Thus, here we have X1 = x2 = Xa = X4 = X5. The substitution of 
these values into the original equations yields x = 2. If x2 + 
+ x - 1 = 0 (that is x2 

- I = -x and x = (- I + --J5)/2), sy· 
stem (***) reduces to one equation 

X4 = - X (X2 + X1) (****) 

We can verify directly that in this case the values x3 = xx2 - X1i 

X4 =-x(x1 + x2) and xs = xx1 - x2 satisfy the given system for 
arbitrary x 1 and x2. 

Answer: (I) x1 = X2 = xa = X4 = xs = 0 and x is arbitrary; 
(2) the values x 1 = x2 = x 3 = x4 = x5 are arbitrary and x = 2; 
(3) x 1 and x 2 are arbitrary, X3 = xx2 - xi, X4 = -x(x1 + x2), 

xs = xx1 -x2 and x= (-I+ --J5)/2. 
253. Let x, y, z and t be the sought-for numbers and let xyzt=A. 

It should be noted that A =I= 0 because if, for instance, x = 0 then 
the conditions of the problem imply inconsistent equalities y=z= 
= t = 2 and yzt = 2. Further, the equation x + yzt = 2 can be 
rewritten as 

x+~=2, that is x2 -2x+A=0 x 

We similarly obtain 

y2 - 2y + A = 0, z2 
- 2z + A = 0 and t2 - 2t + A= 0 

For a given A the equation x2 - 2x + A = 0 can have only two 
distinct roots; therefore among the numbers x, y, z and t there 
are not more than two different numbers. Let us consider separa· 
tely the cases that can take place here. 

1°. If x = y = z = t then the given equations yield 

x+x3=2 
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whence 

and, finally, 
(x - l) (x2 + x + 2) = 0 

From the last equation we find x, = l, x2, 3 = (- 1 + -\!- 7)/2. 
Thus, in this case we have a single real solution: x = y = z = 
= t = 1. 

2°. If x = y = z while t may be different from these numbers 
then the conditions of the problem imply 

(*} 

On subtracting one of equalities (*) from the other we obtain 

x3 
- x2t - x + t = 0, that is (x- t) (x2 - 1) = 0 

and therefore either x = t (this case has already been investigat­
ed) or x = + l. For x = 1 the first equation (*) immediately 
yields t = I, that is we again arrive at the solution obtained. 
above. In case x = -1 the same equation yields t = 3. 

3°. If x = y and z = t the system reduces to 

x+xz2 =2, z+x2z=2 (**) 

On performing the termwise subtraction of one of these equations 
from the other we find 

x - z + xz2 - x2z = 0, that is (x - z) (l - xz) = 0 

Equality x = z immediately leads to case 1°; if xz = 1 then (by 
virtue of the first equation (**)) x + z = 2, and we again find 
the solution x = z = l obtained earlier. 

Answer: Either all the four numbers are equal to 1 or three ol 
them are equal to -1 and the third one is equal to 3. 

254. To underline the complete symmetry of the equations form­
ing the given system with respect to the unknowns involved in the 
system and with respect to the coefficients in these unknowns let 
us introduce the notation x = x1i y = x2, z = x3, t = x4, a = ai, 
b = a2, c = a3 .and d = a4• Then the given equations take the 
form 

4 

Lla,-a1lx1=1 (i=l, 2, 3, 4) 
1~1 

Further, let, for instance, a, > a2 > aa > a4. Then 

(a1 - a2) X2 + (a, - aa) xa + (a1 - a4) X4 = 1 l 
(a1 - a2) x1 + (a2 - aa) xa + (a2 - a4) X4 = 1 i 
(a, - a3) x, + (a2 - a3) X2 + (aa - a4) X4 = 1 I 
(a, - a4) x, + (a2 - a4) X2 + (a4 - aa) x3 = 1 J 

11* 

(*) 

(**) 
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Let us subtract the second equation of system (**) from the first 
one, the third equation from the second and the fourth from the 
third; this results in 

(a1 - a2) (- X1 + X2 + X3 + X4) = 0 } 
(a2 - a3) (- X1 - X2 + X3 + X4) = 0 
(a3 - a4) (- X1 - X2 - X3 + X4) = 0 

The number a1i a2, a3 and a4 being pairwise distinct, we must 
have 

X1 = X2 + X3 + X4, X1 + X2 = X3 + X4, X1 + X2 + X3 = X4 

whence it follows that 

X2 = X3 = 0, X1 = X4 

and therefore we obtain (for instance, from the last equation (**)) 
the value 

I 
Xi =-a-. --a-4 

The verification shows that the values x2 = x3 = 0, x.1 = x4 = 
= I/(a1 - a4) do in fact satisfy all the equations of the system. 

Answer: if a> b > c > d then x = t = l/(a - d), y = :z = 0. 
255. Let us denote X2 - X1 =Xi, X3 - X2 = X2, ... , Xn - Xn-1= 

= Xn-1, Xi - Xn = Xn. Then X1 + X2 + ... + Xn-1 + Xn = 0, and 
the given system of equations can be rewritten thus: 

axr + (b - I) X1 + c =xi' ax~+ (b - l) X2 + c = x2' ... 
.. ., ax~+(b- l)xn+c=Xn (*) 

It is clear that if the discriminant ~ = (b - I) 2 - 4ac of the 
quadratic binomials on left-hand side of (*) is negative all the 
binomials retain sign (namely, their signs coincide with that of a). 
Therefore all the variables Xi, X2, ••• , Xn must be of the same sign 
as the coefficient a of the equations, and their sum cannot be equal 
to zero. This means that the given system possesses no real solu­
tions. In case ~ = 0 the right-hand sides of equations (*) assume 
the value 0 only for x1 = ( 1 - b) /2a; accordingly, in this case 
x2 = xa = ... = X11 = ( 1 - b) /2a; (for the other values of 
x1, x2, ... , Xn the right-hand sides have the same sign as the num­
ber a). Therefore the equality X1 + X 2 + ... + Xn = 0 is only pos­
sible when X1 = X2 = ... = Xn = 0 and x1 = x2 = ... = Xn = 
= (I - b) /2a. Finally, for ~ > 0 the given system has at least 
two different solutions 

x1 = x2 = ... = xn = x; and x1 = x2 = ... = x
11 

= x; 

where x;, 2= (1- b + -J (l - b)2 - 4ac)/2a. 
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256. We shall separately investigate the following two cases. 
1°. The number n is even. On multiplying by one another the 

1st, the 3rd, ... , the (n - I) th equations of the given system and 
the 2nd, the 4th, ... , the nth equations we obtain 

X1X2X3 • • • Xn = a1a3a5 • • • an-1 and X1X2X3 • • • Xn = a2a4a6 •• -. an 

respectively, whence it becomes clear that for a1a3a5 ••• a,._1 =I= 
=I= a2a4a6 ••• an the system has no solutions at all. If a1a3a5 , •• 

• • • a,._. = a2a4ae ••• an then, on taking an arbitrary value of x1 
(of course, x1 =I= 0), we can consecutively find from the I st, the 
2nd, •.• , the (n - I) th equations of the system the values 

-~ • • ., Xn-
Xn-1 

The substitution of all these values into the last equation shows 
that the last equation is satisfied as well. 

2°. The number n is odd. On dividing the product of the 1st, the 
3rd, ... , the nth equations by the product of the other equations 
we obtain 

x2 = a1a3as ••• an whence x = ± . / a1a8as ... an (*) 
I a2a4 ••• an-1 1 V a2a4a5 ••• an-1 

(we remind the reader that all the numbers a1 are positive). 
Further, from the 1st, the 2nd, ... , the (n - l)th equations we 
find in succession 

a1 a2 -~ X2=-, X3=-X2, •• •• Xn-
X1 Xn-1 

The verification shows that, by virtue of (*), the last equation of 
the system is also satisfied by these values. 

Answer: if n is even and a1as ••• an-1 =I= a2a4 ••• a,. then there 
are no real solutions; if n is even and a1a3 ••• an-• = a2a4 ••. a,., 
there are infinitely many solutions; if n is odd there are two solu· 
tions. 

257. (a) First of all we note that if x0 is a root of the given 
equation then -x0 is also its root. Consequently, the number of 
the positive roots coincides with that of the negative roots. Fur· 
ther, the number 0 is a root of the equation, and therefore it suf • 
fices to find the number of positive roots. Now we note that if 
x/100 = sin x then 

Ix I= 1001 sin x I~ 100 • 1=100 
Hence, the absolute value of a root of the equation cannot exceed 
100. 

Let us divide the part of the axis Ox from x = 0 to x = 100 
into intervals of length 2n (the last· of these intervals may have 
a smaller length) and determine the number of the roots of the 
equation lying within each of these intervals (see Fig. 29). 
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In the first interval (from x = 0 to x = 2:rt) there is one posi· 
tive root (and also the root x = 0), and each of the following 
intervals, except the last one, contains two roots. To determine 
the number of the roots belonging to the last interval let us esti­
mate its length. The number 100/2:rt obviously lies between 15 and 

x 

Fig. 29 

16 (because 100/15 = 6.66 ... > 2:rt and 100/16 = 6.25 < 2:rt), 
and consequently altogether we have 15 intervals of length 2n 
each and one interval whose length may be less than 2:rt. The 
length of this last interval is equal to 100 - 15·2:rt > 5 >:rt, and 
consequently the horizontal length of the corresponding half wave 
of the sine curve lying above the x-axis is smaller than the length 
of that interval, whence it follows that this interval also contains 
two roots. 

Thus, the number of the positive roots of the equation is equal 
to I + 14 · 2 + 2 = 31. The number of the negative roots is the 
same, and there is also one root equal to zero. 

Finally, the total number of roots is equal to 31 ·2 + I = 63. 

y 

0 

Fig. 30 

(b) The solution of this problem is analogous to that of the 
foregoing problem. It is quite evident that if sin x = log x then 
x ~ IO (because, if otherwise, the left-hand member of the equa­
tion would be not greater than I while the right-hand member 
would exceed I). Since 2 · 2:rt > 10, the interval of the axis Ox 
from x = 0 to x = I 0 contains only one wave of the sine curve 
y = sin x and a part of the next wave (see Fig. 30). The graph 
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-of the function y = log x obviously intersects the first wave of 
the sine curve at one point. Further, since 2n + n/2 < I 0, for the 
point x = 5n/2 we have sin x = 1 > log x, and consequently, the 
graph of y = log x also intersects the first half of the second po­
sitive half wave of the sine curve; further, since at the point x= I 0 
we have log x = I > sin x, the graph of y = log x must intersect 
the second half of that half wave as well. We thus see that the 
total number of the roots of the equation sin x = log x is equal to 
three. 

258. On adding together the left-hand sides of all the given in­
equalities we obtan the sum of the numbers a,, a2, ... , a99, a100 
each of which is multiplied by a coefficient equal to I +(-4)+ 
+ 3 = 0. Hence, this sum of JOO nonnegative numbers is equal to 
zero, which is only possible when all these numbers are equal to 
zero. Thus, the given system of inequalities is in fact a system of 
equalities of the form 

a1 - 4a2 + 3a3 = 0, a2 - 4a3 + 3a4 = 0, ... , a100 - 4a1+3a2 =0 

This system can also be written as 

a1 - a2 = 3 (a2 - a3), a2 - a3 = 3 (a3 - a4), a3 - a4 = 
= 3 (a4 - a5), a99 - a100 = 3 (a 100 - ai), 

a100 - a1 = 3 (a1 - a2) 

Now we consecutively find 

a1 - a2 = 3 (a2 - as) = 32 (a3 - a4) = 33 (a4 - a5) = 

= 39Y (awo - a1) = 3100 (a, - a2) 

The equality a1 - a 2 = 3100 (a 1 - a2) implies that a1 - a2 = 0, and 
I 

therefore we also have a:? -,- a3 = 3 (a1 -, a2) = 0, a3 - a4 = 

I I 
= 3 (a2 - a 3) = 0, ... , a1oo - a1 = 3 (agg - a 100) = 0. 

Hence, all the number ai, a2, ... , agg, a1oo are equal to one ano­
ther; therefore if a1 =I then we also have a2=aa= ... =a100= l. 

259. First solution. Let us rewrite the given inequalities as 

A=-a-b+e+d>O } 
B =ab - ae - ad - be - bd + ed > 0 

C=abe + abd-aed - bed> 0 

and consider the equation 

P (x) = (x - a) (x - b} (x + e) (x + d) = 

(*} 

= x4 + Ax3 + Bx2 + Cx + abed = 0 
Since all the coefficients of this equation are positive (because, 
according to inequalities (*), A, B, and C are positive and the 
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numbers a, b, c and d are also positive, the equation has no posi· 
tive roots (for x > 0 we have P(x) = x4 + Ax3 + Bx2 + Cx + 
+ abed > 0). On the other hand, the equation Px = 0 has even 
two positive roots: x = a and x = b. Thus, we have arrived at 
a contradiction, which proves the required proposition. 

Second solution. From the first two inequalities indicated in the 
condition of the problem it follows that 

(a + b)2 (c + d) < (c + d) (ab+ cd) 
that is 

(a+ b)2 < ab + cd (**) 

(because c + d > 0). Similarly, from the last two inequalities we 
derive 

(a + b)2 (c + d) cd < (ab+ cd) (c + d) ab 
that is 

(a+ b)2 cd <(ab+ cd) ab (***) 

Further, since (a+ b) 2 - 4ab= (a - b) 2 ~ 0, we have (a+b) 2~ 
~ 4ab, and therefore inequalities (**) and (***) imply that 

4ab < ab + cd and 4abcd < (ab + cd) ab 
that is 

cd > 3ab and 4cd <ab+ cd whence ab> 3cd 

However, this is impossible because the inequalities cd > 3afJ 
and cd < l/3ab cannot hold simultaneously. 

260. It is evident that 

C2--Y2+-V2+-V2+ ... +-v2)x 
n radical signs 

n radical signs 

n-1 radical signs n-1 radical signs 

and therefore the fraction indicated in the condition of the pro­
blem is equal to the reciprocal of the expression 

Rn= 2 + ,Y2 + ,Y2 + ... + ,Y_:_ 
n-1 radical signs 

Hence, it only remains to prove that Rn < 4. To this end we shall 
use the method of mathematical induction: it is clear that R 1 = 
= 2 < 4 and that 

if Rn-I< 4 then also Rn= 2 + -VRn-I < 2 + ,Y4 = 4 



Solution' 329 

Remark. It is easily seen that lirn Rn= 4; indeed, the sequence Rn possesses 
n~oo 

a limit because it is bounded (Rn< 4 for all n) and increases monotonically 
(since Rn+i > Rn because Rn+i is obtained from Rn by replacing 2 in the last 
radical in the expression of Rn by the greater number 2 + .Y2). On putting 
lirn Rn= R = r2 and making n tend to infinity in the relationRn+i = 2 + .YRn 
n~oo 

we obtain in the limit the equality r2 = 2 + r, that is (2 - r) ( 1 + r) = O 
whence r = 2 (because r < 0), which implies R = 4. It follows that for n-..... oo 
the fraction indicated in the condition of the problem has a limit equal to 1/4, 
and therefore the estimate given in the condition of the problem cannot be made 
more precise. 

261. Let a, b and c be the given numbers. Since abc = I, we 
have c = 1/ab. The second condition of the problem implies 

a+ b + c > _..!._ + _..!._ + _..!._ that is a+ b +-1 
>_..!._+_!_+ab (*) a b c ' ab a b 

Inequality (*) can be brought to the form 

I I I 
ab - a - b + I < - - - - - + I ab a b 

whence 

(a - I) (b - I)< ( ~ - I) ( f - I)= alb (a - I) (b - I) 

Thus, inequality (*) is equivalent to the inequality 

1 
ab (a- l)(b-1) >(a- l)(b-1), 

that is (a - I) (b - I) (alb - I) > 0 

Therefore among the triple a - I, b - I and 1/ab - I = c - I 
there is an even number of negative members; in other words, two 
of these differences are negative and one is positive, which is 
what we had to prove. (It is obvious that all the three differences 
cannot be simultaneously positive because if a > I and b > 1 
then there must necessarily be c = 1 /ab < 1, whence it follows 
that the difference 1/ab - 1 is negative.) 

262. It is clear that the numbers 1959 and 1000 occur acciden­
tally in the condition of the problem; a more general proposition 
to be proved reads: if ai > 0 for all i = I, 2, ... , n and Lai= 

n 

=a1 + a2 + ... +an= 1 then the sum Sn, k = L ai
1
a12 ••• a1k 

lp '2· ... , lk-1 
of all the possible products of k factors chosen from the n given 
numbers a1, a2, ... , an (where 1 ::::;; k < n) is not greater than I 
and for k > I this sum is less than 1. To prove this proposition 
we can, for instance, use the induction method (with respect to 
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the numbes n and k). It is evident that the proposition is true 
for n = 1 and for n = 2. Let us assume that the proposition has 
already been proved for all n smaller than a certain value N and 
that for the value N itself the proposition has been proved for all 
k? 2 smaller than a fixed value /( (K? 2). (It is obvious that 
for any n and k = I the proposition is true.) Our aim is to show 
that under this assumption the proposition is true for the values 
N and K themselves. 

N 

Let us consider the sum S,v. K =. I: ai
1
ai? ... a1K. It can 

'1· 12• · ·" 'K=I 

be written in the form 

where SN-1, K-1 and SN-1, K are, respectively, the sum of all pos· 
sible products of K - 1 factors and the sum of the products of l<. 
factors chosen from the numbers a1, a2, ... , aN-I· The sum of these 
N - 1 numbers can be written as 

al+a2+ ... +aN_1=(a1+a2+ ... +aN-1+aN)-aN=l-aN 

Next we replace the numbers ai, a2, ... , aN-I by the numbers 
al=aif(l-aN), a2=a2/(l-aN), ... , a!v-1=aN-i/(I-aN) res· 
pectively, the sum of the new numbers being equal to 1. Let us 
denote the sum of all possible products of K - 1 factors and the 
sum of the products of K factors chosen from these new N - 1 
numbers ai (i = I, 2, ... , N - 1) as S!v-1. K-1 and S!v-1. K res­
pectively. By the hypothesis, S!v-1. K-1 ~ 1 and S!v-1, K < 1; on the 
other hand, since the numbers al are proportional to the numbers 
a; (i = 1, ... , N -1), we obviously have 

SN-I, K-1 = s~-1.K-1. (I - a:v)K-l ~ (1 - aNy.-l 
and 

SN-1,K = s~-1. K. (1- aNy < (1 -aN)K 

Finally we obtain 

SN. K =SN-I. K-1 • aN +SN-I. K < (1 - aN)K-l • aN + (1 - aN(· = 

= (1 - aN)K-l [aN + (1 - aN)] = (1 - aN)K-I < l 

which completes the proof. 
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263. For N = 2 we have only one pair of numbers m and n 
satisfying the condition of the problem, namely, m = 1, n = 2; 
in this case the "sum" s2 of the fractions under consideration is 

equal to 
1 

\ =-4-. For N = 3 we have two such pairs: m = 1, 

n = 3 and m = 2, n = 3; in this case the sum of the fractions 
under consideration is sa = 1/1 ·3 + 1/2·3 = 1/2. Let us prove 
that the sum SN is equal to 1/2 for any natural N > 1. 

Since the assertion we have stated holds both for N = 2 and 
for N = 3 we can use the method of mathematical induction. Let 
us suppose that SN-I = 1/2 and prove that then we also have 
SN = 1/2. It is clear that the sums SN-1 and SN are connected in 
such a way that to obtain the sum SN from the sum SN-I we must 
perform the following operations. On the one hand, we must de­
lete from the sum SN-I all the terms having the form 1/mn where 
m + n = N, that is the terms of the form 1/i (N - i) (here 
1 ::::;; i < N /2 and the numbers i and N - i are relatively prime), 
and, on the other hand, we must add to the sum SN-I all the pos· 
sible fractions of the form 1/jN where l ::::;; j < N and the num· 
bers j and N are relatively prime. For every i we have 

I I I 
i (N - i) = iN + (N - i) N 

and the numbers i and N - i are relatively prime if and only if i 
and N are relatively'" prime, that is if and only if N - i and N are 
relatively prime. Therefore the sum SN is obtained from the sum 
sN-1 by deleting a number of fractions of the form l/i(N - i) and 
adding instead of every such fraction a sum of fractions of the 
form !/iN + l/(N - i)N, this sum "compensating" for the deleted 
fraction. Consequently SN = SN-I = 1/2. 

264. We assert that all the given 1973 numbers are the same. 
Indeed, let us suppose that this is not true. For definiteness, let 
a 1 = a2 = a3 = ... = a; =i= a;+i· For the sake of' simplicity we 
shall index the given numbers in a cyclic order: let us assign the 
index 1 to the number a;, the index 2 to the number a;+1 and so on 
up to the number a;_1 inclusive to which we assign the index 1973. 
Thus, in what follows we shall assume that not all the numbers 
are equal and that a1 =i= a2; for definiteness, let a 1 > a2 (the case 
a1 < a2 is investigated in a similar way). 

From the equalities indicated in the condition of the problem it 
clearly follows that either all the numbers in question are greater 
than I or all the numbers are less than 1 or, finally, all the num­
bers are equal to 1. In the last case all the numbers ak (where 
k = l, 2, ... , 1973) are equal to one another, and therefore it 
remains to consider the other two cases. 
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1°. All the numbers a,, are greater than 1. In this case 

af' =a~· and a1 > a2 imply a2 < a3 

a~·= a~· and a2 < a3 imply a3 > a4 
ag• =a~· and a3 > a4 imply a4 < a5 

Thus, we have 

a1 > a2 < aa > a4 < a 5 • • • 01972 < a,973 > al < a2 

Hence, we have arrived at a contradiction (the inequality a1 > a2 
contradicts the inequality a1 < a2), which proves that in case 1 <> 

we must necessarily have a, = a2 = as = ... = a1973. 
2°. All the numbers a,, are less than 1. In this case 

af' =a~' and a1 > a2 imply a2 > a3 

a~ = ag• and a2 > a3 imply a3 > a4 

Thus, here we have 

a1 > a2 > a3 > o4 > . . . > a1973 > a, 

The contradictory inequality a1 > a1 we have obtained shows that 
in this case as well all the numbers a,, must necessarily be equal 
to one another. 

265. The proposition of the problem is true for n = I and for 
n = 2 because 

and 
x2 + x2 

- (x + x )2 
- 2x x - (6)2 

- 2 • I - 34 I 2- I 2 I 2- -

Further, we have 

xn + xn - (x + x) (xn-1 + xn-1) _xx (xn-2 + xn-2) _ 1 2- 1 2 1 2 I 2 I 2 -

= 6 (x(-1 + x~-1) - l · (x(-2 + x~-2) 
that is 

x( + x~ = 5 (x(-1 + x~- 1) + [(x(-1 + x~-1) - (x7-2 + x~-2)] (*) 

First of all, this formula implies that if x(-2 + x~-2 aQd 
xT-1 + x2n-i ·are whole numbers then xi+ x~ is also a whole num· 
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ber, whence, by the principle of mathematical induction, it follows 
that the first assertion of the problem is true. 

Now, let n be the first natural number such that x7 + x~ is di· 
visible by 5. From formula (*) it follows that in this case the 
difference ( x1- 1 + x~- 1 ) - (xf-2 + x~-2) must also be divisible by 5. 
On replacing n by n - 1 in formula ( *) we obtain 

xf-1+x~-1=5 (x7-2 + x~-2) + (xf-2 + x~-2) - (xf-3 + xg-3) 

whence it follows that the expression 

x7-3 + x~-3 = 5 (x1-2 + xg-2) -[(x7-1 + x~-1) - (x7-2 + x~-2)] 
must also be divisible by 5, which contradicts the assumption that xr + xr is not divisible by 5 for all the numbers m smaller 
than n. It follows that a positive integer n for which xf + x~ is 
divisible by 5 cannot exist. It is readily seen that the assertion of 
the problem holds for the negative integers n as well: if n < 0 
then the sum 

1 1 x)n + x;n 
xn+xn=--+-= =x-n+x-n 

I 2 x)n x;-n (x1x2
)-n I 2 

is an integral number not divisible by 5 because -n > 0. 
266. Let us suppose that the sum a 1 + a2 + ... + a 1000 contains 

n positive terms and 1000 - n negative terms. Then all the pair· 
wise products of the n positive terms (the number of these pro· 
ducts is obviously equal to n (n - 1) /2) and all the pairwise pro­
ducts of 1000 - n negative terms (the number of such products is 
equal to (I 000 - n )( l 000 - n - 1) /2) are positive, and the pair· 
wise products of positive terms by negative ones (the number oi 
these products is equal to n(IOOO - n)) are negative. The condi· 
tion of the problem requires that the relation 

n(n
2
-t) + (1000-n)(l~OO-n-1) =n(lOOO-n) 

should be fulfilled. It follows that 

whence 

and 

n2 
- n + (1000 - n)2 

- (1000 - n) = lOOOn _ n2 
2 

2n2 - 2000n + 999 ooo = 0 
2 

IOOO ± -y' I 000 000 - 999 000 1000 ± -0QoO 
n= 2 = 2 

which is obviously impossible. 
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For the second expression we argue in a similar way and arrive 
,at the condition 

10 000 ± -y'10 000 
n= 2 -

10000 ± 100 
2 

1t follows that the numbers of the positive and negative duplicated 
products in the second expression may be equal; to this end it is 
sufficient that the original polynomial should contain (10 000 + 
+ l 00) /2 = 5050 positive terms and (I 0 000 - l 00) /2 = 4950 ne­
gative terms or 5050 negative terms and 4950 positive terms. 

267. First of all we can write 

(-Y2- 1) 1 
= ,Y2 - -vr 

( .y2 - 1 )2 = 3 - 2 '\/'2 = ,yg - -V8 
Now we shall prove that if the expression 

( -V2 - 1 )2k-i = B '\l''i - A = -V2B2 - -V A2 

·can be written in the form 4N - '\l'N - 1, that is if 2B2 -A2= t, 
then the number 

( 42 - 1)2H1 = B' '\/'2 - A' 

can also be represented in this form, that is 2B'2 -A'2 =I. In­
deed, we have 

(,Y2- 1)2k+l = (-y'2-1)2k-1(42-1)2 = 

= (B -V2 - A) (3 - 2 '\/'2) = (3B + 2A) -V2- (4B + 3A) 

and consequently 

B' = 3B + 2A and A'= 4B + 3A 
whence 

2B'2 
- A'2 = 2 (3B + 2A)2 

- (4B + 3A)2 = 
= 1882 + 24AB + 8A2 

- 1682 
- 24AB - 9A2 = 2B2 - A2 = 1 

which is what we had to prove. 
In just the same way it is proved that if a number 

( ,Y2 - 1)2
k = C - D -y12 can be represented in the form '\!' N -

- '\l'N=l then the number ( .y2- 1)2
k+

2 = C' - D' '\1'2 can also 
be written in that form. 

By the principle of mathematical induction, it follows that the 
assertion of the problem is true. 

268. If (A+B-V3)2 =C-t-D'\1'3 then C=A2 -t-3B2
, D=2AB 

( . r)2 2 2 . r . 1-and A - B 'V 3 =A + 38 - 2AB 'V 3 = C - D 'V 3. Consequen-



Solution~ 335· 

tly, if there were (A+ B -y13)2 = 99 999 + 111 111 -y13 then we 
should also have (A - B -y13)2 

= 99 999 - 111 111 -yf 3, which is 
impossible because 99 999 - 111 111 -y13 is less than zero while 
the square of every real number is nonnegative. 

269. Let us suppose that 42 = p + q -Vr. On raising both mem­
bers of this equality to the third power we obtain 

2 = p3 + 3p2q -Vr + 3pq2r + q3r -Vr 
that is 

2 = p (p2 + 3q2r) + q (3p2 + q2r) ,Yr 

Now let us show that if 42 = p + q ,Yr then 42 is a rational 
number. Indeed, if q = 0 then 42 = p is a rational number. 1f 
q =fo O and 3p2 + q2r =fo 0 then the last equality implies 

. r, = 2 - p (_p 2 + 3q2r) 
'V r q (3p2 + q2r) 

whence 
.ar 2 - p (p 2 + 3q2r) 
'V 2 = p + q q (3p2 + q2r) 

that is 42 is again a rational number. Finally, if 3p2 + q2r = (} 
then 

q2r = - 3p2, 2 = p [p2 + 3 (- 3p2)] = - Bps 

that is 42 = - 2p is again a rational number. 
Hence, it only remains to show that 42 is not a rational num­

ber. The proof of this proposition is well known. If we suppose 
that 42 is equal to an irreducible fraction m/n then 2 = m3 /n3, 

that is m 3 = 2n3• Thus, the number m3 and also the number rn 
are even integers, and consequently the number m3 is divisible 
by 8. In this case n3 = m3/2 must also be even, and consequently 
the number n is even, which contradicts the assumption that the 
fraction mfn is irreducible. We see that the assumption that 
42 = p + q -v1f leads to a contradiction. 

270. Let us denote (n + -y1 n2 
- i)/2 = x; then 

I 2 
-=--===-
x n+-v'n2 -4 

2(n- 0i2='4) 
4 

n--V~ 
2 

and we see that x satisfies the equation x + l/x = n. If x + 1/K 
is equal to a whole number n then so is the number xm + l/xm, 
which can easily be proved by the method of mathematical induc­
tion. Indeed, if we assume that all the expressions ai = xi + 1/x.i 
are whole numbers for all i ~ N then aN+i = xN+I + 1/xN+1 is 
also a whole number, which is a consequence of the following 
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whence 
aN+t = aNa1 - aN-t 

Thus, denoting xm = y we can write the equality y + 1/y = k 
where k =am is a natural number. This equality is equivalent to 
a quadratic equation in y whose solution is y = (k + ,Y k2 

- 4)/2. 
:Since the number x=(n+,Yn2 -4)/2 exceeds 1, we also have­
xm = y > I whence it follows that y = xm =A= (k + ,Y k2 - 4)/ 2 

:and l/xm = (k - ,Y k2 
- 4)/2 < I. 

271. First of all we note that a real number a cannot be re-
presented in two different ways as a sum a= x + y ,Y2 where x 
and y are rational numbers. For, if a= a+ b ,Y2 = a 1 + b1 ,Y2 
(where a, b, a1 and b1 are rational numbers) then ,Y2 = (a -
- a1)/(b1 - b), which is only possible when a = a 1 and b1 = b 
because the differences a - a 1 and b1 - b are rational numbers 
and ,Y2 is an irrational number. Further, using Newton's bino­
mial formula, we can write the equality indicated in the condi­
tion of the problem in the form 

(X + Y ,Y2) + (z + T ,y'i.) = 5 + 4 ,Y2 
where 

X = x2n + C (2n, 2) x~n- 2 • 2y~ + ... ; 
Y = C (2n, I) x2n-ly + C (2n, 3) x2n-3 · 2y3 + 

etc. From this equality it follows that 

X+Z=5 and Y+T=4 (*) 

Now, on multiplying the second ec;uality (*) by ,Y2 and sub­
tracting the result from the first equality we obtain 

(x - Y ,y'i.) + (z - r ,Y2) = 5 - 4 ,y2 
that is 

(x - y ,Y2)2
n + (z - t ,y'i.)2

n = 5 - 4 ,y'i. (**) 

Thus, relation (**) must necessarily hold provided that the equa· 
lity indicated in the condition of the problem is fulfilled. However, 
it can readily be seen that equality (**) cannot hold because its 
left-hand member is positive whereas its right-hand member is 
negative. It follows that the equality indicated in the condition of 
the problem cannot hold either. 
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272. It is impossible. Indeed, suppose that we poured water k1 
times from the first barrel into the second barrel using the first 
scoop and that we poured water from the second barrel into the 
first. one k2 times using the same scoop. This means that, as a 
result, we poured (k1 - k2) ,Y2 = k -y'2 litres of water from the 
first barrel into the second one where the integral number k = 
=k1- k2 may be nonpositive. Similarly, if we poured water from 
the first barrel into the second barrel 11 times using the second 
scoop and if we poured water from the seoond barrel into the first 
one /2 times using the same scoop then, as a result, we poured 
(/1 - 12) (2 - ,Y2) = l • (2 - -y'2) litres of water from the first 
barrel into the second barrel where I is an integral number. The­
refore the condition of the problem reguires that the equality 
k ,Y2 + l (2 - ,Y2) = 1 should be fulfilled, that is (l - k) ,Y2 = 
= 21 - 1 whence ,Y2 = (21 - l)/(t - k). Since -y'2 is an irratio­
nal number the last equality can only hold (for integral values of 
k and /) when l - k = 0 (that is I= k) and 21 - l = 0, whence 
l = 1/2, which is impossible because l is an integral number. 

273. First solution. In the problem it is required to find all 
rational solutions (x, y) (where y;;;?: 0) of the equation 
3x2 - 5x + 9 = y2 in the two unknowns x and y (cf. the problems 
in Sec. 5 of the present book). It is evident that there exists one 
solution of the form x = 0, y = 3. Let us put x = x 1 and y = 
= y, + 3; then we obtain 

3xr - Yr - 5x1 - 6y1 = o 

For every solution (x1, Y1) different from (0, 0) we have Y1/x1 = 
= min where m and n are relatively prime integers (y1 = x 1 X 
X (m/n)). Consequently, we have 

. m2 m 
3x2 - - x2 - 5x - 6- x = 0 I ni I I n I 

whence x 1 = (5n2 + 6mn) / (3n2 - m2) because x =F 0. The formula 
x = (5n2 + 6mn)/(3n2 - m2 ) gives the full answer to the question 
stated in the problem (the solution x = 0 corresponds to n = 0). 

Second solution. If (x, y) is a point with rational coordinates 
belonging to the second-order curve y2 = 3x2 - 5x + 9 (it is a 
hyperbola) then the ratio k = (y - 3) /x is a rational number (it 
can also be infinite). On the other hand, if k is a rational number 
then the straight line y = kx + 3 intersects that curve at two 
rational points: (0, 3) and ( (6k + 5) / (3 - k2), (3k2 + 5k + 
+ 9) / (3 - k2)). It follows that all the points with rational coor­
dinates belonging to the curve correspond to the values of x ex· 
pressed by the formula x = (6k + 5) / (3 - k2). 
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274. Let x2 + px + q = 0 and y2 +PY+ q1 ~ 0 be; the original 
and the "rounded" equations respedively where I q1 - q I= I e I~·; 
~ 0.01. On subtracting the second equation from the first one we 
obtain (x 2 -y2)+p(x-y)=q1 -q=e1 that. is (x~y)(x+' 
+ y + p) = e. Let us denote as x 1 and y 1 the roots of. the two 
equations which are close to each other and let us denote as x2 
the second root of the first of these equations;. then we have 
,-(,Xi+ x~) = p, and from the relation that wa~ established above: 
it follows. that 

. I e I le I I e I ) e I 
IYi-xil= lx1+Y1+PI ~ l2x,-(x,+x2)I = lx1-x2I =r 

wltich is what we intended to prove. 
275. It is clear that if among the given numbers there are sev-· 

eral integers then they can simply be discarded' because the dif­
foreNce between a sum of any number qf rounded numbers and 
the .sum of the numbers themselves does not change when we add 
to the original set of numbers some more whole numbers while 
the sum of the numbers itself increases. Therefore if the assertion' 
of ·the problem is true for none integral numbers then it is also true 
for any numbers.. Now let us denote the given numbers as 
ar, a2, ... , an, their integral parts as (at], [a2], ... , [a,,) and 
their fractional parts {ai} =a; - [ai) (wher.e i-:---1, 2, ... , n) as, 
a 1, a 2, .·., a,, (cf. page 37). Let us agree to arrange the numbers. 
so that their fractional parts do not decrease: 

0 < a1 < a2 < ... < an < 1 

Now Id us. round the first k numbers ai (here I ,:;;;; i ~ k; Urn· 
choice of the n.urnber k where 0 :E;; k ~ n will be specified later) 
re.pl'acing them by the numbers [a;] which are smaller than the· 
numbers a; (i = 1, 2, .. , n). As to the n - k remaining numbers. 
ai (where k < j ~ n), we shall repl~ce them by the correspond­
ing greater numbers [a1] + I. It is clear that the error appearing 
when the sum of the numbers is replaced by the sum of the cor­
respondi11g rounded numbers is the greatest for the sums 
a1· + a2 + + ak and ak+t + ak+2 + +a,,; for the first sum 
it is equal to 

and for the second sum it is equal to 

Thus, the condition of the problem will be fu\fi\.led if k is such 
that 

n+I · n+I 
kak~-4 - and (n-k)(l -ak+i)<-4 ---
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Now let k be the greatest of the whole numbers satisfying the' 
·condition kak ::::::;; (n + l) /4, that is ak ::::::;; (n + 1) /4k (this num­
ber k may be equal to 0); the stipulation that k is the greatest 
possible of such numbers means that if the index k is replaced by 
k + 1 we obtain ak+1 > (n + l)/4(k + 1). The last inequality im4 

plies that 

(n - k)(l - ak+ 1) < (n - k) ( l - 4 Zk'.f-\)) 
Let us check that (n-k) (1 -(n + l)/4(k + 1))::::::;; (n + 1)/4. In­
deed, this inequality is equivalent to the inequality 

(n - k) (4k - n + 3) ~ (n +I) (k +I) 

.and the last inequality is obviously equivalent to the inequality 

[n - (2k + 1))2~0 
which obviously holds for any n and k. 

Remark. From the solution of the problem it can easily be seen that for an . 
.odd n = 2/ + I the estimate given in the statement of the problem cannot be 
made more precise (to obtain the corresponding example we can put a 1 · 

= a2 = ... =an = 1/2; here the optimal variant occurs when l numbers are 
•eplaced by zeros and the other l + I numbers are replaced by unities or vice 
versa). In case the number n = 21 is even the quantity (n + 1)/4 in the condi­
tion of the problem can be decreased (why?; by what amount?). 

276. It is clear that for a < 0.001 the rounded number a0 cor­
responding to the number a is equal to 0, and consequently the 
quotient a0/a and any decimal approximation of this quotient are 
-equal to 0. Therefore in what follows we shall assume that 
.a~ 0.001. Then of course we also have ao ~ 0.001 whereas the 
••approximation error" a = a - ao is less than 0.001. Therefore 
it is clear that the fraction 

d=!!:.2...= a-a= 1 -~ 
a a a 

we are interested in lies between 0 and l: 0 < d ::::::;; 1. Further, 
since a< 0.001 and a0 > 0.001, it follows that a< a0, and con­
sequently a+ a= 2a < ao +a= a, whence a/a< 1/2; there• 
fore 

d = 1 - ~ > _!_ and d ~ l 
a 2 (*) 

This estimation of the fraction d cannot be made more precise be­
cause the ratio 6 = a/a can assume any value within the limits 
{)::::::;; 6 < 1/2 (and consequently d can assume any value within 
the limits 1 /2 < d ::::::;; l). Indeed, if we put a 0 equal to 0.00 l, then 
~=a/ (a0 +a)= a/ (0.001 +a) whence 

{) 
a.= 0.001 I_{) (**) 
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Such a value of a satisfies the inequality 0 ~ ct < 0.001 for any 6 
(where 0 ~ 6 < 1/2) and the number a = 0.001 +ct corresponds 
to the value d = 1 - 6. It is clear that if 6 runs over all the 
values between 0 and 1/2 then d assumes all the admissible values 
from 1/2 to 1, that is d may assume any of the following values: 
O; 0.5; 0.501; 0.502; ... ; 0.999; 1. 

277. Let us consider the I 001 numbers 

0 · a = 0, a, 2a, 3a, .•• , 1 OOOa 

and take the fractional part of each of these numbers (the frac· 
tional part of a number is equal to the difference between the 
given number and the greatest integer not exceeding that num· 
ber). These fractional parts form a set of 1001 numbers not ex· 
ceeding 1. Now let us divide the interval of the number axes. 
from 0 to 1 into 1000 equal intervals of length 1/1000 each (we 
shall agree that the left end of each interval is included into the· 
interval while the right end is not). Our aim is to investigate the 
clistribution of the points representing the above fractional parts 
over these intervals. Since the number of the intervals is equal 
to 1000 and the number of the points is equal to 1001, at least one 
interval contains two points. This means that there exist two un· 
equal numbers p and q (both p and q do not exceed 1000) such 
that the difference between the fractional parts of the numbers prt.;. 
and qa is Jess than 1/1000. 

For definiteness, we shall assume that p > q. Let us consider 
the number (p - q}ct =pa - qa. Since p-:x. = P + d 1 and qct = 
= Q + d2 where P and Q are integers and d 1 and d2 are the 
fractional parts of pa and qa, the number (p - q) a = (P - Q) + 
+d1 - d2 differs from the integer P - Q by less than 1/1000. This 
means that the fraction (P - Q) / (p - q) differs from a by Jess 
than 0.001 · [1/(p - q)]. 

278. (a) If the number ct is less than l then 4Q, is also Jess 
than 1. Now Jet us suppose that the decimal representation of the 
number ../a involves less than l 00 consecutive nines after the 
decimal point; this means that -y'a. < l - (l/10)100. On squaring 
both members of the last inequality we obtain 

( 
I ) 100 ( I )200 a<l-2 10 + 10 

Further, we have 

( 
1 )100 ( 1 )200 ( 1 )100 1-210 +10 <l-10 

and therefore a< 1-(1/10) 100, which means that the decimal 
representation of the number ct cannot have 100 consecutive nines. 
after the decimal point either. 
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(b) First of atl we note that 

0. ~.:.:_!~ = i · 0.9999 • • • 999 = ! · (I - ( 1
1
0 y00

) 

100 ones 100 nines 

Hence, we have to estimate the expression (-VI - (1/10)100)/3. We 
shall limit ourselves to the solution of Part (4) of Problem 
278 (b) from which follow the results of the other parts of the 
problem. 

As is known, for any a =::::;; 1 there holds the inequality ,YI -a< 
< I - a/2 because (l - a/2) 2 = I - a+ a2/4 > 1 - a. There­
fore 

. I ( I ) 100 I ( 1 ) 100 \11 - 10 < I - 2 10 = 0.9999 .. ~5 
100 nines 

To make this estimation more precise we shall find two positive 
numbers c1 and c2 such that 

l _ _!_ (-1 )100 _Ci (-1 )200 > 
2 10 10 

> ~ 1 - ( -fo Yoo > 1 - f ( fo yoo - c2 ( -fo yoo 
On squaring all the members of the inequalities 

I - ! a - c1a2 > -vt=a > I - ~ a - c2a2 

we obtain 

I + .!.. a2 + c2a4 
- a - 2c a2 + c a3 > 1 - a > 4 I 1 1 

I > 1 + - a2 + c2a4 
- a - 2c a2 + c a3 

4 2 2 2 

Now we subtract the number 1 - a from all the members and 
cancel the resulting inequalities by a2 : 

( ! - 2c1) + c1a + cia2 > 0 > ( ! - 2c2) + c2a + c~a2 

We are interested in the case when a= (1/10) 100; let us show 
that for this value of a we can, for instance, put c1 = 1 /8 + 
+ a/100 = 0.125+(1/10) 102 and c2 = 1/8 + a/10 = 0.125 + 
+(l/10) 101 • Indeed, for any a> 0 we have 

~ - 2 ( i + 1~0 a) + ( i + 1~0 a) a + 

+ ( ~ + l~O a r a2 = ( i - ;O) a + ... > 0 
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and, on the other hand, for a = (1/10) 100 we have 

I ( l l ) ( I l ) ( l I )2 2 4- 2 s+wa + s+wa a+ s+wa a= 

( l l ) [ l ( 1 l )2] 2 =- 5-8 a+ 10+ s+wa a <O 

because the expression (1/5- 1/8)a = (3/40) · (1/10) 100 obviously 
exceeds the last term of the inequality which is close to 
(l/10 + 1/64) a2 = (37 /320) a2 = (37 /320) · ( 1/10) 200

• 

Thus, we have 

l ( l ) 100 ( ( 1 ) 102) ( 1 )200 • ; 1 - 2 10 - 0.125 + 10 10 > yrO.~~~ > 
100 nines 

> I _ ; ( -k-Yoo _ ( O.l 2S + ( fo-)101) (fo-)200 

The last inequalities can be rewritten as 

0~99 ... 9994~~~874~ > v 1 - (+a )100 
> 

100 nines 99 nines 99 nines 

> 0.9999 ... 99949999 ... 9998749999 ... 999 ---..---98 nines 

whence, on dividing by 3, we obtain the relation 

-V0.1111 ... 111~0.3333 ... 33316666 ... 66624999 ... 999 ----------- ----- ------- --------100 ones 100 threes 100 six~s 98 nines 

which is accurate to within 301 decimal places after the decimal 
point. 

279. (a) Let us denote 1.00000000004 by a and 1.00000000002 
by ~· Then the expressions indicated in the condition of the pro­
blem take the form (l + rx)/(1 +a+ rx2

) and (1 + ~)/(l + ~ + 
+ ~2 ). Since a > ~ we obviously have 

I+a=_l +J..<-' +J..=l+P 
a2 a2 a p2 p p2 

t~a=l :('~a)> 1:('tP)=1~p 
l +a+ a2 = l + ~ > 1 + ~ = l + p + p2 

l+a l+a l+P i+p 

and, finally, 

l + a . ( l + a+ a2 
) ( l + p + p2 

) l + p 
I + a + a2 = l · I + a < l : l + p = l + p + p2 

Thus, the second of the two expressions is greater than the first 
one. 
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(b) Let us denote the expressions indicated in the condition of 
the problem as A and B respectively. We obviously have 

1 a" 
A = I + 1 + a + a2 + =I+ I 

and 

+an-I 1+a+a2+ ... +an-I 

I =1+-------
1 1 + _!_ -n + ----n=I + a a a 

+ _!_ 
b 

It readily follows that 1/ A > l/ B, and consequently B > A. 
280. We shall proceed from the formula 

(X - a)2 - (x - a)2 = X2 - x 2 - 2a (X - x) 
It implies 

[(X - a1)2 + (X - a2)2 + + (X - an)2] -

- [(x- a,)2 + (x - a2)2 + + (x - an)2J = 
= n (X2 

- x2) - 2 (a1 + a2 + + an) (X - x) 

If we put x = (a1 + a2 + + an)/n in the last expression the 
resultant number will be nonnegative; indeed, we shall have 

[(X - a 1)
2 + (X - a2)2 + + (X - an)2

] -

- [(x - a1)
2 + (x - a2)

2 + + (x - an)2] = 
= n (X2 - x2) - 2nx (X - x) === n (X2 - x2 

- 2Xx + 2x2) = 

It follows that the sought-for value of x is equal to 

a1 + a2 + ... +an 
n 

= n (X - x)2 ~ (} 

281. (a) There are only the following three essentially different 
arrangements: 

1°. ai, a2, as, a4; in this case 

<D1 = (a1 - a2)2 + (a2 - as)2 + (a3 - a4)2 + (a4 - a1)2 

2°. a1, as, a2, a4; in this case 

<D2 = (a1 - a3)2 + (as - a2)2 + (a2 - a4)2 + (a4 - ai)2 

3°. a 1, a2, a4, as; in this case 

©3 = (a1 - a2)2 + (a2 - a4)2 + (a4 _,. aJ)2 + (as - a1)2 
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Now it is readily seen that 

$ 3 - <Di = - 2a2a4 - 2a1a3 + 2a2'J3 + 2a1a4 = 2 (a2 - a,) (a3 - a4) < 0 

and 

(!>3 - <1>2 = - 2a1a2 - 2aaa4 + 2a2'la + 2a1a4 = 2 (aa - a1) (a2 - a4) < 0 

Consequently, the sought-for arrangement is ai, a2, a4, a3• 

( b) First solution. Let us consider the expression 

<I>= (a, - a1 )
2 + (a1 - a, )2 + ... + (a1 - a1 )

2 + (a1 - a1 )2 
t 2 2 s n-1 n n I 

where a1 , a1 , ... , a1 are the given n numbers arranged in the 
1 2 n 

required order. Let a1a and a,P (ex. < ~) be some two of the~e 

numbers. We assert that if a1 is greater (or, conversely, smaller) 
a 

.than a1P then a1a-t is greater (or, resp~ctively, smaller) than 
* .a11J+i . 

Indeed, if this assertion were not true, that is if we had 
{aia - a1p) (a'a-i - a1

13
+1) < 0, then the permutation changing the 

-0rderof the numbers a1a' a'a+t' a1aH' ••. , a1P to the opposite would 
decrease the magnitude of the sum <I> because the difference be­
tween the new sum <!>' and the original sum <I> can obviously be 
written in the form 

<I>' - <D = - 2a1 a1 - 2a1 a1 + 2a1 a1 + 2a1 a1 = 
a-1 p a p+• a-1 a p 13+1 

= 2(a,a -a,13)(a'a-1 -a,13+1) 

This assertion makes it possible to complete the solution of the 
problem. Since a cyclic permutation of all the numbers (that is a 
permutation under which the order of the numbers written cir· 
cularly one after another is retained) does not change the magni· 
tude of the sum Cl>, we can assume that a1, is the smallest of the 
numbers a;, that is i1=l. From this assumption we can draw the 
conclusion that a1

2 
and a,n are the next two numbers following a1 

in their magnitudes. Indeed, if, for instance, there were a1P < a12 

(~ =fo n) then we should have (a1
2 

- a1p) (a1
1 

- a1
13
+

1
) < 0, and if 

there were a 113 < a1n (~ =fo 2) then we should have ( a1
1 

- a,
13
_i) X 

X ( a,n - a1
13
) <O. Since the order of the numbers in the sequence 

a1 , a 1 , ai , ... , a1 , a1 can be changed to the opposite without 
I 2 3 n I 

changing the sum Cl>, we can assume that a1
2 
< a;n' i2 = 2, in= 3. 

* Here we conditionally put ai
0 

= a1n. 
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Further, we assert that the numbers a,
8 

and a1n-i follow iB. 
their magnitude the numbers a1,, a;

2 
and a1n which we have 

already considered. Indeed, if, for instance, there were a18 > a1~ 

(~ :#= 1, 2; n - t, n) then we should have ( a1
8 

- a1p) ( a12 - aip+ 1) < 0. 
Besides, since there must be (a1

3 
- a,n_,) (a12 - a,n) > 0, we see 

that a18 < a'n-•' that is a13 = a4 and a1n-i =as. 
In just the same way we can show that the numbers a1.,. 

and a,n_
2 

follow in their magnitudes the numbers which we 
have already considered a;

4 
< a1n_

2 
(that is i• = 6, in-2 = 7). 

Similarly, the numbers a1 and a1 
8 

follow in the same sense 
5 n-

the numbers considered before and a1
5 
< a'n-a (is= 8, in-3 = 9) 

etc. Finally, we arrive at the following arrangement of the 
numbers: 

for an even n = 2k 

and 
/a2-a4-a5- •.. -an-I 

a I for an odd n = 2k + 1 1
"-aa-a5-a1- ... -an 

(here the lines indicate the order in which the numbers follow one 
another; for instance, in the case of an even n we have the ar­
rangement ai. a2. a4. a5, ... , an-2, an, an-i. ... , a1, as, a 3). 

Second solution. If we guess in some way that the sought-for 
arrangement is of the form indicated at the end of the first solu~ 
tion then the proof can be elaborated using the method of math­
ematical induction. Indeed, for n = 4 the proof is quite simple 
(see the solution of Problem 281 (a)). Now let us suppose that 
for an even n we have already proved that the sum <I>n correspond-· 
ing to the arrangement of the numbers a, < a2 < a3 < ... <an 
written at the end of the first solution is Jess than the sum <J);J: 
corresponding to any other arrangement. We shall show that this. 
implies that the sum <I>n+i corresponding to the arrangement of 
the n + 1 numbers a1 < a2 < a3 < ... < an < an+1 indicated in 
the first solution is less than the sum <I>~+1 corresponding to any· 
other arrangement of the n + 1 numbers. We have 

C'.Dn+I - <I>n =(an - an+1)2 + (an+I - an-1)2 - (an - an-1)2 = 
= 2a!+1 ~ 2anan+I - 2an-lan+I + 2an-lan=2 (an+ I-an) (an+l-an-1) 

On the other hand, if in the arrangement corresponding to the 
sum Cll~+1 the number an+1 stands between some numbers aa and 
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.a13 and if ct>~ corresponds :to the arrangement of the n numbers 
which is obtained from the arrangement of the n + I numbers 
leading. to the st.im <D~+1 by <;ieleting the number an+i then 

·tD~+l - <D~ = (G-<l - an+1)2 + (lfo+1 - a13)2 - (aa - a13)2 = 

·= 2a~+l - 2aaan+I - 2a13an+I + 2aaa(3 = 

Thus, we see that 
= 2 (an+I - aa) (an+l ~ atl) ~ ©n+i ~ <Dn 

<Dn+l - <i>~+l = [<Dn' - <D~] + [(<Dn+I - <Dn) - (<D~+l - <D~)] ::s;; 0 

(here the expression in the first brackets is nonpositive according 
·to the induction hypothesis, and the nonpositivity of the expres­
·sion in the second brackets has already been proved). If the sum 

; ; 9 
~ C)loo 

""" 
A4 As A6 A1 A2 A3 

(a) 

Fig. 31 

·(!>~+ 1 differs from ©n+1 then either <Dn - <D~ < 0 (and, conse­
quently, <Dn+1 - <D~+t < O) or (<Dn+t - <Dn) :....._ (<D~+l - <D~) < 0 (and, 
consequently, we again have <Dn+t < <D~+1). When n is odd the 
passage from n to n + I is performed in an analogous manner. 

Third solution. We shall also present a simple geometrical solu­
tion of the problem. Let us represent the numbers a1 < a2 < a3 < 
< ... <an as the corresponding points Ai, A2, Aa, ..• , An on the 
number lihe. The line segments A1A2, A2Aa, AaA4, ... , An-tAn 
will be denoted as d1i d2, da, .•• , dn-t respectively. Then the sum 

<I>= (ati - a12)2 + (ai2 - a,3)2 + + (atn-1 - a1n)2 + 
+(a, -a1 )

2
=A, A~+ A, A~ + +A, A~ +A, A~ n 1 I 2 2 3 n-1 n n 1 

is equal to the sum of the squares of the lengths of the segments 
of the "broken line" A1 1A,

2
A,

3 
••• A1n_1A1nA11 (whose all seg­

ments are in one straight line; see Fig. 31 (a)). 
Since this closed broken line covers the whole line segment 

A 1An, each of the line segments AkAk+t = dk occurs at least twice 
in that broken line (it is once passed in the direction from A1,i 
to Ak+t and the next time in the opposite direction). Therefore, 
irrespective of the order of the arrangement of the points, if we 
:express the sum <D in terms of the line segments d1, d2, •.• , dn-i 
,and open the parentheses, the resultant expression must neces· 
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sarily involve the term 2d~, and, consequently, it must involve all 
the terms 2di, 2d~, ... , 2d;_ 1• Further, let Ak-1Ak = dk-t and 
AkAk+1 = dk be two neighbouring line segments. It is evident that 
if a segment of the broken line covering the line segment AkAk+i 
in the direction from Ak to Ak+1 starts at the point Ak then the· 
segment of the broken line covering AkAk+t in the opposite direc­
tion cannot end at the point Ak. Therefore in all the cases there 
must exist a segment of the broken line which simultaneously 
covers the line segments Ak-tAk and AkAk+I· It follows that in all 
the cases the sum <D must involve the term 2dk-tdk and, conse-­
quently, all the terms 2d1d2, 2d2d3, ... , 2dn-2dn-1 as well. 

Now it only remains to note that in the case when the arrange­
ment of the points coincides with the one indicated at the end or 
the first solution we have 

<D = 2di + 2d~ + , .. + 2d;_1 + 2d1d2 + 2d2d3 + ... + 2dn_2dn-l 

(see Fig. 3lb)). What has been said and the above argument 
imply that in this case the sum <D assumes the smallest value. 

282. (a) First of all it should be noted that we can assume 
that all the numbers a1, a2, ... , an; b1, b2, ... , bn to be positive;. 
for, if otherwise, we can change the signs of the negative numbers 
to the opposite; this does not change the left-hand member of the 
inequality while the right-hand member can only increase. 

Let us consider a broken line AoA 1A2 ... An such that the pro­
jections of its segments A0A 1, A1A2, ... , An_1An on the axis Ox 
are equal to a1, a2, ... , an respectively and the projections of these 
segments on the axis Oy are equal to bi. b2, ... , bn; let every 
vertex of the broken line lie to the right of and higher than the­
foregoing vertex (Fig. 32). Then Pythagoras' theorem implies 

A0A1=-ylai+bi, A1A2 =-yf~, .. ., An-tAn=-yla~+b;, 
AoAn = .-y1(a1 + az + ... + an)2 + (b1 + b2 + ... + bn)'~· 

whence follows the inequality indicated in the problem. 
The length of the broken line A0A 1A2 ••• An is equal to that of' 

the line segment A0An if and only if all the segments of that 
broken line are extensions of one another (that is the broken line­
coincides with a straight line segment). It can easily be seen that 
this is the case only when a1/b1 = az!b2 = ... = an/bn. In this 
case only the equality 

,Yai+bi+,Ya~+b~+ ... +,Ya~+b;= 
= .-y1(a1 + az + ... + lln)2 + (b1 + b2 + ... + bn)z; 

holds. 
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(b) Let us denote by h the altitude of the pyramid and by 
ai. a2, .•• , an the sides of its base (a1 + a2 + ... +an = P); ac· 
oCordingly, let bi. b2, ••• bn be the lengths of the perpendiculars 
<iropped from the foot of the altitude of the pyramid on the sides 

0of the base (a 1bi/2 + a2b2/2 + ... + anbn/2 = S). Then the la· 
teral area ~ of the pyramid is equal to 

~ a1 '\fb~+h2 + ! a2 '\fb~+h2 + ••• + ! a11'\fb~ +h2 

According to the inequality established in Problem 282 (a), we 
have 

-2~ = ,Y(a1b1)2 + (a,h)2 + ,Y(a2b2)2 + (a2h)2 + 
• • • + ,,Y(anbn)2 + (a11h)2 ~ 

~ ,Y(a1b1 + a2b2 + . . . + anbn)2 + (a1h + a2h + ... + a11h)2 = 

= ,Y4s2 + h2p2 

·where the sign of equality appears only when a,b1 : a2b2 : ... 
• . . : anbn = a,h : a2h : ... : anh, that is when b, = b2 = ... = bn. 
whence follows the assertion of the problem. 

g 

fig. 32 

283. Let us investigate separately the cases when n is even and 
when n is odd. 

1°. The number n is euen. Let us construct a broken line 
A1A2A3 ... AnA11+1An+2 such that the lengths of all its segments 
A1A2, A2Aa, AsA4, ... , A11+1An+2 are equal to unity and the seg• 
ments 'A1A2, AaA4, A5A6, •.. , An-1An, A11+1An+2 are parallel to one 
another and are perpendicular to the segments A2A3, A4A 5, ••• 

- .• , A11An+1 (see Fig. 33; this figure is depicted for the case n=4). 
Further, let us choose a point 81 on each of the line segments 
AtAi+1 (i = l, 2, ... , n + l) or on its extension so that the length 
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<0f the segment 81A1+1 is equal to a, (here we put an+i equal to ai. 
that is the point 8n+1 is chosen in such a way that the equality 
Bn+1An+2 = a1 holds). We shall also agree to take the point 8 1 to 
the left of or lower than the point A1+1 in case a1 > 0 and to the 
ri~ht of or higher than the point A;+1 in case a1 < 0 (in Fig. 33 
we have 0 < a1 <I; 0 < a2 < l; as> I; a4 < 0). Now we draw 
the broken line 8182 ... 8n+I· By 
Pythagoras' theorem, we have As 

B1B1+1 = -.J 81A7+1 + 81+1A7+1 
Since 81A1+1 =a, and, as can 
easily be seen, B;+1A1+1= 
=I I - a1+d, it follows that 

B1Bt+1 =-.Jai+ (1-a1+1)
2 

Thus, the sum 

..Jai + (1 - a2)2 + 
+ -.J a~ + ( l - aa)2 + 

••• +-.Ja~_ 1 + (1 - an)2 + 
+-.Ja~ + (1 -a1)

2 
81 9---~~~~~~~--'C 

A, 
under consideration is equal to the 
length of the broken line 8 18 28 3 ••• fig. 33 

... Bn+I· 
It is evident that the length of the broken line 818283 ••• Bn+& 

is always not less than the length of the line segment B1Bn+I· We 
shall find the length of that segment. To this end let us consider 
the right triangle B 1CBn+1 (see Fig. 33). We see that 

B1C = AzA3 + A4As + ... + AnAn+1 = ; 

and 

CBn+I = A1A2 + AA4 + • • • +An-I An= ; 

(because A181 = An+1Bn+1 =I I - a1 I). These relations imply 

B1Bn+1 = ,Y (B1C)2 + (CBn+1>2 = ,y (; r + (; r = n r 
whence follows the required inequality. 

Now we can easily find in what case the sign ~ in this in­
equality can be replaced by the sign of equality. To this end it is 
necessary that all the points 8 2, 8 3, ••• , Bn should lie on the 
straight line B18n+1 (that is the point B, must coincide with the 
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point of intersection of the straight lines B1Bn+J and A;A;+1). Since 
the straight lines B1Bn+1 and B1C form an angle of 45° (because 
B1C = CBn+d, this condition is fulfilled when 

B1A2 = A2B2 = 83A4 = A4B4 = ... = Bn-1An = AnBn 

that is when a1=(l - a2)=a3=(l - a4)= ... =an-1=(1- an). 
Thus, for an even n the sign of equality appears when 

a1 = a3 = ... =an-I= a and a2 = a4 = ... =an= 1 - a 

where a is quite arbitrary. 
2°. The number n is odd*. Let us put an+1 = ai, an+2 = a2, 

... , a2n = an and consider the sum 

-.Jar+ (I - a2)
2 +,Ya~+ (I - a3)

2 + ... 
. . . +,Ya~n-I + (1-a2n)2 +,.ja~n + (l -a1y~ 

which is obviously equal to twice the sum 

-.Jar+ (1 - a,i)2 +,Ya~+ (1 - a3)2 + ... 
. . . +-.Ja~_ 1 + (1 - an)2 +-.Ja~ + (1 - a1y 

(each term of the latter sum occurs twice in the former sum). 
According to what has already been proved, the former sum does 
11ot exceed 2n ,Y2/2, whence it follows that 

,Ya~+ (1 - a2)
2 +,Ya~+ (1 - a3)

2 + ... 
... +-.Ja~_ 1 + (l -an)2+,Ya~ + (1-a1 ) 2 ~ nf 

Thus, we have obtain.ed the required inequality. 
In the last inequality the sign of equality appears only when 

a1=a3 = ... =a2n-1= l -a2= l -a4= ... = l-a2n 

(cf. case 1° above). Now, since a1 = an+ 1 and n is odd, the last 
equality is only possible when 

284. First solution. Both members of the equality are positive, 
and therefore, on squaring them, we obtain 

1 - xr + 1 - x~ + 2 ,y ( 1 - xn ( 1 - x~) < 4 - ( xr + 2xlx2 + xn 

* Let the reader consider as an example the case n = 3 to find why 
the proof presented above for an even n cannot be applied to the case of 
an odd n. 
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whence 
2..J(I -xi)(1-xD~2-2x 1x2 

..J(l-xi)(I -xD~ l-x1x2 

Now we again square both members to obtain 
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On transposing all the terms to the right we derive the in­
equality 

The last inequality is quite evident; the equality sign appears 
in it only for x 1 = x2• It follows that the origina1 inequality always 
holds and that it turns into 
equality only when X1 = X2. y 

Second solution. Let us con­
sider a geometrical solution of 
the problem (analogous solu­
tions can be constructed for any 
more complicated problems l. 
Let us consider a rectangular 
Cartesian coordinate system in 
the plane (see Fig. 34) and o M1 M M2 x 
construct a circle of unit radius 
with centre at the origin. The 
coordinates x and y of the points 
of the circle are connected by 
the relation 

x2 + y2= 1 

Now let us mark on the 
x-axis two points M1 and M2 

Fig. 34 

with abscissas x1 and x2; since Ix, I~ 1 and I x2 J ~ 1, both points 
lie inside the unit circle or on its boundary. The perpendiculars to 
the axis of abscissas drawn through these points intersect the upper 
semi-circle at points N 1 and N2 (see Fig. 34). We obviously 
have M 1N1 ='\!"I - xf and M 2N2 =,YI - x~. Since the number 
(x 1 +x2) /2 is equal to the abscissa of the midpoint M of the line 
segment M 1M;, it follows that the quantity '\!"I - [(x1 + x2)/2]2 is 

* This is quite evident when X1 and X2 are positive. We can easily verify 
that the same property remains valid for any signs of X1 and X2 as well. (It 
should be noted however that it is sufficient to prove the inequality indicated 
in the condition of the problem for positive values of x1 and x2 because if x1 
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equal to the length of the llne segment MN where N is the point 
of intersection of the circle with the perpendicular to the axis of 
abscissas drawn through the point M. Further, the sum M1N1 + 
+ M2N2 equals twice the length of the midline N' M of the trape~ 
zoid M 1N 1N2M 2, that is it is smaller than twice the length of the 

z z 

Fig. 35 Fig. 36 

line segment MN. What has been said proves the required in­
equality; as is seen from this proof the inequality turns into 
equality only when the points M1 and M2 coincide, that is when 
X1 =X2. 

Remark. The method used in the the second solution of Problem 284 makes 
it possible to derive many remarkable inequalities. For instance, Jet us consider 
a sphere of unit radius with centre at the origin (see Fig. 35). Let M 1 and M 2 
be two arbitrary points in the plane Oxy which lie inside the sphere or on its 
boundary and let N1 and N2 be the points of intersection of the sphere with the 
perpendiculars to the plane Oxy drawn through the points M 1 and M2• Further, 
Jet N and N' be the points of intersection of the perpendicular to the prane Oxy 
passing through the midpoint M of the line segment M 1M 2 with the sphere and 
with the line segment N1N2 respectively. On denoting the coordinates of the 

vr x2 (or both) is nonpositive we can replace the numbers by their absolute 
values without changing the left-hand member of the inequality while the right­
hand member decreases after this replacement). 
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points M1 and M2 as (xi. y,) and (x2, Y2) respectively we can write 

M1N1 =-Vt -xi-yf, M2N2 =,,.jl - x~ -y~, 

MN __ .J1_(x,+
2

x2)2-(Y1+
2

Y2)2 
d MN' 1 "\J an = 2 (M1N1 + M2N2) 

Now, since MN' ~ MN, it follows that 

(*} 

provided that all the radicands are positive; the sign of equality appears in (*) 
only in the case when x1 = x2 and y, = y2, that is when the points M, and M2 
coincide. 

Fig. 37 

Similarly, on drawing the perpendiculars to the plane Oxy through the 
points Mi. M 2 and Ma and through the point M of intersection of the medians 
of the triangle M 1M 2M 3 (see Fig. 36), we arrive at the inequality 

./ 2 2 ./ 2 2 ./ 2 2 'V 1 - X1 - Y1+'V1 - X2 - Y2 + 'V 1 - X3 - Y3 < 
<a ~ l _ ( X1 + ~2 + Xa r _ ( Yi + ~2 +Ya r (**) 

which means that the length of the line segment MN' does not exceed that of 
the line segment MN. Inequality (**) also holds in all the cases when all the 
radicands are positive; the sign of equality appears in (**) only when x1 = 
= x2 = xa and y, = Y2 = Ya. that is when the points Mi. M 2 and Ma coincide. 

Now let us replace the sphere by the cone whose vertex coincides with the 
origin and whose axis is Oz, the apex angle of the cone being equal to 90° 

12 -60 
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(see Fig. 37). Using the same method we obtain the inequality 

..J XT + Yi + ,Y x~ + Y~ + ,Y x~ + yj ;;;. 

;;;. 3 ,Y( x1+~2+xa)2+( Y1+1~2+Yar (***) 

which holds for any X1, X2, xa; Y1. y2, ya; the sign of equality appears in (*~*) 
only when X1IY1 = x2/Y2 = xa/ya, that is when the points Ni. N2 and Na lie on 
one element of the cone. 

It should be noted that purely algebraic proofs of inequalities (*), (**) and 
(***) are extremely complicated. 

285. Since sin cos x = - cos (n/2 + cos x), there holds the re­
lation 

cos sin x - sin cos x =cos sin x + cos ( ~ + cos x) = 

~· + cos x + sin x i + cos x - sin x 
= 2 cos 2 cos 2 

Further, 

I cos x +sin x I= ,Ycos2 x + 2 cos x sin x + sin 2 x = 

=,YI+ sin 2x~ ,Y2 

(we have I cos x + sin x I= ,Y2 only when sin 2x = l), and sim­
ilarly 

I cos x - sin x I= ,Y cos2 x - 2 cos x sin x + sin2 x = 
= ,Y-l ---si_n_2_x ~ ,Y2 

(we have I cos x - sin x I= ,Y2 only when sin 2x = - 1). Since 
the number n/2 ~ 3.14/2 = 1.57 is greater than the number 
,y2 ~ 1.41, it follows that 

~> 
2 

~ + cos x + sin x > O :rt ; + cos x - sin x 

2 and 2 > 2 > 0 

Consequently, both expressions cos (n/2 + cos x + sin x) /2 and 
cos (n/2 + cos x - sin x) /2 are always positive. Thus, the dif­
ference cos sin x - sin cos x is always positive, that is the expres­
sion cos sin x is greater than sin cos x for any x. 

286. (a) Let us denote log2 n =a and logs n = b. From the 
equalities 2a = n and Sb = n we derive n 1fa = 2, n 1fb = 5 and 
Jtlfa.nI/b = 2·5 = 10, that is :rt1fa+I/b = 10. Further, since n2 ~ 
~ 3.142 < 10, we see that the inequality l/a + lib > 2 must 
hold, which is what we had to prove. 

(b) Let us denote log2 n = a and logn2 = b. Then 2a = :rt and 
nb = 2. The second equality implies 21/b = n whence b = l/a. 
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Now we can consecutively rewrite the given inequality in the 
form 

and 

~ + l~a > 2 

a2 +I > 2 
a 

a2 + 1>2a 

whence a2 - 2a + 1 =(a - 1) 2 > 0. The last inequality is quite 
obvious. 

287. First solution. Under the condition ~>a it is required. 
to prove the following inequalities. 

(a) sin~-sina<~-a. 
We obviously have 

~-a ~+a P--a 
sin~-sina=2sin-2-cos-2- < 2-

2
- · 1 =~-a 

(because for every nonzero angle x lying in the first quadrant 
there hold the inequalities sin x < 
< x and cos x < 1 *). c 

(b) tan·~ - tan a>~ - a 
We obviously have 

~ - a < tan (~ - a) = 
tan ~ - tan a t t 

= I + tan ~tan a < an~ - an ct 

(because for every nonzero angle 
x lying in the first quadrant the 
inequality tan x > x holds*). 

Second solution. We shall limit 
ourselves to Problem 286 (a) be­
cause Problem 286 (b) can be 
solved quite analogously. 

Let us consider unit circle with 
centre at a point 0 (see Fig. 38) 
and mark the arcs AE and AF 
equal to a and ~ respectively. On 

\ 
\ 
\ 

0 

'~/·,· 

fig. 38 

dropping from the points E and F the perpendiculars EM and F P 
on the radius OA we can write 

S 
I . 

t:.OEA=2 sm a 

s,., OPA =+sin~ 

* E. g., see page 392. 

12* 
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and 
1 1 

Ssector OEA = 2 a, Ssector OFA = 2~ 

where the Jetter S designates the area of a figure. 
It follows that 

a - sin a= 2 Ssegment AmE 

and 
~ - sin~= 2 Ssegment AEF 

Consequently, 
a - sin a < ~ - sin ~ 

288. Let AE and AF be arcs of unit circle with centre at 0 
which are equal to a and (3 respectively (see again Fig. 38). Let B 
and C be the points of intersection of the perpendicular to the 
diameter OA drawn through the point A with the straight Jines OE 
and OF and let M and N be the points of intersection of the per­
pendicular dropped from the point E on the diameter OA with the 
straight lines OA and OF. Then we can write 

and 
1 1 

Ssector OAE = 2a, Ssector OAF= 2 (3 

Consequently, 

tan a SD. OAB 
--= 

a Ssecto1 OAE 

tanp SAOAC 
and -

1
:1-= 

Ssector OAF 

As is readily seen, 

Indeed, 

and 

SA OAB 

Ssector OAE 

SA OAB Sc, OAB -=----<---
ssector OA1i SA OEM ' 

SA OAB 

SA OEM 

< 
S;:,, OBC 

Sseclor OEF 

SA OBC > SA OBC 

Ssector OEF SAOBN 

SA OBC 

SA OEN 

The inequality SA oncf Ssector OEF > SA OABI Ssector o AB implies 

SA OAB +SA OBC > SA OAB 

Ssector OAE + Ssector OEF Ssector OAE 

that is 

> 
Ssector OAE 

SA OAB 

which is what we intended to prove. 
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289. Let 
arcs in cos arcsin x =a 

The angle rx lies within the limits 0 ~ rx ~ n/2 since · o .~ 
~ cos arcs in x ~ 1 (because - n/2 ~ arcsin x ~ n/2). Further, 
we have sin rx = cos arcsin x, and consequently 

arcsin x = + ( ~ - a) and x = sin [ + ( ~ - a)] = + cos a 

Similarly, let arccos sin arccos x = ~; then 0 ~ ~ ~ n/2 (be­
cause 0 ~ sin arccos x ~ I since 0 ~ arccos x ~ n) and cos ~ = 
= sin arccos x; consequently 

arccos x = ; + ~ and x = cos ( ~ + ~) = + sin ~ 
Now, from the relation cos rx = sin~ = + x we conclude that 

a+~= arc sin cos arcsin x + arccos sin arccos x = ; 

290. Let us suppose that the sum 

cos 32x + a31 cos 31x + a 30 cos 30x + a29 cos 29x + ... 
. . . + a2 cos 2x + a1 cos x (*) 

assumes only positive values for all x. On replacing x by x + n 
in this sum we arrive at the expression 

cos 32 (x + n) + a31 cos 31 (x + n) + a30 cos 30 (x + n) + 
+ a29 cos 29 (x + n) + ... + a2 cos 2 (x + n) + 

+ a 1 cos (x + n) =cos 32x - a31 cos31x + a30 cos 30x -

- a 29 cos 29x + ... + a 2 cos 2x - a 1 cos x (**) 

which must also assume only positive values for all x. Therefore 
the expression 

cos 32x + a30 cos 30x + . . . + a4 cos 4x + a2 cos 2x 

which is equal to half the sum of expressions ( *) and (**) also 
assumes only positive values for all x. 

Now we replace x by x + n/2 in the last expression, which 
results in 

cos 32 ( x + ; ) + a30 cos 30 ( x + ; ) + 
+ a28 cos 28 ( x + ; ) + . . . + a4 cos 4 ( x + ; ) + 

+ a2 cos 2 ( x + ; ) = cos 32x - a30 cos 30x + 
+ a28 cos 28x - . . . + a4 cos 4x - a2 cos 2x 
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Next we consider the expression 

cos 32x + a28 cos 28x + a24 cos 24x + . . . + as cos Bx + a 4 cos 4x 

which is equal to half the sum of the last two expressions; this 
expression must also assume only positive values for all x. 

On replacing x by x + :n/4 in the last expression and forming 
half the sum of the resultant expression and the original expres­
sion we obtain the sum 

cos 32x + a24 cos 24x + a16 cos I6x +as cos 8x 

Now we replace x by x + :n/8 in this sum and add the resultant 
expression to the original one; this yields the sum 

cos 32x + a16 cos 16x 

Finally, in just the same way we conclude that the expression 

cos 32x 

must also assume only positive values for all x. However, for 
x = ;r,/32 the last expression takes on the value -1. We have 
thus arrived at a contradiction, which proves the assertion stated 
in the condition of the problem. 

291. We shall proceed from the half-angle formula 

2 sin ~ = + ,,./2 - 2 cos a 

v·.:heie the sign + or - is chosen in accordance with the well­
known rule for the sign of the sine function. Using this formula 
we consecutively determine the sine of the angles 

( + a1a2 + a1a2aa ) • 450. a1 2 4 , ••• 

. ( + a,a2 + a1a2a 3 + + a1a2aa ... an). 450 
• • •' al '' • n I 2 4 2 -

Suppose that we have already determined the sine of the angle 

( 
a1a2 ala2a3 a,a2 ... ak) a 

a1+-+--+ ... + k. ·45 
2 4 2 -· 

where ai, a2, a3, ••• , ak assume values equal to 1 or -1. Since 
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where the sign "+" corresponds to a1 = + 1 and the sign 
corresponds to a 1 = - 1 and since 

we can now determine the sine of the next angle: 

359 

h " 

Now we note that since all the angles under consideration are 
less than go0 in their absolute values (because even ( 1 + 1/2 + 
+1/4+ ... +I/211

) ·45° = go0 
- (1/211)go0 is less than go0

) and 
since the sign of these angles is determined by the sign of a 1, the 
square root in the last formulas should be taken with the sign plus 
or minus depending on the sign of a 1• In other words, we can 
write 

Now let us use the obvious formula 

which makes it possible to derive consecutively the following re· 
lations; 

2 sin ( a1 + a ~a2 
) • 45° = a1 '\/ 2 + a2 -vf2 

2 sin ( a1 + a~a2 + a,ata) • 45° = a 1 ~2 + a2 '\/2 + a3 ,Y2 
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2 . ( + a 1a2 + a1a2aa + a1a2a3a4) 450 sm a, -2- --4- 8 . = 

=a, V2 + a2 V2 + a3 ,Y2 + a4 ,Y2 

2 . ( + a1a2 + a1a2a3 + + a1a2aa ••• an). 450 _ 
Slfl ll1 • • • n I -2 4 2 -

=a,V2+a2V2+a3 ,Y2+ ... +an-v'2 
which is what we had to prove. 

292. Let us suppose that the expaf}sion of the given expression 
in powers of x is of the form 

(1 - 3x + 3x2)743 (1 + 3x - 3x2)744 = A0 + A1x + A2x2 + ... + Anxn 

where A0, Ai, A2, ... , An are the unknown coefficients whose sum 
we must compute and n is the degree of the polynomial on the 
right-hand side (it is evident that n = 743·2 + 744·2 = 2974), 
Next we put x = 1 in this equality, which results in 

1713. !744 =Ao+- A, + A2 + ... +An 

Thus, the sought-for sum is equal to unity. 
293. On opening parentheses and collecting terms in the two 

given expressions we obtain two polynomials in x. Now let us 
replace x by -x in the given expressions. Then to the two new 
expressions there correspond two new polynomials which are ob­
tained from the former polynomials by replacing x by -x. This 
means that in each of the new polynomials the coefficients in even 
powers of x remain the same as in the former polynomials while 
the signs of the coefficients in the odd powers of x are changed lo 
the opposite. In particular, under this operation the coefficients in 
x20 do not change. Thus, we see that the coefficients in x20 in the 
two former polynomials coincide with the coefficients in x20 in the 
new polynomials obtained after parentheses are opened and like 
terms are collected in the expressions (1 + x2 + x 3) 1000 and 
(I -x2-x3)1000. 

It is clear that the first of the new polynomials has a greater 
coefficient in x20 than the second. Indeed, when parentheses are 
opened in the expression (I + x2 + x3) 1000 we obtain only positive 
coefficients in different powers of x, and when like terms are col~ 
lected the corresponding coefficients add together. As to the ex­
pression ( 1 - x2 - x 3) 1000, after parentheses are opened in it we 
obtain coefficients in different powers of x whose absolute values 
are the same as the absolute values of the coefficients in the first 
of the new polynomials but the signs of the coefficients may be 
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different; therefore the resultant coefficients appearing after like 
terms are collected are less than before. 

Thus, after parentheses are opened and terms are collected in 
the expressions (I + x2 - x3) 1000 and ( 1 - x2 + x3) 1000 the coeffi­
cient in x20 in the first of the resultant polynomials is greater than 
that in the other polynomial. 

294. The assertion of the problem is a direct consequence of the 
following transformations: 

(1-x+x2-xa+ ... -x99+xioo)(I +x+x2+xa+ ... 
... +x99+xioo)=[(l +x2+x4+ ... +x100)­

-x(l +x2+x4+ ... +x9B)J[(l +x2+x4+ ..• +xioo)+ 

+ x ( 1 + x2 + x4 + . . . + x98) J = 
=(1 +x2+x4+ ... +x100)2-x2(1 +x2+x4+ ... +x9B)2 

295. (a) Using the formula for the sum of a geometric pro­
gression and Newton's binomial formula we find 

(1 + x)IOOO + x (I + x)999 + x2 (I + x)998 + ... + xlOOO = 
1001 

_x_ - (I + x)lOOO 
- I+ x = x1001 - (I+ x)'oo1 = (1 + x)1001 - xtoo1 = 

_x __ 
1 

x-1-x 
l+x 

= 1 + 100 l x + C ( 100 l , 2) x2 + C ( l 001, 3) x3 + .. . + l 00 l x1000 

Thus, the sought-for coefficient is equal toC(IOOl, 50)= 5011~~
1~ 11 . 

(b) Let us denote the given expression as P(x). Then we can 
write 

1 + x) P (x) - P (x) = 
= [(l + x)2 + 2 (1 + x)3 + ... + 999 (l + x) 1000 + 1000 (l + x)10011 -

- [(l + x) + 2 (l + x)2 + 3 (1 + x)3 + ... + 1000 (1 + x)1000] = 

= 1000(1 + x)IOOI - [(1 +x)+ (1 +x)2+ (1 +x)3 + ... + (1 + x)IOOOJ= 

= 1000 (I + x)IOOI - (I+ x)IOOI - (1 + x) = 
l+x-1 

It follows that 

= 1000 (l + x)lOOI - (I+ x)IOOI - (I+ x) 
x 

p (x) = 1000 (1 + x)IOOI - (I+ x)lOOl ;--- (I+ x) = 
x x 

= 1000(1001+C(IOOI,2)x+C(l001, 3)x2 + ... + l00lx999 +x1000J-

- [C (1001, 2) + C(IOOl, 3) x + C(lOOl, 4)x2 + ... + 100lx998 + x999J 
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Thus, the sought-for coefficient is equal to 
1000 · 10011 100 II 

IOOOC{lOOl, 51)-C{lOOl, 52)= 511 . 9501 - 521 .9491 = 

= 1001! [52. 1000 - 950] = 51050· 1001! 
521. 9501 52! . 950! 

296. Let us first of all determine the constant term which is 
obtained after parentheses are opened and like terms are collected 
in the expression 

( ... ((x - 2)2 - 2)2 - . . . - 2)2 

k times 

This term is equal to the value which the expression assumes for 
x = 0, that is it is equal to 

( ... (((-2)2 - 2)2 - 2)2 - ... - 2)2 = 
k times 

=( ... ((4-2)2-2)2- ... -2)2 = 
k-!Umes 

=( ... ((4-2)2 -2)2 - ... -~= ... 
k-2 times 

... = ((4- 2)2 - 2)2 = (4 - 2)2 = 4 

Now let us denote by Ak the coefficient in x, by Bk the coeffi­
cient in x2 and by Pkx3 the sum of the terms involving x to the 
powers higher than 2. Then we can write 

( ... ((x - 2)2 
- 2)2 

- ••• - 2)2 = Pkx3 + Bkx2 + Akx + 4 
~---------

k times 

On the other hand 

( ... (((x - 2)2 - 2)2- 2)2 -· ... - 2)2 = 
k times 

= (( ... ((x - 2)2 - 2)2 - • • • - 2)2 - 2)2 = 
k-1 times 

= [(Pk.-1X3 + Bk_1x2 + Ak-1X + 4) - 2]2 = 

= (Pk_1X3 + Bk-1X2 + Ak-tX + 2)2 = 

= PL1x
6 + 2Pk-1Bk-1X

5 + (2Pk-1Ak-1 + BL1) x4 + 
+ (4Pk-1 + 2Bk-1Ak-1) x

3 + (4Bk-1 + AL1) x2 + 
+ 4Ak-1X + 4 = [PL1x

3 + 2Pk-1Bk-1x2 + 
+ (2Pk-1Ak-1 + BL1) x + (4Pk-1 + 2Bk-1Ak-1)]x

3 + 
+ (4Bk-I + AL1) x2 + 4Ak-1X + 4 
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whence 
Ak = 4Ak-lt Bk= AL1 + 4Bk-I 

Since (x- 2) 2 = x2 - 4x + 4, we have A1 = - 4. Consequent­
ly, A 2= - 4·4 = - 42, A3 = - 43, ••• and, generally, A"= - 4k. 

Now let us compute Bk: 

Bk= A~-1 + 4Bk-I =AL,+ 4 (AL2 + 4Bk-2) = 
= AL1 + 4AL2 + 42 (ALa + 4Bk-a) = 

= AL1 + 4A~-2 + 42ALa + 43 (A~-4 + 4Bk-4) = 

... = AL1+4AL2 + 42A~-3 + ... + 4k-aA~ + 4k- 2AT + 4k-IB1 

The substitution of 

8 1= 1, A 1 =-4, A2=-42, 

A3=-43, ... , Ak-1=-41<-1 

into this expression yields 

Bk= 42"-2 + 4 . 42k-4 + 42. 42k-6 + ... + 4k-2. 42 + 4k-1 . l = 
= 42k-2 + 42k-3 + 42k-4 + • 

0 0 
+ 4k+I + 4k + 4k-I = 

= 4k-I (J + 4 + 42 + 43 + • 
0 

• + 4k-2 + 4k-1) = 
4k I 42k-I 4k-I 

=4"-1--_= -
4-1 3 

297. (a) First solution. The binomial xk - 1 is divisible by 
x --- 1 for any positive integer k; therefore the division of 

x + xa + x9 + x21 + xB' + x243 = (x _ 1) + (x3 _ 1) + 
+ (x9 _ 1) + (x21 _ 1) + (xB1 _ 1) + (x243 _ 1) + 6 

by x - I leaves a remainder of 6. 
Second solution. Let q(x) and r denote the quotient and the re· 

mainder resulting from the division of x + x3 + x9 + x.21 + xs1 + 
+ x243 by x --· 1 . Then 

x + x3 + x9 + x21 + xa1 + x24:; = q (x) (x - 1) + r 
The substitution of x = 1 into this equality yields r = 6. 
(b) By analogy with the second solution of the foregoing prob­

lem, let us denote by q(x) the quotient resulting from the divi­
sion of the given polynomial by x2 - I, and let r1x + r2 be the 
sought-for remainder (the division of a polynomial by a quadratic 
trinomial leaves a remainder which is a binomial of the first de­
gree). Thus, 

x + x3 + x9 + x21 + xs1 + x243 = q (x) (x2 - 1) + r1x + r2 
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On putting x = 1 and x = - I in the last equality we obtain 

6 = r 1 + r 2 - 6 = - r 1 + r2 whence r 1 = 6, r 2 = 0 

Thus, the sought-for remainder is equal to 6x. 
298. Let p (x) be the unknown polynomial and let q (x) and 

r (x) = ax + b be the quotient and the sought-for remainder re­
sulting from the division of that polynomial by (x - 1) (x - 2): 

p (x) = (x - I) (x - 2) q (x) +ax+ b (*) 

By the condition of the problem, we have 

p (x) = (x - I) q1 (x) + 2 whence p (1) = 2 
and 

p (x) = (x - 2) q2 (x) + I whence p (2) = I 

Now we substitute x = I and x = 2 into equality (*), which 
results in 

and 

whence 

2=p(I)=a+b 

1 -:- p (2) = 2a + b 

a=- I and b=3 

Thus, the sought-for remainder is equal to -x + 3. 
299. The polynomial x4 + x3 + 2x2 + x + I can be factored as 

(x2 + I) (x2 + x + I). It readily follows that this polynomial is ~ 
divisor of the polynomial 

x 12 - I= (x6 - 1) (x6 + 1) = (x3 - I) (x3 + l) (x2 + I) (x4 - x2 + l) 

Namely, 
x12 _I 

x
4 + x3 + 2x

2 + x + I= (x _ l) (x3 +I) (x4 _ x2 + I) = 

x12 - I 
- x8 - x7 - x6 + 2x5 - 2x3 + x2 + x - l 

The division of x1951 - I by x4 + x3 + 2x2 + x + I is equivalent 
to the division of x1951 - I by x12 - I and the multiplication of 
the result by x8 - x7 - x6 + 2x5 - 2x3 + x2 + x - 1. Further, it 
is evident that 

x19s1 _ I x7 _ I 
12 1 

= xI939 + x192r + x191s + x19oa + . . . + x19 + x7 + 12 1 x - x -

(this can easily be shown with the aid of long division of the 
polynomials arranged in descending powers of x or with the aid 
of the identity x 1951 - I = x7 [ (x12) 162 - I] + x7 - I and the well­
known formula for the division of the difference of two even 
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powers by the difference of the bases). It follows that the sought­
for coefficient coincides with the coefficient in x14 in the product. 

( x1939 + xl927 + ... + x3I + xl9 + x7 + ;;,-:=_ \) X 

X {x8 
- x7 - x 6 + 2x5 

- 2x3 + x2 + x- l} 

That coefficient is obviously equal to -1. 
300. From the identity indicated in the condition of the problem 

it follows that the sought-for polynomial P(x) = Pn (x) where n 
designates the degree of the polynomial) is divisible by x, that is 
Pn (x) = xPn-dx) where Pn-dx) is a polynomial of the (n - 1) th 
degree. Therefore 

P (x - 1) = (x - 1) P n-dx - 1) 

and, consequently, 

x (x - 1) P n-dx - 1) = xP (x - 1) = (x - 26) P (x) 

It follows that P (x) is divisible by x - 1 as well, that is Pn (x) = 
=x(x-l)Pn-2(x) (x-l is a divisor of the polynomial 
Pn-i(x)=(x- l)Pn-dx)). Therefore we have P(x-1)= 
= (x - 1) (x - 2) Pn-2 (x - 1) whence 

(x - 1) (x - 2) P n-2 (x - 1) = 

= (x - 26) p n (x) = (x - 26) x (x - 1) p n-2 (x) 

The last relation implies that Pn(x) is divisible by x - 2 as well 
(x - 2 is a divisor of Pn-2 (x)), and consequently Pn (x) = 
=X (x - 1) (x - 2) Pn-a (x). On substituting this expression of 
P (x) into the original relation we similarly conclude that P (x) 
is divisible by x- 3 as well, that is Pn(x)= x(x- l) (x- 2)X 
X (x - 3)Pn-4(x), and so on. 

Proceeding in this manner we finally arrive at the following ex­
pression for the polynomial P (x): 

P(x)=Pn(x)=x(x-l)(x-2)(x-3) ... (x-25)Pn_2s(x) 

The substitution of this expression of the polynomial P (x) into 
the given identity results in 

x (x - I) (x - 2) . . . (x - 26) P n-26 (x - 1) = 

= (x - 26) x (x - 1) ..• (x- 25) Pn_2B(x} 

whence it follows that the polynomial Pn-2dx) = Q (x) of the 
(n - 26) th degree satisfies the identity 

Q (x - 1) ==Q (x) (*) 
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It is clear that if Q (x) = Qo (x) = c (that is if Q (x) is a poly· 
nomial of degree zero equal to a constant number) then relation 
(*) is fulfilled. Let us show that this is the only case when it is 
fulfilled. Indeed, if Q (x) = Qk (x) = a0xk + a 1xk-1 + ... + 
+ ak-tX + ak where k ~ I and ao =I= 0 then identity (*) has the 
form 

ao (x - Il + a1 (x - l)k-I + ... ~ aoxk + a1xk-l + ... 
On equating the coefficients in xk-J on both sides we obtain, by 
virtue of Newton's binomial formula, the equality 

ka0 +a1 =a1> that is ao=O 

However, this contradicts the assumption that a0 =I= 0. Thus, 
we have k = 0 and Q (x) = c; hence 

P(x)=cx(x- I)(x-2) ... (x-25) 

is a polynomial of the 26th degree. 
301. (a) If all the coefficients of the polynomial P (x) are non· 

negative then all the numbers s (1), s (2), s (3), ... make sense. 
Let us consider a power of ten (we denote it N = !Ok) such that 
N is greater than all the coefficients ao, a1, an, ... of the poly­
nomial P(x). Then the number P(N) = P( lQk) obviously starts 
with the digits with the aid of which the coefficient a0 of the poly­
nomial is written, then (possibly after a number of zeros) the 
digits of a1 follow; then (possibly again after a number of zeros) 
the digits of a2 follow etc. up to the digits of the number a,,. 
Therefore the number S = s (!Ok) is equal to the sum of all digii s 
of all numbers ao, a1, ... , an. As to the quantities s(l0k+1), 
s ( l 011+2 ), ••• , they are equal to the same number S, whence it 
follows that the number S occurs infinitely many times in the se· 
quence s(l), s(2), .... 

(b) It is clear that if the leading coefficient a0 of the polyno­
mial P(x) is negative then only a finite number of expressions 
s (I), s (2), s (3), ... make sense (because in this case for all suffi­
ciently large values of x the sign of the polynomial P(x) coincides 
with that of its leading coefficient ao; for instance, this follows 
from the relation Jim P (x)/a0xn = 1). Thus, it only remains to con· 

x~oo 

sider the case a0>0. We shall show that if ao>O then there is a 
number M>O such that all coeffi.cients of the polynomial P (x) == 
== P(x + M) are positive. This will imply that the sequence 
s(l), s(2), s(3), ... of the sums of the digits of the numbers 
P(l), J5(2), J5(3), ... contains infinitely many equal numbers and, 
since we obviously have s(l) = s(M + 1), s(2) == s(M + 2), 
s(3) = s(M + 3), ... , the sequence s(l), s(2), s(3), ... must also 
contain infinitely many equal numbers. 
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Thus, it is sufficient to prove the auxiliary assertion stated 
above. We have 

P (x) = P (x + M) = 
=a0 (x + M)n +a, (x +Mt-' +.a2(x + Mt- 2 + 

•.. +Un-I (x+M) +an= iioxn + l11xn-i+ii2xn-2 + ... + iin-1X+iin 

and therefore, by Newton's binomial formula, 

ii;= a0 • C (n, i) Mn-I + a1 • C (n - 1, i) Mn-i-I + ... +a; 

where i = 0, 1, 2, ... , n. Hence, ii; has the form of a polynomial: 
of the (n - i) th degree in the variable M with leading coefficient. 
a0 ·C(n,i)>O. Therefore all the numbers a; (where i=l,2, ... ; 
it should be noted that iio = ao > 0) are positive for sufficientiy 
large M, which we had to prove. 

302. Let a0 and b0 be the constant terms of the polynomials. 
f (x) and g(y) (that is f(x) = ao + a1x + ... + anxn and g(y) = 
= b0 + b1y + ... + bmym). Let us put the variable x equal to 0 
in the identity x200y200 + 1 == f(x)g(y). This yields a0g(y) = 1, 
that is g(y) = l/a0 ; thus, g(y) is equal to l/a0 for all y, which 
means that g(y) is a constant, that is a polynomial of degree zero. 
The relation f(x)= 1/bo is proved similarly; therefore f(x)g(y)= 
= l/a0b0 =!= x 200y200 + 1. We have arrived at a contradiction, 
which proves the assertion of the problem. 

303. Since the (quadratic) equation p(x) = ax2 +bx+ c = >" 
has no real roots, the quadratic trinomial p (x)- x = ax2 + 
+ (b - 1) x + c assumes values of one sign for all x, say 
p(x)-x > 0 for all x. Then we have p(p(x0 ))-p(x0)> 0 for 
any x = x0, that is p (p (xo)) > p (xo). By the hypothesis, p (x0)-­

- xo > 0, that is p (xo) > xo, and hence p (p (xo)) > x 0 ; therefore 
x0 cannot be a root of the 4th-degree equation p (p (x)) = x. 

304. Let us assume that a;;;:::: 0 (if otherwise, we can replace 
the polynomial p (x) by the polynomial -p (x) = - ax2 - bx - c 
satisfying the same conditions). We shall also assume that b;;;:::: 0 
(if otherwise, we can replace p(x) by p(-x) = ax2 - bx+ c). 
Now we substitute the values x = 1, x = 0 and x = - l into the 
inequality lp(x) I= lax2 +bx+ cl~ 1, which results in 

I a+ b + c I< l, I c I< l and I a - b + c I< l, 
that is I c I< l and I a + b I< 2, I a - b I< 2' 

Further, if c;;;:::O then O~cx2 ~c for !xi~ l; for lxl~ l we 
also have -b ~ bx~ b. This means that for these values of \'. 
there hold the relations 

p 1 (x) = cx2 + bx + a< c + b + a< l 

and p 1 (x) = cx2 +bx+ a~ 0 + (- b) +a= a - b ~ - 2 
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whence it follows that I Pt (x) I::::;; 2. Similarly, if c ::::;; 0 and c ::::;; 
::::;; cx2 ~ 0 (and, as before, -b::::;; bx~ b) then 

Pi (x) = cx2 + bx + a :::;;;; 0 + b + a =a + b :::;;;; 2 

and Pi (x) = cx2 +bx+ a~ c + (- b) +a= a - b + c ~ - 1 

whence it follows that I Pt (x) I::::;; 2 in this case as well. 
305. We shall exclude the case a = 0 which is of no interest 

because for a = 0 each of the three given equations ( l), (2) and 
(3) is of the first degree and has a single root, all the equations 
coinciding (here we have x1 = x2 = x3). We shall also exclude the 
case c = 0 when the three given equations have the roots -b/a 
and 0, b/a and 0, -2b/a and 0 respectively because in this case 
the root x3 = 0 of equation (3) lies between any root of equation 
( l) and any root of equation (2). 

Further, if axr + bxi + c = 0 then 

a ( ) a a -x2 +bx +c= ax2 +bx +c --x2 =--x2 
2 i i i i 2 i 2 I 

Similarly, if -ax~+ bx2 + c = 0 then 

a 2 + b + - - 2 + b + I ~ ~-~ 2 2 x
2 

x2 c - ax2 x2 c -i- 2 ax2 - 2 
ax2 

Consequently the expressions (a/2) xi+ bx1 + c = - ( 1/2) axi and 
(a/2) x~ + bx2 + c = (3/2) ax~ are of different signs. This means that 
the points (x1, f (xi)) and (x2, f (x2)) belonging to the parabola 
y = f (x) = (a/2)x2 +bx+ c lie on different sides from the x-axis, 
whence it follows that between them there is an intermediate 
point (x3, 0) at which the parabola intersects the x-axis; the num· 
ber x3 is the sought-for root of equation (3). 

306. Since a and ~ are the roots of the equation 

x2 + px+q=O 
we have 

(x - a) (x - ~) = x2 + px + q 

Consequently 

(a - v) (~ - v) (a - o) (~ - o) = [(v - a) (v - ~)] [(o - a) (o - ~)] = 
= (v2 + PV + q) (02 + po+ q) 

But we have 
v + o = - P and y6 = Q 
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and therefore 

(a - v) (~ -v) (a - 6) (~ - 6) = (v2 + py + q) (62 + p6 + q) = 
= y262 + py26 + qy2 + py62 + p2y6 + pqy + q62 + pq6 + q2 = 

=(v6)2 + py6(v + 6) + q[(v + 6)2- 2v6J + p2y6 + pq(v + 6) + q2= 

= Q2 - pPQ + q (P2 - 2Q) + p2Q - pqP + q2 = 

= Q2 + q2 _ pP (Q + q) + qP2 + p2Q _ 2qQ 

307. First solution. Let us find the coefficient a from the second 
equation and substitute it into the first equation. Then we conse· 
cutively obtain 

whence 

a= -(x2 -l--x) 

x2 - (x2 + x) x + 1 = 0 

x3 -1 =0 

(x - 1) (x2 + x + 1) = 0 

x1 = 1, 
-l±i,./3 

X2.1 = 2 

Since a = - (x2 + x), it follows that a, = - 2, a2,3 = l. 
Second solution. Proceeding from the result of Problem 306, we 

can assert that for the given equations to possess at least one 
common root it is necessary and sufficient that the expression 

a 2 + 1 - a· 1(a+1) + l + a3 
- 2a = a3 

- 3a + 2 = 
=(a - l) (a2 +a - 2) =(a - 1)2 (a+ 2) 

turn into zero. 
From this relation we find 

a1 = -2, a2.1 = l 

308. (a) Let (x-a)(x-10)+ l =(x+b)(x+c). Putting 
x = - b in both members of this equality we obtain 

(- b - a) (- b - IO)+ I= (- b + b) (- b + c) = 0 

It follows that 
(b +a) (b + l 0) = -1 

Since a and b are integers, the sums b +a and b + 10 are also 
integral numbers. The number - I can be expressed as a product 
of two integers in only one way, namely-I= 1· (-1), and there· 
fore only the following two possibilities can take place here: 

(1) b + IO= 1, that is b = --9; then b +a= - 9 +a= -1, 
whence a = 8; here we have 

(x - 8) (x - 10) + 1 = (x - 9)2 
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(2) b+I0=-1, that is b=-11; then b+a=-11 + 
+a= 1, whence a= 12; here we have 

(x - 12) (x - IO)+ 1 = (x - 11)2 

(b) Since a polynomial of the fourth degree can be expressed 
either as a product of a polynomial of the first degree by a poly­
nomial of the third degree or as a product of two polynomials of 
the second degree, we have to consider separately the following 
two cases: 

(A) x (x - a) (x - b) (x - c) + 1 = (x + p) (x3 + qx2 + rx + s) (*) 

(the coefficient in x in the first factor on the right-hand side of this 
equality and the coefficient in x3 in the second factor are both 
equal either to 1 or to -I because the coefficient in x4 in the pro­
duct of these factors must be equal to the coefficient in x4 in 
the expression x(x - a) (x - b) (x - c) + 1, that is to I, and the 
equality x(x - a) (x - b) (x - c) + I = (- x +pi) (-x3 + q1x2 + 
r1x + si) can be brought to form (*) by multiplying both factors 
on its right-hand side by -1). 

On putting in succession x = 0, x = a, x = b and x = c ir1 
equality (*) and taking into account that 1 can be factored only 
in the two ways I = l · l and I= (-1) · (-1) we conclude that 
the four different numbers 0 + p = p, a+ p, b + p and c + p (we 
remind the reader that the numbers 0, a, b and c are all different) 
can assume only the two values +1 and -1, which is impossible. 

(B) x (x - a) (x - b) (x - c) + 1 = (x2 + px + q) (x2 + rx + s) 

As above, from this equality we conclude that for x = 0, x = a,. 
x = b and x = c both polynomials x2 + px + q and x2 + rx + s 
assume the value I or -1. Further, the quadratic trinomial 
x2 + px + q cannot assume one and the same value a for three 
distinct values of x (because, if otherwise, the quadratic equation 
x2 + px + q - a= 0 should have three distinct roots), whence it 
follows that this trinomial must assume the value 1 for some 
two of the four values x = 0, x = a, x = b and x = c and the 
value -I for the other two values of x. Let us suppose that 
02 + p·O + q = q = 1, and let x =a be another value of x for 
which this trinomial takes on the same value I. Then for x = b 
and x = c the trinomial takes on the value -1. Thus, we have 

a2 + pa + 1 = 1, b2 + pb + 1 = -1, c2 + pc + 1 = - 1 

The equality a2 +pa = a (a+ p) = 0 implies a+ p = 0, that 
is p = - a (because, by the hypothesis, a =I= 0). Thus, the last 
two equalities take the form 

b2 - ab= b (b - a)= -2 and c2 - ac = c (c - a)= -2 
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On subtracting the second of these equalities from the first we 
'Obtain 

N-ab-c2 + ac = (b-c) (b+ c)-a (b-c) = (b-c) (b + c-a) = 0 

whence, since b =I= c, it follows that b + c - a = 0, a = b + c, 
./J - a= - c and c - a = - b. Now, from the equality 

b (b - a)= - be= - 2 

we find the following values of b, c and a: 

(1) b = 1, c = 2, a= b + c = 3 

In this case we have 

x (x - a) (x - b) (x - c) + 1 = x (x - 3) (x - 1) (x - 2) + l = 
= (x2 

- 3x + 1)2 

(2) b = - l, c = - 2, a= b + c = - 3 

In th is case we have 

x (x - a)(x - b) (x - c) + I = x (x + 3) (x + l) (x + 2) + l = 
=(x2 +3x+ 1)2 

Similarly, if the trinomial x2 + px + q assumes the value -1 
for x = 0 and x =a and the value + l for x = b and x = c, 
then 

q = - 1, a2 + pa - l = - 1, b2 + pb - l = l, c2 + pc - l = l 

whence 

p = - a, b (b - a)= c (c - a)= 2, b2 
- ab - c2 + ac = O 

that is 

(b-c)(b+c-a)=O, a=b+c, b-a=-c, -bc=2 

We thus obtain two more systems of possible values of a, b 
and c: 

(3) b = 2, c = - 1, a = b + c = l 

In this case we have 

x(x-a)(x-b)(x-c)=x(x- l)(x-2)(x+ I)+ I =(x2 -x-1)2 

(4) b= I, c=-2, a=b+c=-1 

In this case we have 

~(x-a)(x-b)(x-c)=x(x+ l)(x- l)(x+2)+ 1 =(x2 +x-1)2 

Remark. Another solution o[ this problem is given at the end of the solution 
of Problem 309 (b). 
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309. (a) Let us suppose that 

(x - a1) (x - a2) (x - a3) ... (x - an) - 1 = p (x) q (x) 

where p (x) and q (x) are polynomials with integral coefficients. 
the sum of the degrees of p (x) and q (x) being equal to n. We can 
assume that the leading coefficients of both polynomials are equal 
to 1 (cf. the solution of the foregoing problem). On substituting 
the values x = a1, x = a2, x = aa, ... , x = an into this equality 
and taking into account that -1 can be expressed as a product 
of integral numbers in the only way -1 = 1 · (-1) we conclude 
that either p(x) = 1 and q(x) = -1 or p(x) = --1 and q(x) = 1 
for each of these n values of x. Thus, the sum p(x)+ q(x) is equal 
to zero for X1 = ai, X2 = a2, ... , Xn = an. Hence, X1 = a1, X2 = 
= a2, ••• , Xn = an are roots of the equation p (x) + q (x) = 0; it 
follows. that the polynomial p (x) + q(x) is divisible by each of the 
binomials x :- ai, x - a2, ... , x - an, and consequently it is di· 
visible by the product (x - at) (x- a2) ... (x - an). Further, the 
degree of the equation p (x) + q (x) = 0 coincides with the greatest 
of the degrees of the polynomials p (x) and q (x); this degree is. 
smaller than n (n is equal to the degree of the expression 
(x - a1) (x - a2) ... (x - an)- 1). It follows that the polyno· 
mial p(x)+q(x) cannot be divisible by the product (x-a1)X 
X (x - a2) ... (x - an), and consequently the factorization whose 
existence we have supposed is impossible. 

(b) Let us suppose that 

(x - a1) (x - a2) (x - aa) ... (x - an)+ 1 = p (x) q (x) 

where p (x) and q (x) are polynomials with integral coefficients 
whose leading coefficients are equal to 1. The substitution of the 
values x = a 1, x = a2, x = a3, ... , x = an into this equality 
shows that 

either p (x) = 1, q (x) = 1 or p (x) = - 1, q (x) = - 1 

for each of these n values of x. 
Thus, the difference p (x)- q (x) turns into zero for n different 

values of x; it follows that, on the one hand, p (x)- q (x) == 0, that 
is p(x)= q(x) (cf. the solution of Problem 309 (a)), and, on the 
other hand, the number n is even: n = 2k where k is equal to the 
coinciding degrees of the polynomials p(x) and q(x) (we have 
found that p (x) = q (x)). Now let us rewrite the above equality 
in the form 

(x - a1) (x - a2) (x - aa) ... (x - a2k) = [p (x)]2 - 1 

or, equivalently, 

(x-a1)(x-a2)(x-aa) ... (x-a2k)=[p(x)+ l][p(x)~ 1] 
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We see that the product of the two polynomials p (x) + I and 
p (x)- 1 turns into zero for x = ai, x = a2, x = a3, ... , x = a2k. 

Consequently, for each of these 2k values of x at least one of the 
factors on the right-hand side turns into zero. This means that 
p(x)+ I or p(x)-1 is divisible by x-a1, p(x)+ I or p(x)-1 
is divisible by x - a2 etc. Since a polynomial of the kth degree 
cannot be divisible by a product of more than k different binomials 
of the form x - a; and since the divisibility of a polynomial ot 
the kth degree with leading coefficient 1 by a product of k dif­
ferent binomials of the form x - a; implies that the polynomial is 
equal to that product, it follows that the polynomial p (x) + 1 is 
equal to a product of some k of the 2k factors on the left-hand 
side of the last equality while the polynomial p(x)- 1 is equal to 
the product of the other k factors. 

For definiteness, let us suppose that 

p (x) + l = (x - a1) (x - a3) ... (x - a2k-1) 
and 

p (x) - 1 = (x - az) (x - a4) ••• (x - azk) 

The subtraction of the second of these equalities from the first 
one yields 

2 = (x - a1) (x - a3) ... (x - azk-1) - (x - a2) (x - a4) ... (x - a21t) 

On substituting one of the values of x which we are consider­
ing, say x = a 2, into the last relation we arrive at a factorization 
of the number 2 into k integral factors: 

2 = (a2 - ai) (a2 - aa) ... (a2 - a2k-1) 

Since the number 2 cannot be expressed as a product of more 
than three different integral factors, it immediately follows that 
k ~ 3. It is evident that the case k = 3 is impossible. Indeed, the 
number 2 can be expressed as a product of three different integral 
factors in only one way: 2 = 1 · (-1) · (-2). Let us suppose that 
k=3 and that a1 < aa< as. Then 2= (a2- a1) (a2- aa) (a2- as) 
where az - a1 > az - aa > az - as, and consequently a2 - a1= 
~ 1, az - aa=-1 and az - as=-2. The substitution of x=a.i 
into the formula 

2 = (x - a1) (x - a3) (x - as) - (x - a2) (x - a4) (x - a6) 

results in another factorization of the number 2 into three different 
integral factors: 2 = (a4 - at) (a4 - aa) (a4 - as) where again 
a4-a1>a4-aa>a4-as. It follows that a4-a1=l, a4-
- aa = - 1 and a1 - as = - 2, and hence a4 = a2, which contra­
dicts the condition of the problem. 

Thus, there are only two possible cases here: k = 2 and k = I. 
Let us consider them separately. 
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l 0 • If k = l then 
2 = (x - a1) - (x - a2) 

whence a2 = a, + 2. Denoting a 1 simply as a we obtain 

(x - a1) (x - a2) + l = (x - a) (x - a - 2) + I= (x - a - 1)2 

(cf. the solution of Problem 308 (a)). 
2°. If k = 2 then 

2 = (x - a,)(x - a3) - (x - a2) (x - a4) 

For definiteness, let a, < a3 and a2 < a4. The substitution of 
x = a2 and x = a4 into the last equality results in 

2 = (a2 - a,) (a2 - a3), a2 - a 1 > a2 - a3 
and 

2 = (a4 - a,) (a4 - a3), a4 - a1 > a4 - a3 

The number 2 can be expressed as a product of two factors 
written in a decreasing order only in two ways: 2 = 2 ·I or 2 = 
= (-1) · (-2). Besides, we have a2 - a 1 < a4 - a 1, and there· 
fore 

a2 - a 1 = - I, a2 - a3 = - 2 
and 

Now, denoting a, as a, we obtain 

a2=a- l, a3=a+ I, a4=a+2 
and 

(x - a 1) (x - a2) (x - aa) (x - a4) + I = 

= (x - a) (x - a + I) (x - a - I) (x - a - 2) + I = 
= [x2 

- (2a - I) x + a2 + a - l J2 

(cf. the solution of Problem 308 (b)). 
:HO. By analogy with the solution of the foregoing problem, we 

conclude that from the equality 

(x - ai)2 (x - a2)2 (x - a,)2 
••• (x - an)2 + l = p (x) q (x) (*) 

where p(x) and q(x) are some polynomials with integral coeffi­
cients (whose leading coefficients are equal to I) it follows that 
either p(x) = l and q(x) = I or p(x) = - l and q(x) = - l for 
each of the values x = a,, x = a2, x = a3, ... , x = a,.. Let us 
show that the polynomial p(x) and also the polynomial q(x) are 
either equal to l for all the values x =a,, x = a2, ... , x = u,. 
or are equal to -1 for all these values of x. 
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Indeed, if, for instance, the polynomial p (x) took on the value 1 
for x =a; and the value -1 for x = ai then it would turn into 
zero for an intermediate value of x lying between a; and a1 (if the 
point of the graph of the function y = p(x) corresponding to 
x = ai lies above the x-axis and the point of the graph correspond­
ing to x = ai lies below that axis then the continuous curve 
!i = p (x) must intersect the x-axis at a point lying somewhere 
between x = a; and x = ai), which is impossible because the 
left-hand side of equality (*) is always greater than or equal to i 
and therefore it cannot turn into zero. 

Now let us suppose that both p (x) and q (x) assume the value 1 
for x=a1, X=a2, ••• , x=an. In this case both p(x)-1, 
q (x)- l turn into zero for x = a1, x = a2, ... , x = an, and con­
sequently p(x)- l and q(x)- l are divisible by the product 
(x - ai) (x - a2 ) ••• (x - an). Since the sum of the degrees of 
the polynomials p(x) and q(x) is equal to the degree of the ex­
pression (x - a 1)2(x - a2 ) 2 ••. (x - an) 2 + 1, that is to 2n, we 
have p(x)- l = (x - ai) ... (x - an) and q(x)- I = (x- a1) ••• 

• . . (x - a11) (cf. the solution of the foregoing problem). 
Thus, we arrive at the equality 

(x - a1)
2 (x - a2)2 

••• (x - an)2 + l = p (x) q (x) = 
=[(x-a1) ... (x-an)+ l][(x-a1) ... (x-an)+ I]= 

= (x - a1)
2 (x - a2)2 ••• (x - an)2 + 2 (x - a1) (x - a2) ••• (x - an)+ l 

whence follows the equality 

which is impossible. In the same way we can prove that p (x) and 
q (x) cannot simultaneously assume the value -1 at the points 
x = a 1, x = a2, ... , x = an (in this case the assumption that 
p(x) = q(x) = - I for x = a1, x = a2, ... , x =an would imply 
(x - ai) (x - a2 ) ••• (x - an)- I = p(x) = q(x) ). 

Thus, we see that the expression 

cannot be expressed as a product of two polynomials with integr;.il 
coefficients. 

311. Let the polynomial P (x) take on the value 7 at the points 
x =a, x = b, x = c and x = d. Then a, b, c and d are four in­
tegral roots of the equation P(x)- 7 = 0. This means that ihe 
polynomial P(x) - 7 is divisible by x - a, x - b, x - c and 
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..x - d *, that is 

PW-7=~-aj~-~~-rj~-~PW 

where p (x) may be equal to I. 
Now let us suppose that the polynomial P (x) assumes the value 

14 for an integral value x = A. On substituting x = A into the 
last equality we obtain 

7 =(A - a) (A - b) (A - c) (A - d) p (A) 

-which is impossible because the integral numbers A - a, A - b, 
A - c and A - d are all distinct and the number 7 cannot be 
factored into five integers among which at least four are different. 

312. If a polynomial P(x) of the seventh degree is expressed a<> 
a product of two polynomials p(x) and q(x) with integral coeffi­
cients then the degree of at least one of the factors p (x) and q (x) 
does not exceed 3; let us suppose p(x) is that factor of a degree 
not higher than 3. If P(x) assumes the values + 1 for seven in· 
tegral values of x then for the same values of x the polynomial 
p (x) also assumes the values + 1 (because p (x) q (x) = P (x)). 
Among the seven integral values of x for which p (x) assumes the 
values + 1 there are four values for which p (x) is equal to 1 or 
four values for which p (x) is equal to -1. In the first case the 
third-degree equation p (x) - 1 = 0 possesses four roots and in 
the second case the equation p (x) + I = 0 possesses four roots. 
Neither of these cases can take place; for instance, in the first 
case the polynomial p (x) = 1 must be divisible by a polynomial 
of the fourth degree (cf. the solution of Problem 309 (a)); this 
contradiction proves the assertion of the problem. 

313. Let p and q be two integral numbers simultaneously even 
or odd. Then the difference P(p)- P(q) is even. Indeed, the ex­
pression 
p (p) - p (q) = ao (pn - qn) + a1 (pn-1 - qn-1) + ... 

· · · + Gn-2 (p2 
- Q

2
) + Gn-1 (p - q) 

is divisible by the even number p - q. 
In particular, the difference P(p)- P(O) is even for an even p. 

By the condition of the problem, the number P (0) is odd, and 
consequently P(p) is also odd; therefore P(p) =I= 0. Similarly, for 
an odd p the difference P(p)- P(l) is even; since by the condi· 

* If we suppose that the division of P (x) - 7 by x - a leaves a remain­
der r, that is 

P (x) - 7 = (x - a) Q (x) + r 
then the substitution of x = a into this equality results in 7 - 7 = 0 + r, 
whence r = 0, and consequently P(x)-7 is equal to (x-a)Q(x) and is 
divisible by (x - a). 
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tion of the problem, P (I) is odd, it follows, as above, that 
P(p) =F 0. 

Consequently, P (x) cannot turn into zero for any integral (even 
or odd) value of x, that is the polynomial P(x) possesses no in­
tegral roots. 

314. Let us suppose that the equation P(x) = 0 possesses a ra­
tional root x = k/ /: P (k/ l) = 0. Let us expand the polynomial 
P (x) in powers of x - p, that is let us write it in the form 

P (x) =co (x - pt+ c1 (x - pt-
1 + 

+ c2 (x - Pt-2 + . . . + Cn-I (x - p) + c,. 

where co, Ci. c2, ... , Cn are some integral numbers which can 
easily be found when the coefficients ao, ai, ... , an are known 
(the number c0 is equal to the leading coefficient a0 of the poly­
nomial P(x), the number c1 is equal to the leading coefficient of 
the polynomial P(x)-c0 (x-p)n of the (n- l)th degree, the 
number c2 is equal to the leading coefficient of the polynomial 
P(x)- c0 (x - p)n - ci(x- p)n-I of the (n- 2)th degree etc.). 
On substituting x = p into the last expression of P (x) we obtain 
Cn = P(p) = + 1. 

The substitution of x = k/l into the same expression and the 
multiplication of the result by [n yields 

l'1P (~)=Co (k - plt + C1l (k - ptr-I + 
+ c2l

2 
(k - plt-2 + . . . + Cn_ 1in-1 (k - pl)+ cnln = 0 

whence it follows that if P (k/ l) = 0 then the expression 

Cnln ± zn (k /)n-1 --=--=-Co -p -k - pl k- pl 

- c1l (k - plt-2 
- ••• - Cn-2ln-2 (k - pl) - Cn_ 1ln-i 

is an integral number. Since pl is divisible by l and k is relatively 
prime to l (because k/ l is an irreducible fraction), the number 
k - pl is relatively prime to l, and consequently k - pl is relati­
vely prime to tn as well. It follows that + tn/ (k - pl) can be an 
integral number only when k- pl = + I. 

In just the same way we can also prove that k - qi=+ I. 
Now we subtract the equality k - pl = + I from the equality 

k - ql = + I and obtain 

(p - q) 1 = 0 or (p - q) l = + 2 

Further, (p ..:_ q) l > 0 because p > q and l > 0, and conse­
quently (p - q) l----: 2, k - pl-. -1 and k - qi= 1. 
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Thus, if p - q > 2, the equation P(x) = 0 cannot have rational 
roots. In case p - q = 2 or p - q = I a rational root k/l may 
exist. In this case the addition of the equalities 

k - pl = - I and k - ql == I 
yields 

2k - (p + q) l = 0 whence .!!... = P + q 
l 2 

which is what we had to prove. 
315. (a) Let us suppose that the given polynomial can be ex­

pressed as a product of two polynomials with integral coefficients: 

x2222 + 2x2220 + 4x221s + . . . + 2220x2 + 2222 = 

= (anxn + an-lxn-I + an-2xn- 2 + ... + ao) (bmxm + bm-lxm-I + 
+ bm-2Xm-2 + · . • + bo) 

where m + n = 2222. Then aobo = 2222, and consequently one of 
the two integral numbers ao and bo is even and the other is odd. 
Let us suppose that ao is an even number and b0 is an odd num­
ber. We must show that in this case all the coefficients of the po­
lynomial anxn + an-1xn-I + ... + ao must be even. Let ak be the 
first (counting from right to left) odd coefficient of that polyno­
mial. After the parentheses are opened in the product 

(anxn + an-lxn-I + .. · + ao) (bmxm + bm-lxm-I + ... + bo) 

the coefficient in xk is equal to 

(*) 

(in case k > m this sum ends with the term ak-mbm). This coef­
ficient is equal to the corresponding coefficient in xk of the original 
polynomial, that is, it is equal to zero when k is odd and is an 
even number when k is even (because all the coefficients of the 
polynomial indicated in the condition of the problem, except the 
first one, are even and k ~ n < 2222). By the hypothesis, all the 
numbers ak-1, ak-2, ak-3, ... , ao are even, and, consequently, in 
sum (*), all the terms except the first one, are even; therefore the 
product akbo must also be even, which is impossible since the 
numbers ak and bo are odd. 

Thus, we see that all the coefficients of the polynomial 
anxn + an-ixn-I + ... + ao must be even, which contradicts the 
fact that the product anbm is equal to unity. Consequently, the as­
sumption that the given polynomial can be expressed as a product 
of two polynomials with integral coefficients is false. 
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(b) Let us put x = y + 1. Then we have 

x250 + x249 + x24B + . . . + x + l = 
= (y + 1)250 + (y + 1)249 + ... + (y + 1) + l = 

= (y + 1)
251 

- I=__!_ [(y + 1)251 _ l) = 
(y +I) - I y 

= y250 + 251 y249 + c (25 l, 2) y248 + c (251, 3) y247 + 
.. . + c (251, 2) y + 25 r 

Further, taking into account that all the coefficients of the re­
sultant polynomial, except the first one, are divisible by the prime 
number 251 (because C(251, k) = (251 ·250·249 ... (251 - k + 
+ 1)) /(I· 2 · 3 . . . k)) and that the constant term of the poly­
nomial is equal to 251 and is not divisible by 25l2, we can repeat 
almost literally the argument used in the solution of Problem 
315 (a) (the only distinction is that instead of the divisibility of 
the coefficients by 2 we should analyze the divisibility by 251). In 
this way we prove that if the given polynomial could be factored 
into two polynomials with integral coefficients then all the coef­
ficients of one of the polynomials would be divisible by 251, which 
is impossible because the leading coefficient of the original poly­
nomial is equal to 1. 

316. Let us write the given polynomials as 

A= a0 + a1x + a2x2 + . . . + anxn 
and 

B = bo + bix + bzx2 + . . . + bmxm 

By the condition of the problem, not all coefficients of the pro­
duct AB are divisible by 4, and therefore it ;3 impossible for all' 
the coefficients of the hvo polynomials to be even. Consequently .. 
some coefficients of at least one of them, say of B, are odd. Let u·:.; 
suppose that some of the coefficients of the polynomial A are also 
odd. We shall consider the first of such coefficients (the one hav-­
ing the smallest index); let as be that coefficient. Further, let the 
first odd coefficient of the polynomial B be bk. We shall consider 
the coefficient in xk+s in the product of the polynomials A and R. 
The term xk+s in the product is formed of the products of those-­
powers of x in A and B the sum of whose exponents is equal h> 
k + s. Consequently, this coefficient is equal to 

aobk+s + a1bk+s-I + · · · + as-lbk+I + asbk + as+lbk-1 + · • • + as+kb0 

All products in this sum which precede the term asbk are even 
because such are the numbers a 0, a 1, ... , as-1- All products fol­
lowing asbk are also even because bk-I, bk-2, ••• , b0 are even num­
bers. As to the product asbk, it is an odd number because such ar•:: 
the numbers as and bk. Consequently, the whole sum is odd, which1 
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contradicts the fact that all coefficients in the product are even, 
We see that the assumption that some of the coefficients of the 
polynomial A are odd is false, and therefore all coefficients of A 
are even numbers, which is what we intended to prove. 

317. Let us prove that for any rational nonintegral value of x 
the polynomial P (x) cannot assume an integral value, and hence 
it cannot be equal to zero since zero is an integral number. 

Let x = p/q where p and q are relatively prime. Then 

_p (x) = xn + a1xn-l + a2xn-2 + ... +an-IX+ an= 
pn pn-1 pn-2 P 

=-+a1 ---n-:T+ azn=2 + ... +an-1- +an= qn q q q 

pn + a1pn-lq + a2pn-2q2 + ... + an-1PQn-I + anqn 
= qn = 

pn + q (a1pn-l + a2pn-2q + ... + an- iPQn-2 + anqn-1) 
= q·n, 

The number pn, like the number p, is relatively prime to q; con­
sequently, the number pn + q(a1pn-l + ... + anqn-1) is also re­
latively prime to q and hence to qn as well. Therefore the right­
most fraction in the last relation is irreducible and therefore it 
·cannot be equal to an integral number. 

318. Let N be an integral number and let P(N) = M. The ex­
pression 

P (N + kM) - P (N) = ao [(N + kM)n - NnJ + 
+ a1 [(N + kMt-1 - Nn-I] + . . . + an-1 [(N + kM) - NJ 

is divisible by kM for any integral k (because (N + kM) 1 ~ N1 is 
divisible by (N + kM)- N = kM) and hence by M as well; con­
sequently, P(N + kM) is divisible by M for any integral k. 

Therefore if we prove that among the values P(N + kM) 
(k = 0, l, 2, ... ) there are numbers different from +M, this will 
imply that not all these values are prime numbers. To prove what 
has been said we take into account that for any A the polynomial 
P (x) of the nth degree assumes the value equal to A for not more 
than n different values of x (because the equation P (x)- A = 0 
of the nth degree cannot have more than n roots). Thus, among 
the 2n + l first values P(N + kM) (k = 0, 1, 2, ... , 2n) there is 
at least one different from M and from -M. 

319. First of all it should be noted that every polynomial P(x) 
·of the nth degree can be represented as a linear combination of 
ihe polynomials 

P0 (x)=l, P1(x)=x, 

P ( ) 
_ x (x - 1) p ( ) = x (x - I) (x - 2) ... (x - n +I) 

2X- 1·2 , ... , nX 1·2·B ... n 
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with some coefficients, that is 

P (x) = bnP n (x) + bn_1P n-1 (x) + ... + b1P1 (x) + boPo (x) 

To prove this property we take into account that if the number b11 

is such that bn/n! is equal to the leading coefficient of the poly­
nomial P(x) then P(x) and bnPn(x) have equal coefficients in x11 , 

if bn-I is such that bn-i/ (n - 1) ! is equal to the leading coefficient 
of P(x)- bnPn(x) then the coefficient in x11 and the coefficient in 
xn-1 of the polynomial P (x) coincide with those of the polynomial 
bnPn (x) + bn-1Pn-1 (x), if bn-2 is such that bn-2/ (n - 2) ! is equal 
to the leading coefficient of the polynomial P (x) - bnP n (x) ___:_ 
- bn-1Pn-dx) then P(x) and bnPn(x)+ bn-1Pn_i(x)+ bn-2Pn-2(X) 
have the same coefficients in x 11

, in xn-I and in xn-2 etc. This 
means that the coefficients bn, bn-1, ... , b1, b0 can be choseri so 
that the polynomials P(x) and bnPn (x) + bn-1Pn-dx) + ... + 
+ b1P1 (x) + b0P0 (x) coincide completely. ·· 

Now let P (x) be a polynomial of the nth degree such that 
P(O), P(l), ... , P(n) are integral numbers. According to what 
has been proved, this polynomial can be represented in the forni 

P (x) = boPo (x) + b1P1 (x) + b2P2 (x) + ... + bnP n (x) 

Now we note that 

Pi(O)=P2(0)= ... =Pn(O)= 

=P2(l)=Ps(l)= ... =Pn(l)=P3(2)= ... =Pn(2)= .. ., 

and 

Po(O) = Pi(l) = P2 (2) = ... = Pn_i(n- l) =Pn (n) = 1 

Therefore 

P (0) = b0P0 (O) whence b0 = P (0) 

P (l) = b0P0 (l) + b1P1 (1) whence b1 = P (l) - b0P0 (1) 

P (2) = b0P0 (2) + b1P1 (2) + b2P2 (2) 

whence b2 = P (2) - boP0 (2) - b1P1 (2) 

...... • .... 

whence 

bn = P (n) - b0Po (n) - b1P1 (n)- . • . - bn-1P n-1 (n) 

Thus, all the coefficients b0, b1, b2, ... , bn are integral numbers. 
320. (a) From the solution of Problem 319 it follows that a poi 

lynomial of the indicated kind can be written as a linear combina-
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tion of the polynomials P 0 (x), Pi(x), ... ,·Pn(x) with integral 
coefficients. This property and the fact that the polynomials 
P 0 (x), Pi(x), ... , Pn(x) take on integral values for every inte­
gral x (see Problem 75 (a)) imply the assertion stated in the con· 
dition of the problem. 

(b) If a polynomial P (x) = anxn+ lln-1x 11
-

1+ a,._2xn-2 + ... +; 
+ a1x + a0 assumes integral values for x = k, k + I, k + 2, ... 
. . . , k + n then the polynomial Q(x) = P(x + k) = an(x + k)" + 
+ lln-i (x + k)n-I + ... + a 1 (x + k) + a0 assumes integral values 
for x = 0, I, 2, 3, ... , n. By virtue of the solution of Problem 
320 (a), it follows that Q (x) assumes integral values for all in­
tegral x, whence we conclude that the polynomial P(x) =Q(x - k) 
also assumes integral values for all integral x. 

(c) Let a polynomial P(x) = a,.x" + an-1x11
-

1 + ... + a 1x + a0 
assume integral vaiues for x = 0, I, 4, 9, ... , n2. Then the poly· 
nomial Q(x) = P(x2 ) = an(x2 )n + a,._ 1 (x 2)n-I + ... + a1x2 + a0 of 
the 2nth degree assumes integral values for the 2n + 1 consecu­
tive integral values x=-n, -(n-1), -(n-2), ... , -1, 
0, I, ... , n - I, n. Indeed, we obviously have Q (0) = P (0), 
Q(l)=Q(-l)=P(l), Q(2)=Q(-2)=P(4), Q(3)=Q(-3)= 
=P(9), ... , Q(n) = Q(-n) = P(n2) and, according to the con­
dition of the problem, all these numbers are integral. Consequ­
ently, by virtue of the solution of Problem 320 (b), the polynomial 
Q (x) assumes integral values for all integral values of x. This 
means that the expression P(k2) =Q(/~) is an integral number [or 
any integral k. 

As an example, we can take the polynomial P(x)= x(x -1)/12 
for which 

Q (x) = P (x2) = x
2 

(x
1

2

2
- I) = x

2 
(x - :~ (x +I) = 

=
2 

(x+2)(x+I)x(x-t) 
I· 2 · 3 · 4 

(x+I)x(x-1) 
1. 2. 3 

321. (a) Using De Moivre's formula and Newton's binomial for­
mula we write 

cos 5a + i sin 5a =(cos a+ i sin a)5 = 

= cos5 a + 5 cos4 ai sin a + IO cos3 a (i sin a.)2 + 
+ 10 cos2 a (i sin a)3 + 5 cos a (i sin a)4 + (i sin a)5 = 

= (cos5 a - 10 cos3 a sin2 a+ 5 cos a sin 4 a)+ 
+ i (5 cos4 a sin a - 10 cos2 a sin3 a+ sin5 a) 

On equating the real and the imaginary parts on the left-hand and 
right-hand sides we derive the required formulas. 
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(b) By analogy with the solution of Problem 321 (a), we have 

-cos na. + i sin na. =(cos a+ i sin at= 

= cosn a.+ C (n, l) cosn- 1 ai sin a+ C (n, 2) cosn- 2 a (i sin a)2 + 

+ C (n, 3) cosn-3 a. (i sin a)3 + C (n, 4) cosn-4 a (i sin a)4 + ... = 

= ( cosn a. - C (n, 2) cosn- 2 a. sin2 a + C (n, 4) cosn- 4 a sin4 a - ... ) + 

-f- i (C (n, l) cos11
-

1 a. sin a - C (n, 3) cosn-3 a sin3 a+ ... ) 

whence follow the required formulas. 
322. According to the formulas derived in the solution of Pro­

blem 321 (b),wehave 

t 
6 

_ sin 6a _ 6 coss a sin a - 20 cos3 a sin3 a + 6 cos a sins a 
an a - cos 6a - cos6 a - 15 cos4 a sin 2 a+ 15 cos 2 a sin 4 a - sin6 a 

The division of the numerator and the denominator of the last 
fraction by cos6 a yields the required formula: 

. 
6 

6 tan a - 20 tan3 a+ 6 tans a 
tan a= l - 15 tan 2 a+ 15 tan 4 a - tan6 a 

323. Let us rewrite the equation x+ l/x = 2cosa in the form 

x2 + I = 2x cos a 
that is 

x2 
- 2x cos a + I = 0 

It follows that 

x =cos a+ -vi cos2 a. - I= cos a+ i sin a 

whence we find 
xn = cos na ± l sin na. 

and 
I I _ .. 

X'f = cos na ± i sin na =COS na + t Stn na 

On performing the addition we obtain 

I xn + -;;: = 2 cos na 
x 

324. Let us consider the sum 

[cos qi+ i siR qi]+ [cos (qi+ a)+ i sin (qi+ a)]+ 

+ [cos(qi + 2a) +is in (qi+ 2a)] + ... + [cos(qi + na) + isin(qi + na)] 

The problem reduces to the computation ·of the real and the 
imaginary part of this sum. Denoting cos qi+ i sin cp as a and 
cos a+ i sin a as x and using the formula for the multiplication 
of complex numbers and De Moivre's formula we find that this 
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sum is equal to 

a+ax+ax2 + 
( + .. )cos(n+I)a+isin(n+I)a-1 

= cos qi t sm qi cos a+ i sin a - I = 

( 
-1-·. ) [(cos(n+l)a-l)+isin(n+l)a] 

= cos qi ' l sm qi [(cos a - I)+ i sin a] = 
. n+I .. n+I n+I -2sm2 -

2
-a+ 21 sm-

2
- a cos -

2
-a 

=(cos qi+ i sin qi)--------------­
- 2 sin2 ~ + 2i sin~ cos~ 

2 2 2 

.. n+I [ n+I .. n+I J . . 21sm - 2-a cos-
2
- a+ism-

2
-a 

=(cos qi+ i sm qi) = 
2 .. a [ a+ . . a] 1 sm 2 cos 2 1 sm 2 

. n +I sm-
2
-a 

-----(cos qi+ i sin qi) X . a 
sm 2 

( 
n +I + .. n +I ) ( a . a) cos-

2
-a ism -

2
-a cos 2 -ism 2 x -

cos2 ~ + sin 2 ~ 
2 2 

(in the last transformation we have again used the multiplication 
formula for complex numbers and the fact that cos a/2 -
-i sin a../2 = cos (-a../2) + i sin (-a/2)). From this expression 
readily follow the required formulas. 

325. Using the formula cos2 x = ( 1 +cos 2x) /2 and the result 
of the foregoing problem we derive 

cos2 a + cos2 2a + . . . + cos2 na = 

I 
= 2 [cos 2a + cos 4a + . . . + cos 2na + n] = 

=_I_ [sin (n +.')a cos na __ l] -1- !±._ = sin (n + I_) a cos na + n - I 
2 sma 2 2 sm a 2 

Since sin2 x = 1 - cos2 x, it follows that 

sin2 a+ sin2 2a + . . . + sin2 na = 
sin (n + I) a cos na n - I n + I sin (n + I) a cos na 

=n- 2sina - -2-=-2- - 2sina 
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326. It is required to compute the real and the imaginary part 
of the sum 

(cos a.+ i sin a)+ C (n, 1) (cos 2a. + i sin 2a) + 
+ C (n, 2) (cos 3a + i sin 3a.) + ... +(cos (n + I) a.+ i sin (n + 1) a.) 

Let us denote cos ct + i sin ci by x; the application of De 
Moivre's formula and Newton's binomial formula makes it pos­
sible to transform this sum as follows: 

x + C(n, l)x2 + C(n, 2)x3 + ... + xn+ 1 =x(x +It= 
=(cos a+ i sin a) (cos a+ 1 + i sin a)n = 

=(cos a+ i sin a) ( 2 cos2 %- + 2i cos% sin ~ r = 

= 2n cosn ~ (cos a + i sin a.) (cos n
2
a + i sin ~a ) = 

= 2n cosn f (cos n -;- 2 
a + i sin n t 2 a) 

From the last expression we conclude that 

cos a+ C (n, 1) cos 2a + C (n, 2) cos 3a + ... 

. . . + cos (n + I) a.= 2n cosn f cos n-;- 2 a 

and 

sin a+ C (n, I) sin 2a + C (n, 2) sin 3a + ... 

. . . + sin (n + 1) a.= 2n cosn %- sin n t 2 a. 

327. We shall make use of the formula 

sin A sin B =~[cos (A - B) - cos (A+ B)] 

which makes it possible to write the given sum in the form 

I [ (m - n) :rt + 2 (m - n) :rt + 3 (m - n) :rt + 
-2 cos cos cos ... p p p 

+ (p - 1) (m - n) :rt] 1 [ (m + n) :rt + . . . cos p - 2 cos p 

+ 
2 (m + n) :rt + 3 (m + n) :rt + + (p - 1) (m + n) :rt] cos cos . . . cos~-----------p p p 

Further, the sum 

k:rt 2k:rt 3k:rt 
cos - +cos - +cos - + p p p + (p-1) k:rt 

cos p 

13 -60 
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is equal to p - 1 if k is divisible by 2p (in this case every term of 
the sum is equal to 1). If k is not divisible by 2p, then, by virtue 
of the result of Problem 324, this sum is equal to 

. p!m, (p - I} krr. 
sin 2P cos 2P 
---'------'--- - 1 =sin k 2: · 

. krr. 2 
cos ( k ~ - ~) - 1 = 

. krr. 
s1n-

2p 
SI0-

2p 

= { ~ 1 ~~~ :~~n : 
It should also be noted that both numbers m + n and m - n are 
simultaneously even or odd; in particular, if m + n and m - n 
are divisible by 2p then both these numbers are even, whence 
follows the equality indicated in the condition of the problem. 

328. Let us consider the equation x2n+i - 1 = O; its roots are 

1 2:n: + . . 2rr. 
, cos 2n + I t Sill 2n + I , 

4rr. + . . 4rr, 
cos 2n +I t sm 2n +I , 

4nrr. + . . 4nrr. 
• • • , COS 2n + I t SIU 2n + I 

Since the coefficient in x2n in the equation is equal to zero, the 
sum of all these roots is equal to zero: 

[ 
2rr. 4:n: 4nrr. ] 

1 + cos 2n + 1 + cos 2n + 1 + . . . + cos 2n + 1 + 

+ . [ . 2rr. + . 4rr. + + . 4nrr. ] O 
t sm 2n +I Sill 2n +I · · · Sill 2n +I = 

Consequently, each of the expressions in the brackets is equal to 
zero, whence, in particular, 

2rr. 4:n: 4nrr. 
cos 2n + 1 + cos 2n + 1 + . . . + cos 2n + 1 == -1 

Further, we have 
2rr. 4nrr. 

cos 2n + 1 = cos 2n + I ' 
4:n: (4n - 2) :n: 

cos 2n + I = cos 2n + 1 

etc., and hence 

[ 
2rr. 4rr. 2nrr. ] 

2 cos 2n + 1 + cos 2n + 1 + . . . + cos 2n + 1 = - I 

that is 
2rr. 4rr. 2nrr. 

cos 2n + I + cos 2n + I + . . . + cos 2n + I = - 2 

Remark. This problem can also be solved on the basis of the formulas of 
Pr_oblem 324, 
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329. (a) By virtue of the result of Problem 321 (b), we have 

sin (2n + 1) a= C (2n + 1, 1) (l- sin2 at sin a -

-C (2n + 1, 3) (1 - sin2 a)n-l sin3 a + ... + (- ltsin2n+l a 

It follows that the numbers 0, sin n/(2n + 1), sin 2n/(2n +I), ... 
. . . , sin nn/ (2n + 1), 

• ( :n: ) • :n: • ( 2:n: ) 
Slll - 2n + I = - Stn 2n + I ' Stn - 2n + 1 = 

• 2:n: • ( /lJt ) 
= - Stn 2n + I ' ' ' ' ' Slfl - 2n + I = 

. mt = -s1n--
2n+ I 

are the roots of the equation 

C (2n + 1, I) ( 1 - x2)n x - C (2n + 1, 3) ( 1 - x2)n- l x3 + ... 

. . . + ( -1tX2n+1 = 0 
of the (2n + I) th degree. 

Consequently, the numbers sin2 n/ (2n + 1), sin2 2n/ (2n + 1), ... 
. . . , sin2 nn/ (2n + 1) are the roots of the equation 

C(2n+ I, 1)(1-xt-C(2n+ 1,3)(1-xt-1 x+ ... +(- ltxn=O 

of the nth degree. 
(b) Let us replace n by 2n + 1 in the formula established in 

the solution of Problem 321 (b) and write this formula in the 
form 

sin(2n+ l)a=sin2n+l a (C (2n+ 1, 1) cot2na-C(2n+ 1, 3) cot2n-2 a+ 

+C(2n+ 1,5)cot2n-4a- ... ) 

It follows that for a = n/ (2n + 1), 2n/ (2n + 1), 3n/ (2n + I), ... 
. . . , nn/ (2n + 1) there holds the equality 

C(2n+ 1, l)cot2na-C(2n+ l,3)cot2n-2 a+ 

+C(2n+ l,5)cot2n-4 a- ... =0 

It follows that the numbers cot2 n/ (2n + 1), cot2 2n/ (2n + I), ... 
. . . , cot2 nn/ (2n + 1) are the roots of the equation 

C (2n + 1, 1) xn - C (2n + 1, 3) xn-l + C (2n + l, 5) xn-2 
- ••• = 0 

of the nth degree. 
330. (a) The sum of the roots of the equation 

n _ C (2n +I, 3) n-1 + C (2n +I, 5) n-2 _ -O 
X C (2n + I, l) x C (2n + I, I) X ' ' ' -
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of the nth degree (see the solution of Problem 229 (b)) is equal 
to minus the coefficient in xn-1, that is 

t2 n + r ~ + r ~ + co 2n + 1 co 2n + 1 co 2n + 1 ' · · 

+ t2 nn _ C (2n + I, 3) _ n (2n - I) 
··· co 2n+l - C(2n+l,l)- 3 

(b) Since csc2 CG= cot2 CG+ 1, the formula of Problem 330 (a) 
implies 

2 n + 2 2n+ 2 3n 
csc 2n + 1 csc 2n + I . csc 2n + 1 + ... 

2 nn n(2n-1) 2n(n+ 1) · · · + csc 2n + 1 = 3 + n = 3 

331. (a) First solution. The numbers sin2 n/(2n + 1), 
sin2 2n/ (2n + 1), ... , sin2 nn/ (2n + 1) are the roots of the equa­
tion of the nth degree obtained in the solution of Problem 329 (a). 
In this equation the leading coefficient (the coefficient in xn) is 
equal to (-l)n [C(2n + 1, 1) + C(2n + 1, 3) + ... + C(2n + 1, 
2n - 1) + 1]. The sum in the square brackets equals half the 
total sum of the binomial coefficients 1 + C(2n + 1, 1) + 
+ C(2n + 1, 2) + ... + C(2n + 1, 2n) + 1; as is known, the lat· 
ter sum is equal to (1 + 1) 2n+i = 22n+1• Consequently, the coeffi­
cient in xn of this equation is equal to (-l)n22n. Further, the con· 
st ant term of the equation is equal to C ( 2n + I, 1) = 2n + 1. The 
product of the roots of an equation of the nth degree becomes 
equal to the constant term of the equation after the equation is 
brought to the form in which the leading coefficient is equal to 
unity times (-1) n. Hence this product is equal to the constant 
term 2n + 1 multiplied by (-l)n and divided by the above lead· 
ing coefficient, whence 

( l)n • 2 n . 2 2n . 2 n:rt _ ( l)n 2n + 1 
- sm 2n + 1 sm 2n + 1 • • • sm 2n + 1 - - 22n 

and, consequently, 
. n . 2n . nn 'V'2ii'+l 

sm 2n + 1 sm 2n + 1 · • • sm 2n + 1 = 2" 

It can similarly be proved that 
. n . 2n . (n-l)it "l/'iL 

sm2nsm 2n ••• sm 2n = 2n_1 

Second solution. The roots of the equation x2n - 1 = 0 are 

1 1 n+··l't 2n+ .. 2n ' - ' cosn tsmn' cos n t sm7. 

3n + . . 3n (2n - 1) n + . . (2n - 1) n 
cos n l sm n ' ... ' cos n l sm n 
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Therefore 

x2n - 1 = (x - 1) (x + 1) ( x - cos ~ - i sin ~) X 

X( 
2it .. 2it) ( (n-l)n .. (n-l)it) x - cos n - l sm n . . . x - cos n - l sm n x 

X( (n+l)it .. (n+I)n)X x - cos n - t sm n ... 

X ( 
(2n- l)it .. (2n- l)it) • .. x-cos -tsm~-~-

n n 

Further, since cos (2n - k):rr./n =cos kn/n and sin (2n - k)n/n= 
= - sin kn/n, it follows that 

(x - cos~ - i sin2:.) (x- cos <
2
n - I) it -

n n n 

. . (2n - I) it ) 2 2 it . l 
- l sm n = x - x cos n --t-

( 
2it . . 2it ) ( (2n - 2) it x - cos n - l sm n x - cos n -

- i sin <
2n - 2

) it ) = x2 - 2x cos~ + 1 
n n 

( 
(n- l)it .. (n- l)it) X x - cos - i sm -'----'--n n 

X (x - cos (n + 1) it - i sin (n +I) it)= x2 - 2x cos (n - 1) it + 1 
n n n 

Therefore the factorization of the polynomial x2n - 1 can be 
rewritten thus: 

x2n - 1 = (x2 
- 1) ( x2 

- 2x cos ~ + 1) ( x2 
- 2x cos ~it + 1) X ... 

. . . X ( x2 - 2x cos (n: l)"' + 1) 
It follows that 

2n I 
x - 2n-2 + 2n-4 + 
x2- l =X X 

= ( x2 
- 2x cos ~ + 1) ( x2 

- 2x cos 
2
nit + 1 ) X .•• 

. X ( 2 - 2 (n - I) n + 1) . . . x x cos n 

Putting x = 1 here and using the relation 2 - 2 cos a = 
= 4 sin2 a/2 we obtain 

4
n-l • 2 n . 2 2it . 2 (n - 1) n 

n= sm 2ilsm 2n ... sm 2n 
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whence it follows that 

. n . 2n . (n - I) n ,y;! 
sm 2fi" sm 2n ... sm 2n = 2n-1 

It can similarly be proved that 

• n . 2n . nn ,Y2n+T 
sm 2n + I sm 2n + I · • • sm 2n + I = 2n 

(b) The required result can be obtained by complete analogy 
with the first and the second solutions of Problem 331 (a); 
however we shall not repeat the course of these solutions. Let us 
derive the required formulas directly from the formulas of Pro­
blem 331 (a). 

Since 
. n . 2nn • 3n . (2n - 2) n 

sm 2n + I = sm 2n + I ' sm 2n + I = sm 2n + I 
Sn (2n - 4) n 

sin 2n + I = sin 2n + I , ... 

we have 

. 2n . 4n . 6n • 2nn 
sin 2n+ I sin 2n+ I sin 2n+ 1 ••• sin 2n+ 1 -

• 1t • 2n . 3n . ni-t .Y2fiTl 
= sm 2n + I sm 2n + I sm 2n + I · · · sm 2n + I = 2n 

(see Problem 331 (a)). On performing the termwise division of 

th 1 t f 1 b 
. n . 2i-t . nn ,Y2il+I 

e as ormu a y sm 2n + 1 sm 2n + 1 ••• sm 2n + 1 = 2n 

and using the relations 

. 2i-t 
2 

. 1t n • 4n 
sm 2n + I = sm 2n + I cos 2n + I ' sm 2n + I = 

2 . 2n 2n . 2nn 
2 

. ni-t nn 
= sm 2n + I cos 2n + I ' · · · ' sm 2n + I = sm 2n + I cos 2n + I 
we obtain 

n ~ ~ M 
cos 2n + I cos 2n + 1 cos 2n + I ••• cos 2n + 1 = "'¥" 

Similarly, 

( 
n 2n (n-l)n)( n • 2n • (n-l)i-t) 

cos Zn cos 2n . , . cos Zn sin Zn sm 2n ... sm Zn = 

I . 1t • 2i-t . (n - I) n 
= zn.-l sm -;; sm-;; ... sm n 
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Since sin n/n = sin(n- I)n/n, sin 2n/n = sin(n - 2)n/n, 
... , sin n/2 = 1, we have 

. n . 2n . (n-l)n 
sm ti sm n ... sm n = 

( 
. n . 2rt . kn )2 

= sm 2k + I sm 2k + I • · · sm 2k + I = 

( 
-y12k + I )

2 n • = 
2

k = 
2
n-i tor an odd n = 2k + 

and 

. rt . 2rt . (n - I) rt 
sm n sm n ... sm n -

( 
• 1t • 2rt . 

= sm 2k sm 2k ... sm (k-l)rt)2= 
2k 

- ( 'V'k )
2 

- n for an even n = 2k - 2k-I - 2n-I 

(see Problem 331 (a)). It follows that 
n 

1t 2rt (n - I) rt I 2n-I -{ii 
cos 2ii cos 2n ... cos 2n = 2n-l '\/n = 

2
n-1 

2n-l 

Remark. On dividing the formulas of Problems 331 (a) and (b) by each 
other we obtain 

n 2n nn . / 
tan 2n + 1 tan 2n + 1 ••• tan 2n + 1 = \I 2n + I 

and 
n 2n (n - I) n 

tan 2n tan 2n . . . tan 2n = I 

It should be noted that the second of these relations is quite evident because 
tan kn/2n tan (n - k)n/2n = tan kn/2n cot kn/2n = 1 for k == 1, 2, ... , n - 1 
and tan n/4 = 1. From this relation and from the second formula of Problem 
331 (a) we can derive in a simple manner the formula cos n/2n cos 2n/2n ... 

,yn 
•.• cos (n - I) n/2n = 

2
n-I • 

These formulas can also be obtained by analogy with the first solution of 
Problem 331 (a). 

332. Let us show that for any positive angle a smaller than n/2 
we have 

sin a < a < tan a 
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To this end we consider Fig. 39 from which it is seen that 

S l . 
AA0B=2sma 

1 
Ssector AOB = 2 a 

I 
SAAOC = 2tana 

(in Fig. 39 it is meant that the radius of the circle is equal to 
unity and the angles are measured in radians). Since SAAOB < 
< Ssector AOB < SMoc we conclude that sin a < a < tan a. 

The inequalities sin a < a < tan a imply cot a < I/a < csc a. 
Therefore from the formulas of Problems 330 (a) and (b) it fol· 

lows that 
c 

0 

n (2n - 1) 
3 

- t2 :n: + t2 2:n: + - co 2n + I co 2n + I 

+ t2 3:n: + + t2 n:n: 
co 2n + I · · ' co 2n + I < 

< ( 2n: 1 r + ( 2n2! 1 r + 
+ ( 2n3! 1 r + ... + ( 2nn! 1 r < 

2 :n: + 22:n:+ < csc 2n + I csc 2n + 1 

+ 
2 3:n: 

csc 2n +I +.,, 
Fig. 39 + s 2 n:n: 2n (n + I) 

· · · c c 2n + 1 3 

On dividing all the members of the last inequalities by 
(2n + 1) 2/n2 we obtain 

2n 2n - 1 :n:2 

2n + I 2n + I · 6 = 

= ( l - 2n ~ I ) ( l - 2n ~ 1 ) ' ~
2 

< I + ~ + i2 + .. · 

1 2n 2n + 2 :n:2 

' ' ' + fi2 < 2ii'f'.T . 2n + I . 6 = 

= (I - 2n ~ 1 ) ( l + 2n ~ 1 ) • ~
2 

which is what we had to prove. 
333. (a) Let us suppose that M is a point on an arc A 1An of 

the circle depicted in Fig. 40. We shall denote the arc MA1 by a; 
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then the arcs MA 2 , MA 3, ••• , MAn are equal to 

a+ 2: , a+ ~:rt, ••• , a+ 2 (n-;; I) :n; 

respectively. The length of the chord AB of a circle of radius R 

is equal to 2R sin AB/2 (this can readily be seen from the isosceles 

Am+2 

fig. 40 Fig. 41 

triangle AOB where 0 is the centre of the circle). It follows that 
the sum we are interested in is equal to 

4R2
[ sin2 i + sin2 

( f + ~) + sin2 
( ~ + ~:n;) + ... 

.. . + sin2 ( i + (n : 1) :n;)] 

Now let us compute the expression in the square brackets. Using 
the well-known formula sin2 x = (1 - cos 2x)/2 we find that this 
expression is equal to 

S = ~ - [cos a + cos (a + ~:rt ) + cos (a + 4,:' ) + ... 
.. . + cos (a + 2 (n-;; I) :n;)] 

By the formula of Problem 324, we have 

cos a + cos (a + ~:rt ) + ... + cos (a + 2 (n-;; I) :n;) = 

-
sin :n; cos (a + (n ~ 1) :n; ) 

• :rt sm­
n 

0 

and, consequently, S = n/2, whence follows the assertion stated 
in the condition of the problem. 
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Remark. The assertion of the problem is quite evident for an even n = 2m 
(see Fig. 41) because, by Pythagoras' theorem, we have 

MAI+ MA7n+i =MA~+ MA~+2 = ..• =MA~+ MA~m = 4R2 

(b) Let A 1Bi. A2B2, ... , AnBn (see Fig. 42(a)) be the perpen· 
diculars dropped from the points A1, A2, ... , An on the straight 
line OM. Then, according to the well-known theorem of plane 
geometry, we have 

MA~=M02 + OA%-2MO· 0Bk=l2+R
2
-2l · OBk 

where the line segment OBk (k = l, 2, ... , n) is taken with the 
sign "+" or "-" depending on whether the point Bk lies on the 

A2 

Am+2 

(a) (b) 
Fig. 42 

ray OM or on its extension to the left of the point 0. Conse­
quently, 

MAi+MA~+ ... +MA;= 

= n (12 + R2
) - 21 (OB 1 + OB2 + ... + OBn) 

Let L. MOA 1 =a then 

OB1=0A1 cosL_A10M=Rcosa, OB2=Rcos(a+ 
2
:). 

OB3 = R cos (a+ 4;), ... , OBn = R cos (a+ 2 (n-;; l) n) 
Since in the solution of Problem 333 (a) it was shown that 

cos a+ cos (a + 2
: ) + ... +cos (a + 2 (n; l) n) = O 
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we have OB1 + OB2 + ... + OBn = 0, whence follows the asser­
tion of the problem. 

Remark. For an even n = 2m (see Fig. 42 (b)) the assertion of the prob­
lem can be proved purely geometrically because in this case 

OB1 + OBm+1 = OB2 + OBm+2 = OBm + OB2m = 0 

(c) Let us consider Fig. 43 where M1 is the projection of the 
point M on the plane in which the n-gon A1A2 ... An-iAn lies. 
Then we have MA~= M1A~ + MMf 
(k = 1, 2, ... , n), and consequently 

MAi+MA~+ ... +MA~= 

=M1Ai+M1A~+ ... 
... +M1A;+n·MMI 

By Problem 333 (b), we have 
M1Ai + M1A~ + ... + M1A; = 
= n(R2 +0Mi), and l2 =0M2 = 

= OMi + M1M2, whence follows the 
assertion of the problem. A;. 

334. (a) The assertion stated in 
this problem is a direct consequence 
of the theorem proved in the solution 
of Problem 333 (a) because for an 
even n the vertices of the n-gon 
having even indices and those with 

An-t 

Fig. 43 

odd indices are themselves the vertices of the corresponding re· 
gular n/2-gons inscribed in the circle. 

(b) Let n = 2m + 1. From the solution of Problem 333 (a) it 
is readily seen that it suffices to show that the sums 

S 1 =sin ~ + sin ( % + 2:~ 1 ) + sin ( % + 2m
4~ 1 ) + ... 

. .. + sin ( ~ + 2!m.; 1 ) 
and 

S2 = sin ( ~ + 2m\ 1 ) + sin ( ~ + 2m
3~ 1 ) + ... 

. (a (2m - 1) n) · · · + sm 2+ 2m+ I 
are equal. To this end we note that, according to Problem 324, 
we have 

. (m+l)n. (a mn ) 
sm 2m + I sm 2 + 2m + I 

Si = ----'-----'------'--'-
. :n: 

sm 2m + 1 
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and 
. mn . (a+ n +(m-t)n) 

sm 2m + I sm 2 2m + 1 2 + 1 
S2= m =S1 . n 

sm 2m + 1 

Thus, the theorem has been proved. 
335. (a) By virtue of Problem 333 (a), the sum of the squares 

of the distances from a point on the circle circumscribed about a 
regular n-gon to all its vertices is equal to 2nR2• Assuming that 
M coincides with A1 we conclude that the sum of the squares of 
all the sides and diagonals of the n-gon issued from one vertex 
is equal to 2nR2. The multiplication of this sum by n results in 
twice the sum of the squares of all the sides and diagonals of the 
n-gon (since every side and every diagonal has two end points, it 
is involved twice in that sum). It follows that the sought-for sum 
is equal to (n/2) · 2nR2 = n2R2• 

(b) The sum of all the sides and diagonals issued from one 
vertex A 1 of a regular n-gon is equal to 

2R [ . n + . 2n + + . (n - I) n J sm- sm- . . . sin = n n n 
. n . (n -1) n 

sm 2 sm 
2 =2R n =2Rcot ~ . n 2n 

sm2n 

(cf. Problem 334 (b)). On multiplying this sum by n and taking 
half that product we obtain the required result Rn cot rt/2n. 

(c) The product of all the sides and diagonals issuing from one 
vertex of a regular n-gon inscribed in a circle of radius R is ob­
viously equal to 

2n-1Rn-I • n • 2n . (n - I) n 2n-1Rn-I n sm-sm- ... sm = ---nT n n n 2 -

(cf. Problem 331 (a)). On raising this product to the nth power 
and extracting the square root of the result we obtain the required 
expression. 

336. Let us compute the sum of the 50th powers of all the sides 
and diagonals issued from one vertex A 1 of a regular 100-gon 
inscribed in a circle of radius R. The problem reduces to the de· 
termination of the sum 

" ( • n )50 ( . 2n )50 ( . 99n )50 l.J = 2R sm 100 + 2R sm 100 + . . . + 2R sm 100 

(cf. the solution of Problem 333 (a)). Thus, we have to add toge· 
ther the 50th powers of the sines of the angles rt/100, 2n/100, ... 
. . . , 99n/100. · 
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We have 

• 50 ( (cos a+ i sin a) - (cos a - i sin a) )50 
sm a= 2l = 

( 
1 )50 

x - x = - _1_ (x - _!_)50 
- -2so 2so x 

where x denotes cos a+ i sin a (if x=cos a+ i sin a then 1/x= 
= cos a - i sin a). Consequently, 

sin50 a= ;! ( x50 - C (50, l} x49 7 + C (50, 2) x48 
: 2 + ... 

+ C (50, 24) x26 ) 4 - C (50, 25) x25 x
1
25 + C (50, 26) x24 x

1
25 + ... 

. . . + C (50, 48) x2 )s - C (50, 49) X ) 9 + ) 0 ) = 

= - 2~0 [ ( xso + )o) - C (50, l} ( x4B + x~s ) + 
+ C (50, 2) ( x46 + x~ 6 ) - ... + C (50, 24) ( x2 + : 2 ) - C (50, 25)] = 

1 
= - 250 (2 cos 50a - 2C (50, 1) cos 48a + 2C (50, 2) cos 46a - ... 

• . . + 2C (50, 24) cos 2a + C (50, 25)) 

(here we have used the relation xk + + = (cos ka + i sin ka) + 
x 

+(cos ka - i sin ka) = 2 cos ka). 
Thus, the sum ~ can be rewritten in the following way: 

L = - R50 
[ 2 (cos 50 1~0 +cos 50 ~;0 + ... +cos 50 ~;~) -

( 
n 2n 99n ) - 2C (50, 1) cos 48 

100 
+cos 48 

100 
+ +cos 48 

100 
+ 

( 
n 2n 99n ) + 2C (50, 2) cos 46 

100 
+cos 46 

100 
+ +cos 46 

100 
-

. . . . . . . . . . . . . . . . . . . 
( 

n 2n 99n ) ] +2C (50, 24) cos 2 100 +cos 2 100 + ... +cos 2 100 -99C (50, 25) = 

= - R50 [2s1 - 2C (50, 1) s2 + 2C (50, 2) s3 - ••• 

. • . + 2C (50, 24) S25 - 99C (50, 25)] 

where the letters S1> s2, ••• , s25 designate the sums in the paren­
theses. The formulas of Problem 324 readily imply that s1=s2=,,, 
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... = s2s = - I. Consequently, 

L = R50 (2-2C (50, I)+ 2C (50, 2)- ... +2C (50, 24)+99C (50, 25)= 

= Rso (1 - C (50, I)+ C (50, 2) - C (50, 3) + .. . 

. . . + c (50, 24) - c (50, 25) + c (50, 26) - .. . 

+ C (50, 48) - C (50, 49) + I + 1 OOC (50, 25)) = 

= R50 [(1 - 1)500 + lOOC (50, 25)] = lOOC (50, 25) R50 

It readily follows that the sum of the 50th powers of all the 
sides and all the diagonals of the I 00-gon is equal to 

100 L _ so _ 5000 . 501 so 
- 2 - - 5000C (50, 25) R - (251)2 R 

337. Sincelzl=izl=l-zl=l-zland jz +-±-l=lz +fl= 

=I - z - ! I = I-z - f I· it is sufficient to consider only one of 
the numbers, z, z, -z and -z, namely the one lying in the first 
quadrant. When I z I assumes its maximum possible value the ex­
pression I l/z I= 1/ z I assumes the minimum value. Therefore it 
suffices to find those z whose modulus assumes the greatest 
possible value under the assumption that lzl:;;::;: I 1/zl. Let the 

z 

~-.,:::::;;...._,..L-~~-,4-~~-)loo. 

0 ;c 

argument of the number z be 
<p (O~<p~n/2; (see Fig. 44). 
Since lz+I!zl=a we can write 
the relation 

1 
a2 = r2 + -2 - 2 cos 2cp = r 

1 = r2 + ~ - 2 + 4 cos2 cp = , 
= ( r - + r + 4 cos2 cp 

fig. 44 where r denotes l z j. By the hy-
pothesis, we have r:;;::;: l/r, and 

therefore when r increases the difference r - 1/r decreases and 
vice versa. Further, we have (r - l/r) 2 = a2 - 4 cos2 cp ~ a2; for 
cp = n/2 we obtain (r - l/r) 2 = a2, and in this case r - l/r =a 
and r =(a+ -v/a2 + 4)/2. 

It follows that the greatest value I z I= (a+ -v/ a2 + 4)/2 is 
attained for z = i (a+ -v/a2 + 4)/2 and the smallest value I z I= 
= (-v/a2 + 4- a)/2 for z= - i (-v/a2 + 4-a)/2. 
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338. It is clear that the complex numbers 1 = I + i. O = 

=cos 0° + i sin 0°, (-1 + i ,Y3)/2 =cos 120° + i sin 120° and 

(- I - i ,Y3)/2 = cos (- 120°) + i sin (- 120°) are such that 
the arguments of every two of them differ by exactly 120° and the 
sum of the three numbers is equal to zero. This means that the 
angle of 120° mentioned in the condition of the problem cannot 
be replaced by a greater one. 

Now let 1e1-eil< 120° where i, i= 1, 2, ... , n and i=l==j 
(here e1, e2, ••• , en are the arguments of the given complex num­
bers; it is evident that if one of these numbers is equal to zero 

Fig. 45 

and therefore possesses no definite 
argument it can simply be discar­
ded). We shall prove that in this 
case the equality z1 + z2 + ... + 
+Zn= 0 cannot be fulfilled. In· 
deed, from the hypothesis we ha\'e 
stated it follows that the points A,, 
A2, ••• , An in the complex plane 
with polar coordinates (r,, e,)' 
(r2, e2)' ... ' ( r n, en) representing 
the complex numbers z,, z2, ... , Zn 

lie within an angle LPOQ boun· 
<led by two rays e = ek and e =Ai, 
this angle being smaller than 
120°. Here Ak and A1 are the 
"extreme" points which correspond 
to the numbers Zk and z1 with the 
"extreme" values of the argument 
(see Fig. 45). Let the ray OR 
corresponding to a value 8 :__ eo of 
the polar angle be the bisector of the angle L POQ and let 
z0 =cos ea+ i sin 80 be a complex number of unit modulus 
represented by a point Ao lying on that ray. Since the num­
bers z! = (zifz0) [r1 cos (8 - e0) + i sin (e - ea)], z2 = z2/zo, ... , z~ = 
= zn/zo have the same absolute values r1, r2, ... , rn as the numbers 
Zi, Z2, ••• ' Zn and have the arguments 81 - 80, e2 - ea, ... , en - Oo 
instead of the arguments 81, e2, ... , en Of the numbers Z1, Z2, ... 
. . • , Zn, the points Al, A2, ... , A~ in the complex plane represent-
ing the numbers zl. z2, ... , z~ are obtained from the points 
A1, A2, ••• , An by the rotation of the latter about the point 0 
through an angle of 80 in the clockwise direction. It follows that 
all these points lie within the angle LP' OQ' smaller than 120° 
obtained from L POQ under that rotation, the bisector OR' of 
L P'OQ' coinciding with the real axis Ox. Further, it follows that 
the real parts al, a2, ... , a~ of the numbers zl =al+ ibl, z2 = 
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= a2 + ib2, ... , z~ =a~+ ib~ are all positive. Therefore the sum 

z; + z; + .. . + z~ = (a~ + ib~) + (a; + ib;) + .. . + (a~ + ib~) = 
= (a~ +a;+ . .. + a~) + i (b~ + b; + .. . + b~) 

cannot be equal to zero (because a!+ a2 + ... +a~ > O). Now, 
from the relation 

1 + / + + / Zt + Z2 + Z1 Z2 . . . Zn=- --
Zo zo + 3!!:.. -... -

Zo 

it follows that the sum z1 + Z2 + ... + Zn is also different from 
zero. 

339. Let us suppose that the point A in the complex plane re­
presenting the complex number z does not lie within the convex 
polygon C1, C2 , ••• , Cn whose vertices correspond to the numbers 
Ci, c2, ... , Cn (see Fig. 46). In this case all the rays AC1, AC2, ... 
. . . , ACn "go in one direction" in the sense that they all lie on 
one side of a straight line l passing through A. According to the 
subtraction rule for complex numbers, the numbers z1 = z - c1, 

z2 = z - c2, ... , Zn = z - Cn are represented by some points 
A1, A2, ••• , An in the complex plane such that the vectors 
0A 1, OA 2, ... , OAn are equal to the vectors C1A, C2A, ... CnA re­
spectively. Therefore all the rays OA1, OA2, ... , OAn lie on one 
side of the straight line l' passing through 0 and parallel to l. 
Further, if w' = l/w and w = r (cos e + i sine) then w' = 
=(1/r)(cos(-e)+ isin(-e)), that is the numbers wand w' are 
represented !Jy points B and B' in the complex plane such that 
the rays OB and OB' are symmetric about the axis Ox of reals. 
It follows that the numbers zl = 1/z1 = 1/(z - c1), z2 = 1/z2, ••• 

. . . , z~ = 1/Zn are represented in the complex plane by points Al, 
A2, ... , A~ such that the rays OA!, OA2, ... , OA~ are symmetric 
to the rays OA1, OA2, ... , OAn with respect to the axis Ox, whence 
it follows that all these rays lie on one side of a straight line l" 
symmetric to l' about the axis Ox (see again Fig. 46). 

The further course of the proof is rather close to the solution 
of Problem 338. Let za =cos ea+ i sin ea be a complex number of 
unit modulus represented by a point lying on the straight line l"; 
then the numbers zl = z't/za, z2 = z2/za, ... , z'~ = z~/za are 
represented by the points Al, A2, ... , A~ obtained from the points 
Al, Af, ... , A~ by a rotation about 0 through an angle of e0• 

Therefore all these points Al, A2, ... , A~ lie on one side of the 
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axis Ox which is obtained with the aid of the same rotation from 
the straight line l''. It follows that the imaginary parts b'{, bf, ..• 

!J 

' I 
' I 

' I 
', I 

' I ' 

I 

fig. 46 

.•. , b~ of the numbers z'{ =a'{+ ib'{, zf = ar + ibq, ... , 
-=a~+ ib~ are all of one sign, and therefore 

z;' + z; + .. . + z; = (a;' + a; + . .. + a~) + 

Z
if_ 
n-

+ i ( b;' + b; + .. . + b~) * 0 

because b'{ + bq + ... + b~ * 0. Further, from the relation 
f f f z1 z,, Z 

+z"=-+-- + ... +~= 
n Zo Zo Zo 

= (z~ + z~ + +z') ·-
1 *o n Zo 

it also follows that 

z~+z~+ ... +z~=-1-+_1_+ ... +-1-*0 
Z - C1 Z - C2 Z - Cn 

340. First solution. Suppose that a is not divisible by p. Then 
the numbers a, 2a, 3a, ... , (p - I) a are not divisible by p either, 
and their division by p leaves dinerent remainders. For, if the 

14 -60 
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division of ka and la (where p - 1 ~ k > l) by p left equal 
remainders then the difference ka - la = (k - /)a would be divi­
sible by p, which is impossible since p is a prime number, the num­
ber a is not divisible by p and the difference k - l is less than r. 
Since the set of the possible remainders resulting from the divi­
sion by p are exhausted by the p - 1 numbers 1, 2, 3, ... , p - 1, 
there must be 

... , (p- l)a = 

= qp-IP + ap-1 

where a1, a 2, ••• , ap-1 are the numbers 1, 2, ... , p - 1 taken in 
some order. On multiplying all these equalities we obtain 

[1 · 2 · ••. · (p - 1)] aP-I =Np+ a1a2 •.. ap-1 
that is 

[1 · 2 • .... (p - 1)] (aP-1 - 1) =Np 

It follows that aP-1 - 1 is divisible by p and, consequently, aP - a 
is also divisible by p. In case a is divisible by p the assertion of 
Fermat's theorem is evident. 

Second solution. The theorem is evidently true for a = 1 be­
cause in this case the difference aP - a = 1 - 1 = 0 is divisible 
by any number. Now we shall prove the theorem by induction: 
let us assume that it is already known that aP - a is divisible 
by p and prove that under this assumption (a+ l)P-(a + 1) is 
also divisible by p. 

By Newton's binomial formula, we have 

(a+ l)P - (a+ 1) = 
=aP + paP-1+C(p,2)aP-2 + C(p, 3)aP-3 + •.. +pa+ 1-a-1 = 

= (aP - a) + paP-1 + C (p, 2) aP-2 + ... + C (p, p - 2) a2 +pa 

Further, every binomial coefficient 

c ( k) = p (p - l) (p - 2) ... (p - k + 1) 
p, I· 2 · 3 ... k 

is divisible by the prime number p since the numerator of this ex· 
pression contains the factor p while the denominator does not. 
Finally, by the hypothesis, the number aP - a is divisible by p, 
and therefore (a+ l)P-(a + 1) is also divisible by p. 

Remark. We shall present one more variant of the same proof. Since all the 
binomial coefficients C(p, k) are divisible by p, the difference 

(A+ B)P -AP -BP= 

= pAP- 1B + C (p, 2) AP-2B2 + , , , + C (p, p - 2) A2BP-2 + pABP-2 
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where A and B are arbitrary integers is always divisible by p. On applying 
this result we consecutively find that 

(A+ B + C)P - AP - BP - CP = 

={[(A+ B) + C]P - (A+ B)P - CP} +(A+ B)P - AP - BP 

ts always divisible by p, 

(A+ B + C + D)P -AP - BP - CP - DP= {[(A+ B + C) + D]P -

- (A + B + C)P - DP}+ (A+ B + C)P - AP - BP - CP 

is always divisible by p, and, generally, 

(A + B + C + . . . + K)P - AP - BP - CP - . . . - KP 

is always divisible by p where all capital letters denote arbitrary integers. 
Now, putting A = B = C = ... = l<. = 1 in the last relation and taking 

the total number of the integers equal to a we arrive at Fermat's theorem: 
aP - a is divisible by p. 

341. The proof of Euler's theorem is completely analogous to the 
first proof of Fermat's theorem. Let us denote the r numbers smal­
ler than N and relatively prime to N as k1, k2, k3, ... , k,. We shall 
consider the r numbers k,a, k2a, ... , k,a. They all are relatively 
prime to N (because, by the condition of the problem, a and N 
are relatively prime), and their division by N leaves different re­
mainders (the latter property is proved by complete analogy with 
the solution of Problem 340). It follows that 

k1a = q1N + a1' k2a = q2N + a2, ... , k,a = q,N +a, 

where a1, a2, ... , a, are the same numbers k1, k2, ... , k, possibly 
arranged in some other order. On multiplying all these equalities 
we obtain 

k1k2 ... k,ar =MN+ a1a2 ... a,, that is k1k2 ... k, (ar - 1) =MN 

where M is an integer, whence it follows that the number a' - 1 
is divisible by N. 

342. We shall elaborate the proof by induction. It is obvious 
that the proposition stated in the condition of the problem is true 
for n = 1 because the numbers 21 - 1 = 1, 22 - 1 = 3 and 
23 - 1 = 7 are not divisible by 5. Let us also prove the proposi· 
tion for n = 2. Let 2" be the smallest power of the number 2 whose 
division by 52 = 25 leaves a remaainder of 1 (that is 2" - 1 is 
exactly divisible by 25). Let us suppose that k < 52 - 5 = 25 -
- 5 = 20. If 20 is not divisible by k (in this case 20 = qk + r 
where r < k) then 

220 - 1=2qk+r - 1=2' (2qk - 1) + (2' - 1) 

By Euler's theorem, 220 - 1 is divisible by 25; the number 
2q" - 1 = (2") q - 1 q is divisible by 2" - 1 and therefore, by virtue 

14* 
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of the hypothesis, it is divisible by 25 as well. Consequently, 
2' - 1 is also divisible by 25, which contradicts the assumption 
that k is the smallest exponent for which 2k - 1 is divisible by 25. 
Thus, the number k must be a divisor of 20, that is k can only be 
equal to 2, 4, 5 or 10. Further, the numbers 22 - 1 =3, 25 - 1 =31 
and 210 - 1 = 1023 are not divisible by 5 and therefore are not 
divisible by 25 either while the number 24 - 1 = 15 is divisible 
by 5 but is not divisible by 25. Consequently, for n = 2 the pro­
position stated in the problem is also true. 

Now let us suppose that the proposition holds for some n and 
does not hold for n + 1; in other words, we suppose that the 
smallest exponent k such that 2" - 1 is divisible by 5n+1 is Jess 
than 5n+1 - 5n = 4.5n. In just the same way as above (for n = 2) 
it is proved that the number k must be a divisor of the number 
4 · 5n. At the same time, it is similarly proved that the number 
5n - 5n-1 = 4. 5n-l must be a divisor of the number k. Indeed, if 
we had k = q · 4 · 5n-1 + r where r < 4 · 5n-1 then the number 
5' - 1 would be divisible by 5n, which contradicts the assumption 
that the proposition of the problem is true for the number n. Thug, 
the exponent k can assume a single possible value, namely k = 
= 4.5n-l. 

By virtue of Euler's theorem, the number 25ri-l-5n-2-1=24.5n-2_ 1 
is divisible by 5n-1; at the same time it is not divisible by 5n 
(the latter property holds because, if otherwise, the proposition of 
the problem would not be true for the number n). Therefore we 
have 21·5n-2 = q • 5n-t + 1 where q is not divisible by 5. 

Now, using the formula 

(a+ b)5 = a5 + 5a4b + l0a3b2 + l0a2b3 + 5ab4 + b15 

we obtain 
24.5n-l - 1 = (24.5n-2)5 - I = (q • 5n-I + 1)5 - 1 = 

= 5n+l (q5. 54n-6 + q4. 5sn-4 + 2q3. 52n-3 + 2q2. 5n-2) + q. 5n 

whence it is seen that 24·5n-2- 1 is not divisible by 5n+1. Thus, 
from the assumption that the proposition holds for some n it fol­
lows that it also holds for n + I. 

343. According to Euler's theorem (see Problem 341), the num­
ber 2510- 59 - 1 = 24 ·

59 - 1 = 27 s12 5oo - 1 is divisible by 51°. Conse­
quently, for n;;::, 10 the difference 27 812 5oo+n - 2n=2n(27 812 500_ 1) 
is divisible by 1010 ; therefore the last 10 digits of the numbers 
21 812 5oo+n and 2n coincide. This means that in the number sequence 
21, 22, 23, ... , 2n, ... the last 10 digits repeat with a period of 
7 812 500 members of the sequence, the periodicity starting with 
the tenth member 210 of this sequence. 
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The fact that the length of the period ls not less than 7 812 SOO 
follows from the result of Problem 342. 

Remark. It can similarly be proved that the last n digits of the members 
of the sequence in question repeat with a period of 4 · 5n-1 members starting 
with the nth member (for instance, the last two digits repeat with a period of 
20 members beginning with the second one). 

344. We can even prove a more general proposition: for any 
whole number N there always exists a power of the number 2 
whose N last digits are all unities and twos. 

Since 25 = 32 and 29 = 512, the proposition is true for N = 1 
and N = 2. In the further course of the proof we use the method 
of mathematical induction. Let us assume that the last N digits 
of the number 2N are all unities and twos and prove that under 
this assumption there must exist a power of the number 2 whose 
last N + 1 digits are unities and twos. By the hypothesis, we have 
2n = 1QN ·a + b where b is an N-digit number whose decimal re­
presentation contains only the two digits l and 2. Let us denote 
by r the number SN - SN-I = 4 ·SN-I; then, by Euler's theorem 
(see Problem 341), the difference 2' - 1 is divisible by SN. It fol­
lows that if an integer k is divisible by 2N+l then the difference 
2'k - k = k (2' - 1) must be divisible by 2 · 1QN, that is the last N 
digits of the numbers 2'k and k coincide and the (N + l)th 
(counting from right to left) digits of these numbers are simul­
taneously even or odd. 

Now let us consider the following five power.s of the number 2: 

2n, 2 n+r = 2r. 2n, 2 n+2r = 2,. 2n+r, 2n+3r = 2,. 2n+2r, 

2n+4r = 2r • 2n+3r 

According to what has been proved, the last N digits of all these 
numbers are the same, that is they all end with the same combi­
nation (number) b consisting of twos and unities, the number b 
coinciding with that in the representation 2n = 1QN a+ b, while 
the (N + l)th (counting from right to left) digits of all these 
numbers are simultaneously even or odd. Next we shall prove 
that among these five powers of two there are not two numbers 
whose (N + 1) th (counting from right to left) digits coincide. 
Indeed, the difference of any two of these powers can be repre­
sented in the form 2n+m,r (2m,r - 1) where m1 = 0, 1, 2 or 3 and 
m2 = 1, 2, 3, or 4. If this difference were divisible by 1QN+1, the 
number 2m,r - 1 would be divisible by SN+1; however, since 

m2r = m2 • (5N - 5N-t) < 5 · (SN - SN- 1) = SN+t - SN 

this divisibility contradicts the result of Problem 342. 
Thus, the (N + l)th (counting from right to left) digits of the 

five powers of two under consideration are either 1, 3, 5, 7 and 9 



406 Solutions 

(these digits follow in some unknown order) or 0, 2, 4, 6 and 8. 
In both cases the (N + 1) th (counting from right to left) digit of 
at least one of the powers is 1 or 2. Consequently, in all the cases 
there exists a power of the number 2 whose last N + 1 digits are 
all unities and twos; by the principle of mathematical induction, 
it follows that the proposition we had to prove is true. 

345. It is evident that a pair of the form n, n2 where n is a na­
tural number is "good" for any n > 1. Further, a pair of numbers 
n- 1, n2 - 1 = (n - 1) (n + 1) is sure to be "good" when the 
number n + 1 is an integral power of two, that is n + 1 = 2" 
where k ;;;:::: 1 is an integer. Indeed, in this case the only distinction 
between the numbers 

n - 1 and n2 - 1=2" (n - 1) 

is that the second of them involves a power of the prime factor 
two whose exponent exceeds by k that of the power of two con­
tained in the first number (the number n - 1 must contain the 
prime factor 2 because since n + 1 = 2k, that is n = 2k - 1, the 
number n - 1 = 2k - 2 is also even). It follows that there are 
an infinite number of "very good" pairs: for instance, such are all 
the pairs of numbers of the form 

n - 1=2" - 2, n2 - 1 = (n - 1) (n + 1) = 2" (2" - 2) 

where k = 1, 2, 3, ... 
346. It is obvious that the first term a and the common dif­

ference d of the progression can be assumed to be relatively prime 
numbers because if both a and d were divisible by a number k > 1 
then we could simply cancel by k all the terms of the progression. 
Further, by virtue of Euler's theorem (see Problem 341), for re­
latively prime a and d there is an integer r such that the number 
ar - 1 and, together with it, ar+i = a + Nd, are divisible by d. 
Therefore ar+i - a= Nd, that is ar+I =a+ Nd where N is a na­
tural number, whence it follows that the number ar+i belongs to 
the given arithmetic progression. Moreover, in this case all the 
numbers ark+1 where k = I, 2, 3, ... also belong to the progression 
since the number ark - 1 = (ar - 1) (ar(k-!J + ar(k-2) + ... + 1) 
is divisible by ar - 1 and, consequently, it is divisible by d, whence 
it follows that the number ar<1<+1> - a = Md (where M is a na­
tural number) is divisible by d, and the number ark+! = a+ Md 
is the (M + 1) th term of the progression. It is clear that the num­
bers a, ar+1, a2r+1, a3r+1, ... contain powers of the same prime fac­
tors (the ex:ponents of the powers are different), which completes 
the proof of the assertion stated in the problem. 

347. Let a be one of the numbers belonging to the sequence 
2, 3, ... , p - 2. We shall consider the numbers 

a, 2a, ... , (p- I)a 
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Among them there are not two numbers whose division by p leaves 
equal remainders. Consequently, the remainders resulting from 
their division by p are 1, 2, ... , p - 1, each of the remainders 
occurring only once (cf. the solution of Problem 340). In particu­
lar, in the sequence 1, 2, ... , p - 1 there is an integer b such that 
the division of ba by p leaves a remainder of 1. For this number b 
we must have b =I= 1 and b =I= p - 1 because 2 ~ a ~ p - 2 and, 
consequently, for b = 1 the division of the number ba = a by p 
leaves the remainder a =I= 1 and for b = p - 1 the division of the 
number ba = (p - 1) a = pa - a by p leaves the remainder 
p - a =I= 1. Besides, we have b =I= a because if the division of a2 

by p left the remainder 1 then the number a 2 - 1 =(a+ 1) (a - 1) 
would be divisible by p, which is only possible when a = 1 and 
a = p - 1. Consequently, 2 ~ b ~ p - 2 and b =I= a, that is the 
members of the sequence 2, 3, ... , p - 2 split into pairs of num­
bers the division of whose products by p leaves the remainder !. 

The product 2 · 3 · ... · (p - 2) contains (p - 3) /2 such pairs of 
numbers, and the remainder resulting from the division of this 
product by p is also equal to 1. Further, the division of the num­
ber p - 1 by p gives -1 in the remainder. Consequently, the di­
vision of the number (p - 1) ! = l ·2·3· ... · (p - 2) · (p - 1) = 
= [2 · 3 · ... · (p - 2)] · (p - 1) by p leaves the remainder -1, that 
is (p- l)!=kp-1, whence (p-1)! + l=kp. Thus, (p-1)! + 
+ 1 is divisible by p. 

If the number p is not prime, it has a prime divisor q < p. In 
this case (p - 1) ! is divisible by q; therefore (p - 1) I + 1 is not 
divisible by q, and hence it cannot be divisible by p either. 

348. (a) For p = 2 we can write p = 12 + 02 + 1. Now let the 
prime number p be odd; we shall show that in this case there are 
two numbers x and y which are both less than p/2 and satisfy the 
condition of the problem. 

Let us consider the sequence consisting of the (p + 1) /2 num­
bers 0, 1, 2, ... , (p - 1) /2. The division of the squares of any 
two of these numbers by p leaves different remainders; for, if we 
had 

XT = k1p + r and x~ = k2p + r 
where x1 and x2 belong to that sequence then the equality 

xi - x~ = ( x1 - x2) ( x1 + x2) = ( k1 - k2) p 

would hold, that is the number (x1 - x2) (x1 + x2) would be di­
visible by p, which is impossible since Xr < p/2, x2 < p/2, x 1 + 
+ x2 < p and I xr - x2 I< p (we remind the reader that p is a 
prime number). Thus, the (p + 1) /2 numbers · 

02
, 12, 22

, ••• ' ( 
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give (p + 1) /2 different remainders when they are divided by p. 
It follows that the division by p of the (p + 1) /2 (negative) num­
bers -1, -l2- 1, -22 - 1, ... , -[ (p - 1)/2]2- l also leaves 
(p + l) /2 different remainders (if the remainders resulting from 
the division of - xi - l and - x~ - l were the same then the di-

vision of x~ and x~ would also leave equal remainders)*. Since 
the division by p can result in only p different remainders (na­
mely, 0, 1, 2, ... , p - 1), it is clear that among the p + l num­
bers 02, l2, 22, ••• , [ (p- 1)/2]2, -1, -l2, -1, -22 -1, ... 
. . . , - [ (p - 1) /2] 2 - l there are at least two whose division 
by p leaves equal remainders. According to what was proved 
above, one of the numbers belonging to such a pair must neces­
sarily be of the form x2 and the other of the form -y2 - 1. Now, 
if x2 = kp +rand -y2 - l = lp + r then 

x2 + y2 = (k - l) p - 1 = mp - 1 

whence it follows that x2 + y2 + l =mp is divisible by p. 

Remark. In the condition of the problem we can additionally require that the 
two sought-for numbers x and y should not exceed p/2, that is we are allowed 
to impose the condition that the sum x2 + y2 + 1 must be less than p2 ; under 
this condition the quotient m resulting from the division of the sum x2 + y2 + 1 
by p is less than p. 

(b) Let p = 4n + l be a prime number. By virtue of Wilson's 
theorem (see Problem 347), the number 

(p - 1)1 + 1 = 1 · 2 · 3 · . . . · (4n) + l 
is divisible by p. Now let us replace all those factors in the last 
expression which exceed (p - 1) /2 = 2n by the corresponding 
differences between the number p and numbers smaller than 
(p - 1) /2 (these differences are equal to the factors they replace): 

(p - 1)1+1=1 · 2 · 3 · ... · 2n (p - 2n) (p - 2n + 1) · ... 

.. . -(p - 1) + l = ( l · 2 · 3 · . . . · 2n) [Ap + (-1)2
n 2n . 

· (2n - l) · ... · I]+ l = A 1p + (1 · 2 · 3 · ... · 2n)2 + l 

Since this number is divisible by p, the sum ( (2n) 1) 2 + 1 is also 
divisible by p. Thus, the condition of the problem is satisfied by 
the number x = (2n) I = [ (p - 1) /2] !. 

Remark. It should be noted that if the division of the number x by p leaves 
a remainder x1 then the divisibility of the number x2 + 1 = (kp + xi) 2 + 1 == 

* The quotient k and the remainder r resulting from the division of an in­
teger a by p are determined by the formula a = kp + r where 0 ~ r < p (in 
case a is negative the quotient k is also negative). 
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= (k2p + 2kx1JP + x +I by p Implies that the number xi+ I is also divisible 
by p. This allows us to assume that the number x mentioned in the condition 
of the problem is less than p, the number x2 + 1 is less than p2 and the quo­
tient m resulting from the division of x2 + 1 by p Is less than p. 

349. The existence of an infinitude of prime numbers follows 
from the result of Problem 234. (This problem also shows that in 
the sequence of all natural numbers the prime numbers occur 
"sufficiently often", for instance, "more often" than the perfect 
squares; see the remark to that problem.) From the result of Pro­
blem 90 it can also be seen that there exist infinitely many prime 
numbers: if the total number of prime numbers were n < oo then 
there could not exist more than n pairwise relatively prime in­
tegers. However, the following proof of the existence of an infini­
tude of prime numbers suggested ,by Euclid is perhaps the simp­
lest. 

Let us suppose that there are only n prime numbers 2, 3, 5, 
7, 11, ... , pn; thenthe number N=2·3·5·7·11 ..... pn+l ex­
ceeds all the prime numbers 2, 3, 5, ... , Pn and therefore N must 
be a composite number. However, the number N - 1 is divisible 
by 2, 3, 5, 7, ... , Pn, and therefore N must be relatively prime to 
all the prime numbers. We have thus arrived at a contradiction, 
which proves the theorem. 

350. (a) The proof of this theorem is rather close to Euclid's 
proof of the existence of infinitely many prime numbers. 

Let us suppose that among the numbers of the form 4k - 1 
there is only a finite set of prime numbers, namely 3, 7, 11, 
19, 23, ... , Pn· Let us form the number N=4(3·7·11·19·23· ... 
. . ,. Pn)- 1. It is greater than all the prime numbers belonging to 
the progression under consideration and hence it must be compo­
site. Let us express N as a product of prime factors. Among these 
factors there cannot be numbers of the form 4k - I because the 
number N + 1=4(3·7·11·19·23 .. ·"Pn) is divisible by all 
prime numbers of the form 4k - 1 and, consequently, the number 
N is relatively prime to all these numbers. Since the number N is 
odd it must be equal to a product of several prime numbers of the 
form 4k + 1. But this is impossible. Indeed, a product of two 
numbers of the form 4k + 1 has the same form: 

(4k1 + 1) (4k2 + 1) = 16k1k2 + 4k1+4k2 + 1 = 
= 4 (4k1k2 + k, + k2) + 1=4k3 + 1 

Consequently, a product of several numbers of the form 4k + l 
also has the same form whereas the number N has the form 
4k - 1. The contradiction we have arrived at proves the theorem. 

It can similarly be proved that among the members of the pro­
gression 5, 11, 17, 23, ... there are also infinitely many prim0 
numbers (these are prime numbers of the form 6k - 1). 
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(b) The proof of this theorem is based on the same idea as the 
one used in the proofs of the theorems of Problem 350 (a) but is 
a little more complicated. 

Let us suppose that among the numbers belonging to the se­
quence 11, 21, 31, 41, 51, 61, ... there are only a finite number of 
prime numbers: 11, 31, 41, 61, ... , Pn· Let us form the number 
N=(l1·31·41·61· ... ·pn)S-I. It is relatively prime to all 
prime numbers 11, 31, 41, ... , Pn because the number N + 1 is 
divisible by all these numbers. On denoting by a the product 
11·31·41 ... Pn we can write N=as-1 =(a-l)(a4 +a3 + 
+ a2 +a+ 1). 

Let us investigate the prime divisors of the second factor a4 + 
+ a3 + a2 + a+ 1 in the last product. It is obvious that the sum 
a4 + a3 + a2 +a+ 1 is not divjsible by 2 (because a sum of five 
odd numbers is itself odd). Further, the number a4 + a3 + a2 + 
+a+ 1 is divisible by 5 since a ends with 1 (because a is equal 
to a product of a number of factors each of which ends with 1), 
the numbers a2 , a3 and a 4 all have 1 at their end, and, conse­
quently, the sum a 4 + a3 + a2 + a + 1 ends with 5. Now let p be 
a prime divisor of the number a 4 + a3 + a2 + a + 1 different 
from 5. Then a - 1 cannot be divisible by p because, if otherwise, 
the number a would be of the form kp + 1 and, consequently, the 
numbers a2, a3 and a 4 (they are equal to (kp + 1) 2, (kp + 1) 3 

and (kp + 1) 4 respectively) would have that same form and 
therefore the division of the number 

a4 + a3 + a2 +a+ 1=(kp+1)4 +(kp+1)3 +(kp+1)2 +(kp+1) + 1 

by p would leave the remainder 5. It follows that p - 1 must be 
divisible by 5. Indeed, for instance, let us suppose that the rema­
inder resulting from the division of p - 1 by 5 is equal to 4, that 
is p - 1 = 5k + 4. It should be noted that, by Fermat's theorem 
(see Problem 240), the difference aP-1 - 1 is divisible by p, and 
therefore in the case under consideration we must have 

aP-1 - 1 = aSk+4 - 1 = a4 (ask - 1) + (a4 - 1) 

Further, since ask - 1 =(as) k - 1 k is divisible by as - 1 and 
therefore by p as well, the difference a 4 - 1 is also divisible by p. 
But we have as - 1 = a ( a 4 - 1) + (a - 1), and, consequently, if 
as - 1 and a 4 - 1 were divisible by p, the difference a - 1 would 
also be divisible by p, which, as was shown above, is impossible. 
The fact that the remainder resulting from the division of the num­
ber p - 1 by 5 cannot be equal to 1, 2 or 3 is proved similarly. 

Thus, the number p - 1 is divisible by 5 and is even (p - 1 is 
even because p is odd). Consequently, p - 1 is divisible by 10; 
therefore the number p has the form IOk + 1 and hence it belongs 
to the progression under consideration. We have thus shown that 
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the prime divisors of the sum a4 + a3 + a2 + a + 1 can only be 
the number 5 and prime numbers of the form lOk + l. 

Further, the number a4 + a3 + a2 + a+ 1 is obviously greater 
than 5 and is not divisible by 52 = 25. Indeed, the number a ends 
with 1 and, consequently, has the form 5k + 1. By Newton's bi­
nomial formula, we have 

a4 + a3 + a2 +a+ 1=(5k+1)4 + (5k + 1)3 + (5k + 1)2 + 
+ 5k + 1+1=625k4 + 4. 125k3 + 6. 25k2 + 4. 5k + 

+ 1 + 125k3 + 3. 25k2 + 3. 5k + 1+25k2 + 2. 5k + l + 
+ 5k + 1 + l = 625k4 + 5 . l 25k3 + 10 . 25k2 + l 0 . 5k + 5 = 

= 5. [5 (25k4 + 25k3 + 10k2 + 2k) + l] 

It follows that this sum and, consequently, the number N = 
= a5 - l must have at least one prime divisor of the form 
IOk + l. At the same time, by the hypothesis, the number N is re­
latively prime to all prime numbers of the form I Ok + 1; we have 
thus arrived at a contradiction, which proves the theorem. 

Remark. It should be noted that the proof presented here can be applied al­
most without any changes in order to show that every arithmetic progression 
composed of the numbers of the form 2pk + I where p is an arbitrary odd pri­
me number contains infinitely many prime numbers. 
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I. The tallest of the smallest. 
2. Consider the sum of the numbers of times each person has ever shaken 

hands with other people. 
3. Let A be one of the six people; this person either has three acquaintances 

or there are three people with whom A is not acquainted. 
4. (a) It is impossible. (b) Construct an example satisfying the conditions 

of the problem. 
5. Prove that if A and B are not acquainted then they have two mutual ac­

quaintances. 
6. Consider the scientist who has the greatest number of acquaintances 

among the participants. 
7. Exclude consecutively from the delegates the pairs of delegates speaking 

one language. 
8. Let A be an arbitrary participant of the conference; show that there is 

the language in which he can speak with not less than 6 other participants. 
9. n = k(k + 1)/2 + 1 where k is an integer. 

10. 5000 days (in the town there are two parties such that two inhabitants 
are friends if and only if they belong to one party). 

11. If the knight travels sufficiently long then_ there must be a part AB of 
his path (where A and B are castles) along which (in the direction from A to 
B) the knight goes not less than three times. 

12. Let A and B be two enemies sitt:ng next to each other; prove that Mer­
lin can make a part of the knights change their places so that the pair of ene­
mies A, B sitting next to each other is replaced by a pair A, A' of friends sit­
ting next to each other while none of the pairs of friends sitting next to each 
other is replaced by a pair of enemies. 

13. (a) In the first weighing place 27 coins on each of the scale pans. (b) 
The number k is determined by the inequalities 3k-I < n ~ 3". 

14. First put one cube on each scale pan; then put both these cubes on one 
scale pan and then, in succession, put all the possible pairs of the remaining 
cubes on the other scale pan. 

15. In the first weighing put four coins on each scale pan. 
16. (a) One link. (b) Seven links. 
17. Let S be one of the underground stations; consider a station T which is 

the farthest from S. 
18-19. Use the method of mathematical induction. 
20. Use the proof by contradiction. To this end assume that the assertion of 

the problem is false and show that under this assumption there is an infinite 
number of towns in the state of Shvambranla (when constructing this Infinite 
sequence of towns it is advisable to use the method of mathematical Induction). 

21. It cannot. 
22. It Is sufficient for the king to move first to one of the corners of the 

chess-board and then along the diagonal of the chess-board. 
23. Change the order of the arrangement of the squares so that it becomes 

possible to move from any square to the neighbouring ones. 
24. Prove (say, using the induction method) that If in a group of students 

exactly n people speak each of the three languages (where n ~ 2) then It Is 
possible to form a subgroup in which exactly 2 students speak each of the lan­
guages. 
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2 25. (a) 2 3 . (b) 20. 
26. 6 days; 36 sets of medals. 
27. 15 621. 
28. Two rubles. 
29. (a) In the Gregorian Calendar (which is in general use) every year, ex· 

cept the leap years, has 365 days. Each leap year has an additional day (the 
29th of February). The leap years are those whose numbers are divisible by 4 
except the years divisible by 100 but not divisible by 400. It follows that every 
400 years contain an integral number of weeks; consequently, it only remains 
to check what day of the week, Saturday or Sunday, is more frequently the New 
Year day. Answer: Sunday. (b) Friday. 

30. All the numbers ending with 0 and the two-digit numbers I I, 23, 33, 44, 
55, 66, 77, 88, 99; 12, 24, 36, 48; 13, 26, 39; 14, 28; 15; 16; 17; 18; 19. 

31. (a) 6250 .... O; n = 0, I, 2, .... (b) Try to solve the following problem: 
'-,...-' 
n times 

find a whole number starting with a known digit a which decreases 35 times 
when this d:git is deleted. 

32. (a) Start with proving the auxiliary proposition: the number in question 
decreases 9 times when the second (counting from right to left) digit 0 is dele­
ted. (b) IO 125 2025; 30 375; 405; 50 625; 6075, 70 875 (at the end of each of 
these numbers an arbitrary number of zeros can be additionally written). 
. 33. (a) The numbers whose all digits except the first two are zeros. (b) In­
vestigate separately the cases when the first digit of the sought-for number is 
I, 2, 3, ... , 9. There are altogether 104 different numbers satisfying the condi· 
tlon of the problem at the end of each of which an arbitrary number of zeros 
can be additionally written. 

34. (a) The smallest possible number is 142 857. (b) The digit 1 or 2. The 
smallest of the numbers with Initial digit 2 In 285 714. 

35. 153 846. 
36. Use the property that the numbers divisible by 5 must end with the di­

git 0 or 5; the numbers divisible by 6 or by 8 end with even digits. 
37. Try to solve the following problem; find the number which increases 

twice when Its initial digit Is carried to the end. 
38. The problem is solved by analogy with the preceding one. 
39. The smallest number satisfying the condition of the problem is 

7 241 379 310 344 827 586 206 896 551. 
40. (a) A number which is 5, 6, 8 or 7 times as small as its reversion must 

begin with the dig:t 1; a number which is twice or three times as small as its 
reversion can begin with the digits I, 2, 3, 4 or 1, 2, 3 respectively. (b) The 
numbers that are 4 times as small as their reversions are 

0; 2 178; 21978; 219 978; 2 199 978; ... (*) 

and also the numbers with decimal representation of the form P1P2 ••• 

. . . Pn-1PnPn-1 ... P2P1 where Pi, P2 ... Pn are some numbers belonging to se­
quence (*). 

41. (a) 142 857. (b) Try to find an 8-digit number which increases 6 times 
when its last four digits are carried to the beginning while their order is pre­
served. 

42. 142 857. 
43. 111, 222, 333, ... ' 999, 407, 518, 629, 370, 481, 592. 
44-45. Consider the process of the addition of the given numbers written in 

a column. 
46. Factor .the polynomials indicated in the condition of the problem; find 

what remainders can result from the division of the number n by 3 (according­
ly by 5, by 7 etc.). 
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47. (a) Use the property that a difference of two powers with equal even ex­
ponents is divisible by the sum of the bases of the powers. (b) See the hint to 
Problem 46. 

48. (a) 56 786 730 = 2·3·5·7· ll · 13·31 ·61. Use the propositions established 
in Problems 46 (a)-(e) and similar propositions implied by Fermat's theorem 
(see Problem 340). (b) Consider the factorization of the given expression and 
compare the number of the factors with that of the factorization of the number 
33. (c) Make use of the identity n2 + 3n + 5 = (n + 7) (n - 4) + 33. 

49. For even n. 
50. It does not exist. 
51. Take into account that every integer not divisible by 5 can be written in 

the form 5k ± 1 or 5k ± 2. Answer: 0 or I. 
52. Make use of the result of the preceding problem. 
53. 625 or 376. 
54. Determine the last two digits of the number N20 and the last three digits 

of the number N2°0• Answer: 7; 3. 
55. 1+2 + 3 + ... + n = n(n + 1)/2. Grouping some terms of the sum l• + 

+ 2• + 3k + ... +n• prove that the sum is divisible by n/2 and by n + 1 or 
by n and by (n + 1)/2. 

56. The difference between the sum of the digits of the number occupying 
even places and the sum of the digits occupying odd places must be divisible 
by 11. 

57. The number is divisible by 7. 
58. It is always possible to find a number starting with the digits, 1, 0 which 

is divisible by K. It is possible to prove that 9 is divisible by K by performing 
an appropriate permutation of the digits of the above-mentioned number divi­
sible by K and subtracting from each other two numbers divisible by K. 

59. The sought-for number consists of 300 ones. 
60. Investigate the last digits of the numbers of the form N = 2k (where 

k = 1, 2, 3, ... ) and also consider the remainders resulting from the division 
of the numbers N by 3. 

61. 26460 = 22 ·33 ·5·72. Prove separately that the given expression is divi­
sible by 5 · 72 and that it is divisible by 22 • 33• 

62. Use the equality 

11ro _ JlO= (11 - 1) (11 9 + 11 8 + 117 + 11 6 + 11 5 + 11 4 + 113 + 112 + 11 +I) 

63. Write the given number in the form 

(22225555 + 45555) + (55552222 - 42222) - ( 45555 - 42222) 

64. Use the method of mathematical induction. 
65. Use the fact that 106 - I = 999 999 is divisible by 7 and that the divi­

sion of any power of ten by 6 leaves a remainder of 4. Answer; 5. 

66. (a) 9; 2. (b) 88; 67. (c) Find the last two digits of the numbers 7
1414 

and 2
1414

• Answer: 36. 
67. (a) Both numbers have the digits 89 at the end. (b) Prove that the diffe­

rence of the given numbers is divisible by I 000 000 = 26 • 56• 

68. (a) 7; 07. (b) 3; 43. 
69. Consider the numbers 

and determine consecutively the last digit of the number Zr. the last two di­
gits of the number Z2, the last three digits of the number Z3, the last four 
digits of the number Z4, the last five digits of the number Z5 and the last five 
digits of the numbers Zij, Z1, .•• , Zroor = N. Answer: 45 289, 
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70. Compile the tables of the remainders resulting from the division of the 
numbers 5n and n5 by the number 13. The smallest number n satisfying the 
condition of the problem is n = 12. 

71. For all a multiple of 4 the last two digits of the number under considera­
tion are 30. 

72. The sought-for 1000 digits can be written as a sequence of the form 
pPP ... P where 
~ 

23 times 

p = 020408 l 63265306122448979591836734693877551 

Here P is the per:od of the periodic fraction to which 1/49 is changed and p 
is the group of the last 34 digits of the number P. To elaborate the proof make 
use of the obvious equality 

501000 _I 
N= 50-1 

73. Consider the difference M - 3N. 
74. 24. 

501000 _ I 

49 

75. (a) Compare the exponents of the powers of a prime number p which are 
contained in a! and in the product (t +I) (t + 2) ... (t +a). (b) and (c) Use 
the result of Problem 71 (a). (d) First prove that there exists a number k such 
that the division by n! of the product kd where d is the common difference of 
the progression leaves a remainder of I. 

76. It is not divisible by 7. 
77. (a) The number (n-1)! is not divisible by n when n is a prime num­

ber and when n = 4. (b) The number (n-1)! is not divisible by n2 when n 
is a prime number or a duplicated prime number or is equal to 8 or is equal 
to 9. 

78. Prove that all such numbers are less than 72 = 49. Answer: 24, 12, 8, 
6, 4 and 2. 

79. (a) Prove that a sum of squares of five consecutive whole numbers is 
divisible by 5 and is not divisible by 25. 

(b) Find the remainder resulting from the division of a sum of even powers 
of three consecutive whole numbers by 3. 

(c) Determine the remainder resulting from the division by 9 of a sum of 
powers with equal even exponents of nine consecutive whole numbers. 

80. (a) Find what remainders result from the division of the numbers A and 
B by 9. (b) 192, 384, 576, or 273, 546, 819, or 327, 654, 981 or 219, 438, 657. 

81. These digits are four noughts. 
82. Use Pythagoras' theorem. 
83. Consider the remainder resulting from the division of the expression 

b2-4ac by 8. 
84. Prove that after the fractions are added together and the sum is cancel­

led (if possible) the denominator of the resulting fraction is divisible both by 3 
and by 2 .. 

85. To prove that M and N are not integral numbers it is required to show 
that after the addition we obtain a fraction whose denominator is divisible by 
a power of 2 higher than that by which the numerator is divisible. 

When proving that K is not an integral number we should. replace in the pre­
ceding argument powers of two by powers of three. 

86. (a) Use the fact that the fractions p/q and q/p are simultaneously re­
ducible or irreducible. (b) It can be reduced by 13. 

87. Let N =a· 101952 +A be one of the numbers which are read as indicated 
in the condition of the problem (where a is the first digit of the number N); 
prove that if N is divisible by 27 then the number Ni = IOA +a is also divi· 
sible by 27. 

88. Prove that if the decimal representation of the number a = 510oo involves 
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zeros then there is a number divis:ble by a the first zero In whose decimal re­
presentation (provided there exists such) Is placed farther from the (right) end 
of that number than the first zero in the representation of a. 

S9. Start with proving the equality 

(1 + 104 + 108 + ... + 104k). 101 = (1 + 102 + ... + 102k) (102k+2 + 1) 

90. Show that (22n+ 1) - 2 is divisible by all the preceding numbers of the 
given sequence; this will imply that 22n + 1 and any of the preceding numbers 
in the sequence cannot have common divisors other than 2. 

91. Consider the remainders resulting from the division by 3 of the numbers 
2" - 1 and 2" + 1. 

92. (a) Consider the remainders resulting from the division by 3 of the num­
bers p, Sp- 1, and Sp+ 1. (b) Consider the remainders resulting from the di­
vision of the numbers p, 8p2 + 1 and 8p2 - I by the number 3. 

93. Investigate the remainders obtained in the division of a prime number 
by 6. 

94. See the hint to the foregoing problem. 
95. (a) Prove that the common difference of the progression must be divi­

i;ible by 2.3.5.7 = 210. Answer: 199, 409, 619, ... , 2089. (b) Prove that if the 
first term of the progression is different from 11 then the common difference must 
be divisible by 2 · 3 · 5 · 7 · 11 = 2310; if the first term of the progression is equal 
to 11 then the common difference must be divisible by 210 (In the solution of 
Problems 95 (a) and (b) it is advisable to use table of prime numbers.) 

96. (a) Such Is an odd number not divisible by 3. 
(b) It is suffic:ent to find a number among the given 16 numbers which does 

not have common divisors equal to 2, 3, 5, 7, 11 or 13 with the other 15 num­
bers. 

97. The product is equal to 22 ..... 2177 ..... 78. 
~ '---v--/ 

665 times 665 limes 

98. The quotient is equal to 777 000 777 000 ... 777 000 77; the remainder 

Is equal to 700. 
99. 222 222 674 025 = 471 4052• 

100. They do not exist. 
101. 523 152 and 523 656. 
102. 1946. 

'- _., 
the combination 777 000 is 

repeated 166 limes 

103. (a) Transform the indicated number and compare it with the expression 
for the sum of terms of an arithmetic progression with common difference 1 
whose first term is !0"- 1 and last term 10". (b) ·I 769580. 

104. Begin with considering all whole numbers from 0 to 99 999 999; at the 
left end of those of them which consist of less than eight digits write additio­
nally a number of zeros so that they all become 8-digit expression. 

105. 7. 
to{). No. 
107. The number of ones exceeds by unity that of twos. 
108. It cannot. 
109. This number is divis:ble by 11 111. 
110. 6 210 001 000. 
111. Since the given number A is equal to 109 - l, for any number X = 

= x 1x2 ... x,,, we have AX = X1X2 .•. XkOOOOOOOOO - X1X2 • •. xk = M - N. On 
writing the numbers M and N in a column consider the process of subtraction 
of N from M. 

i 12. The condition of the problem is satisfied by all numbers N ;;;;,. A such 
that N = !Om - 1. 



Answers and Hints 417 

113. Use the induction method (with respect to the number n); for m;,;. n 
the asserLon of the problem is false. 

114. It suffices to note that among the first four numbers of every row there 
is an even number. 

115. Prove that the sum of all numbers in every row of the table (beginning 
with the second one) is divisible by 1958. 

116. 40. 
117. On denoting by 12 + x the time of the beginning of the first perform­

ance and by y the duration of the performance we can readily set a linear 
system of inequalities for the numbers x and y. 

l 
118. The possible values of T (expressed in minutes) are 20, 15, 12, 7 2 and 

5 
511. 

119. 100. 
120. (a) The sought-for number must begin with the greatest possible num­

ber of nines. (b) The answer is the same with nines replaced by zeros. 
121. (a) 147; 258; 369. (b) 941, 852; 763. 
122-123. Apply the formula for the sum of the terms of an arithmetic pro­

gression. 
124. Write the expression n(n +I) (n + 2) (n + 3) +I in the form of a 

square of a polynomial. 
125. Prove that among the numbers in question there cannot be more than 

four pairwise distinct. 
126. Divide 9 weights with consecutively increasing magnitudes into three 

groups two of which are of the same weight while the third one is lighter. 
127. Prove that the numbers of grams the given weights weigh are all either 

even or odd. 
128. It suffices to consider the case when all the numbers in question are 

positive and their product is equal to I. 
129. After 2k operations we inevitably arrive at an N-tuple of ones. 
130. Prove that in the transformation process described in the condition of 

the problem the differences between the given numbers permanently decrease. 
131. (x, y, z) = (I, I, 0). 
132. (a) First of all prove that for any original numbers we eventually ar­

rive at a 4-tuple of even numbers. (b) The assertion stated in Problem 132 (a) 
remains true for rational numbers and is false for irrational numbers (in the 
latter case the original numbers can be chosen so that all the following _4-tup­
les are proportional to the first one). 

133. (b) Construct an increasing sequence beginning with the first of the 
given IOI numbers. If this sequence contains less tlrnn 11 numbers, delete these 
numbers from the original set and construct a new increasing sequence begin­
ning with the first of the remaining numbers; if that sequence again contains 
less than 11 numbers, delete these numbers as well and construct a new in­
creasing sequence, and so on. If all the sequences thus constructed contain less 
than 11 numbers each, then the total number of these sequences is not less than 
II; using this fact we cnn construct a decreasing sequence of II numbers. 

134. Consider the greatest odd divisors of the given numbers. 
135. (a) Consider the remainders with the smallest absolute values resulting 

from the division of the numbers by 100. 
(b) Let ai, az, ... , a1oo be the given numbers. Consider the remainders re­

sulting from the division by 100 of the numbers a1, a1 + a2, a1 + az + aa, .... 
(c) If the sum of several numbers is less than 200 and is divisible by 100 

then it is equal to 100. 
(d) Prove in succession the following properties: among any 3 integral num­

bers there are 2 numbers whose sum is divisible by 2; among any 9 integral 
numbers there are 5 numbers whose sum ls divisible by 5; among any 199 inle· 
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gral numbers there are 100 numbers whose sum is divisible by 100 (when prov­
ing the third property use the first two). 

136. Elaborate the proof by contradiction. 
137. Consider the numbers of passages from a cross to a nought and from 

a nought to a cross encountered when the circle is described in one chosen di­
rection. 

138. Consider the sum of all the factors of this product. 
139. One half of the summands in the given sum consists of the numbers +I 

and the other half of the numbers -1. 
140. Collect in the first group all numbers whose decimal representations con­

tain an even number of ones. 
141. Write the 5 numbers one below another; then the number of the columns 

of digits containing two identical digits lies within the limits from 400 to 600. 
142. Prove that after a number of operations have been performed we can 

always change any sign while the other signs remain unchanged. 
143. Use Dirichlet's principle (see page 9). 
144. Change the number l/N to a (periodic) decimal. 
145. Let d be the common difference of an arithmetic progression and let 

a= {d} (see page 36) for a nonintegral d and et= 1 for an integral d. It is 
sufficient to place the line segments of length 1 in such a way that a line seg­
ment of length a cannot be formed of intervals between the former segments 
or of its parts (here are meant the intervals between the line segments or its 
parts lying "sufficiently far" from the point representing the first term of the 
progression). 

146. Prove that for A ~ m + n the interval (0, A) of the number line con­
tains exactly A - 1 of the given fractions. 

147. Denote by k1 (i = 1, 2, 3, ... ) the number of those members of the 
given sequence of positive integers which lie between 1000/i and 1000/(i + I) 
and compute the number of the numbers less than 1000 which are multiple of 
at least one of the numbers ai. az, ... , an. 

148. The length k of the period of p/q is equal to the smallest exponent k 
for which lQk - 1 is divisible by q. If k = 2l then it follows that 101 - I is 
divisible by q, that is (101 + l)/q is an integral number. The last fact implies 
that for the period a1a2 ... a1a1+1a1+2 ... ak of the fraction p/q we have 

a1+a1+1=a2+a1+2= ... =a1+a2=9 

149. Use the fact that the number of digits in the periods of the fractions 
an/P" ·and an+ilpn+i are equal to the smallest positive numbers k and l respec­
tively such that lOk - 1 is divis'ble by p" and 101 - 1 is divisible by pn+i. 

150. (a) 7744. (b) 29; 38; 47; 56; 65; 74; 83 and 92. 
151. Let a denote the number formed of the first two digits of the sought-for 

number and let b denote the number formed of the last two digits; then 99a = 
= (a+b) 2 -(a+b) = (a+b)(a+b-1). Answer: 9801; 3025; 2025. 

152. (a) 4624; 6084; 6400; 8464. (b) Such numbers do not exist at all. 
153. (a) 145. (b) Only the number I. 
154. (a) l; 81. (b) I; 8; 17; 18; 26; 27. 
155. (a) The number x cannot exceed 4. Answer: x = I, y =±I; x = 3, 

y = ±3. (b) x = I, y = ±1, z is an arbitrary even number; x = 3, y = ±3, 
z = 2; x = I, y = 1, z is an arbitrary odd number; x is an arbitrary positive 
integer, .1J = 1 I + 21 + ... +xi, z = I. 

156. Consider the exponents of the powers of two by which the sought-for 
four numbers can be divisible. Answer: the expansion is impossible for an odd 
n and there exists only one expansion for an even n: 
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157. See the hint to Problem 156. Problem 157 (b) is similar to Problem 157 
(a): there exists only one answer, namely x = y = z = v = 0. 

158. (a) It can be shown that if the numbers x, y and z satisfy the indicat­
ed equality and, for instance, the inequality z > kxy/2 holds, then the numbers 
can be decreased in such a way that the same equality remains valid for them. 
In case x ~ kyz/2, y ~ kxz/2, z ~ kxz/2 and x ~ y ~ z there must be 2~kx~ 
~ 3. Answer: k = I and k = 3. (b) Every such triple of integers can be ob­
tained with the aid of a number of consecutive substitutions of the form xi =x, 
Yi = y, Zi = kxy - z from one of the triples I, I, I and 3, 3, 3. Altogether, 
among the first 1000 numbers there are 23 triples of numbers satisfying the 
conditions of the problem. 

159. Prove that x, y and z, are even. Answer: x = y = z = 0. 
160. (x, y) = (0, -1), (-1, -1), (0, 0), (-1, 0), (5, 2), (-6, 2). 
161. x = 3, y = 1. 
162. x = n2; y = 1, z = n or x = 0, y = m, z = 0. 
163. Suppose that the assertion stated in the condition of the problem is 

false and consider the greatest prime number for which there are solutions. 
164. Consider in succession the follow:ng cases: all the four numbers are 

distinct, two of the numbers coincide while the other two are distinct, there are 
two pairs of pairwise equal numbers etc. Answer. 96, 96, 57, 40; II, 11,6, 6; 
k(3k ± 2), k(3k ± 2), k(3k ± 2), I (here k is an arbitrary integer such that 
k(3k ± 2) is positive); I, I, I, !. 

165. 2, 2 and 0, 0. 
166. I = 1/2 + 1/4 + 1/4 = 1/2 + 1/3 + 1/6 = 1/3 + 1/3 + 1/3. 
167. (a) Put x =Xi+ n, y =Yi+ n. (b) Cf. the hint to Problem 167 (a). 

(b) X=m(m+n)t, y=n(m+n)t, z=mnt where m, n and tare arbitrary 
integers. 

168. (a) Let y > x; show that in this case y is divisible by x. Answer: x = 
= 2, y = 4. (b) x = [(p + l)/p]P, y = [p + l)/p]P+ 1 where p is an arbitrary 
integer different from 0 and -1. 

169. 7 or 14. 
170. From the relationship between the number of points received by the 

pupils of the 6th form and the number of games they played one can conclude 
that all the pupils of the 6th form won all the games they played. It follows 
that only one pupil of the 5th form participated in the tournament. 

171. Denote p - a= x, p- b = y, p- c = z where a, b and c are the sides 
of the triangle and p is half the perimeter of the triangle: p = (a+ b + c) /2. 
Then the problem reduces to the determination of the integral solutions of the 
equation xyz=4(x+y+z) or of the equation x= (4y+4z)/(yz-4). The 
condition x ~ y can be regarded as a quadratic inequality with respect to y 
(with coefficients depending on z); this makes it possible to find the limits with­
in which z and y must lie (altogether, there are 5 solutions to the problem). 

172. n(n2 + 1)/2. 
173. Prove that every number occurs on the diagonal an odd number of 

times. For an even n the assertion of the problem is false. 
174. The difference is equal to n2 - n. 
175. From the tables obtained as described choose the one with the maximum 

sum of all its numbers and investigate this table. 
176. I. 
177. Use the property that the ith row, the (9 - i)th row, the ith column 

and the (9 - i) th column contain the same numbers. 
178. Use the relation a1i + ak1 = akf +au which holds for all i, j, k and l. 
179. Take into account that au= 0 and au= - a,1 for all i and j. 
180. Use the method of mathematical induction. 
181. (a) Consider the variation of the signs which stand in the 8 squares 

adjoining the edges of the board but are not at the corners. (b) Reduce the 
problem to Problem 180 (a). 
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182. (a) This is not always possible (prove that there are distributions of 
the signs that cannot be obtained from the one in which all the squares con­
tain the sign "+" with the aid of the operations ~escribed in the condition of 
the problem). (b) This is not always possible(see what has been said in con­
nection with Problem 182 (a)). 

183. (a) Yes. (b) It is possible to transform consecutively into zero all the 
numbers in the I st row, then the numbers in the 2nd row etc. 

184. Write the number a in binary notation. 
185. Make use of the induction method. 
186. Let Un+ 1 + Un+2 + ... + Un+B = Sn (where Uk is the kth Fibonacci num­

ber); prove that Un+9 < Sn < Un+ID· 
187. Consider the sequence of the remainders resulting from the division of 

the Fibonacci numbers by 5. 
188. The last four dig;ts of a difference of two numbers are completely de­

termined by the last four digits of the minuend and of the subtrahend. Prove 
that there exist n and k such that the last four digits of the (n + k)th and of 
the (n + k + I) th Fibonacci numbers are equal to those of the kth and of the 
(k +!)th Fibonacci numbers respectively. This will mean that the last four 
digits of the (n + k - I) th and of the (k - I) th Fibonacci numbers coinc:de 
etc. In this way it is possible to find a Fibonacci number whose last four digits 
coincide with those of the first Fibonacci number which is equal to zero. 

189. Use the inequalities a~-I + 2 <a~< a~-I + 3. 
190. First solution. Add a number an+ 1 to the sequence. Second solution. Ap­

ply the principle of mathematical induction. 
191. 2952 (prove that the greatest number of members in a sequence satis­

fying the conditions of the problem which starts with the greatest number 
a1 = n is equal to [(3n + 1)/2]). 

192. Elaborate the proof by contradiction. Investigate the possible values of 
the digits ctn, ctn+i. ... such that when they are written additionally the given 
number always remains prime. 

193. (a) This is impossible. (b) It is possible. 
194. For the first time the number 81 occurs in the 111 111 I I Ith place; the 

number 27 is consecutively repeated 4 times earlier than the number 36 first oc­
curs. 

195. 1972 times (take into account that if a and b are relatively prime num­
bers then the pair a, b occurs only once in the sequence of the collections / 0, 
Ii. ... and if a and b are not relatively prime then these numbers never occur). 

196. Let a 4, a 3, a 2, a 1 be the last four digits of the sequence; determine the 
number of times the group of the digits a1a2aaa4 occurs in the given sequence. 

197. Let N k be the product of the first k prime numbers; prove (using the 
induction method) that the assertion stated in the condition of the problem holds 
for the numbers Nk with any k. 

198. Prove that any natural number n can be written in a unique manner 
in the form n = px + qy where x and y are integers and 0.;::;; x < q. 

199. Represent the numbers indicated in the condition of the problem in the 
form X(X + 1)/2 + x where X ~ 0 and 0.;::;; x.;::;; X. 

200. Consider all the points with integral coordinates (x, y) located within 
the square bounded by the coordinate axes and the straight lines x = 100 and 
y = 100. 

201. Write x in the form x = [x) +a where a= {x}. 
202.- Use the result of Problem 201 (3). 
203. Consider all the points with integral coordinates x, y such that 0 < 

< x < q, 0 < y < p and y/x .;::;; p/q. 
204. Apply the principle of mathematical induction. (It is also possible to 

solve the problem geometrically; to this end one should consider all the points 
with integral coordinates lying in the first quadrant below the hyperbola 
xy = n). 
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205-207. In the solution of Problem 205 one should use the equality 

[(2 + -y'2)n] = (2 + ,Y2t + (2- ,Y2t- I 

Problems 206 (a), (b) and 207 are solved analogously. 
208. Among the p consecutive whole numbers n, n - I, n - 2, ... , n - p + 1 

there is one and only one number divisible by p. If this number is equal to N 
then [n/p] = N/p. Thus, the differeqce, C (n, p) - [nip] can be written in the 
form 

n(n-1) ... (N+l)N(N-1) ... (n-p+I) N 
p! p 

209. If rx > 0 then (N-1)/N ~ rx ~ N/(N- i). 
210. Prove that (N/2k) is equal to the number of those whole numbers not 

exceeding N .which are divisible by 2k-I and are not divisible by 2k. 
211. 31. 
212. (a) Compare the given product with the product (2/3) · (4/5) · (6/7) 

•.. (98/99) or square the inequality that must be proved. 
(b) Using the principle of mathematical induction prove that 

_!_. ~-~ 2n-1 :;;;;;--•--
2 4 6 2n ,Y3n + l 

213. The second number. 
214. (a) The first of the numbers is smaller. (b) The first of the numbers is 

greater (make use of the method of mathematical induction). 
215. Prove that if I Ok-I ~ 1974n < !Ok then the inequality 1974n + 2n ~ I Ok 

cannot hold. 
216. ±II. 
217. Use the inequality established in Problem 212 (a). 
218. The number 99" + 100" is greater than IOI" for n ~ 48 and is smaller 

than IOI" for n > 48. 
219. 3001 
220. Begin with proving that 

I + !:_ .,:::: (I + _!_) k .,:::: I + _!: + ~ 
n """ n """ n n2 

for any positive integer k ~ n. 
221-222. Use the result of Problem 220. 
223. Use the method of mathematical induction. 
224. Apply Newton's binomial formula. 
225. Use the method of mathematical induction. 
226. Use the inequality 

(k + l) xk (x - I)> xk+I - I > (k + I) (x - 1) 

which implies that 

(p + t)k+l _ pk+I > (k +I) pk> pk+I _ (p _ t)k+l 

for any positive Integer p. 
227. These inequalities can be obtained by replaclng the terms of the given 

sums by greater (accordingly, smaller) numbers; when necessary, group these 
terms in an appropriate manner before replacing the numbers (that is, when 
necessary, the indicated replacement should be performed for the new sums con· 
taining a smaller number of terms). 

228. Begin with showing that 

2 -y'n+1 - 2 ,yn < :-n < 2 ,yn - 2 ,y;=T 
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Answers: (a) 1998. (b) 1800. 
229. Start with proving that 

~ [,y'(n + 1)2 --Y'n2] < --1=- < ~[,y'n2 - ,y'(n + 1)2] 
2 -Y'n 2 

Answer: 14 996. 
230. (a) 0.105. (b) Use the inequality 

I 1 1 I 1 { 9 10 11 
10! +TIT + 12! + · .. + 10001 < 9 10! +TIT + T2I + 999 } ... + 10001 

Answer: 0.00000029. 
231. Use the result of Problem 227. 
232. Start with determining the number of those terms lying between !/!Ok 

and !llOk+t that are not deleted. 
233. (a) This problem is solved by analogy with Problem 23). (b) Use the 

~~00 . 
I 1 1 I 

"f:2" + "2-3" + ... + (n - 1) n =I - n 
234. Prove that 

( 
1 + 1 + I + + _1_) < 2 log 3 

log 1 + p fi2 pg pk p 

for any positive integers k and p ;;;::. 2. Proceeding from this inequality derive 
the inequality 

( 
I 1 1 

log I + 2 + 3 + 4 + 

... +*) 
where p1 is the greatest prime number among the numbers from 1 to n. 

235. Take into account the identity (a+ b + c) 3 - a3 - b3 - c3 = 3 (a+ 
+b)(b+c)(c+a). 

236. Make use of the relations a10 +a5+I = ((a5) 3-l)/(a5-l) and 
a15 _ 1 = (a3)5 _I. 

237. Prove that the difference (x9999 + xssss + ... + x11 11 + 1) - (x9 + 
+ x8 + ... + x + 1) is divis:ble by x9 + x8 + ... + x +I. 

238. (a) The expression a3 + b3 + c3 - 3abc is divisible by a+ b + c. 
(b) Answer: x1 = - a - b where 

. a/ q • I q2 p3 
a, b=\f 2± \/4+27 

239. Eliminate radicals and solve the resultant equation with respect to a. 
240. Use the fact that if x 2+2ax + 1/16 = y then X= - a+\l'a2 + y-1/16; 

consider the graphs of the functions y = x2 + 2ax + 1/16 and y 1 = - a+ 
+ -\f'a2 + x - 1/16. 

241. Prove that there must be 3x = x2• 

242. (a) Prove that there must be 1/(1 + x) = x. 
243. The roots of the equation are all the numbers lying between 5 and 10. 
244. The roots of the equation are the number -2 and all the numbers not 

exceeding 2. 
245. X1 = 1, X2 = 2, ... , Xn = n, 

.•1-246. x = "14. 
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247. For a = ±I the system possesses three solutions; for a=± ,.,/2 the 
system possesses two solut:ons. 

248. (a) For a =-I the system has no solutions; for a= I the system has 
infinitely many solutions. (b) For a= ±I the system has infinitely many so­
lutions. (c) For a= I the system has infinitely many solutions; for a= -2 
it has no solutions at all. 

249. For the system to possess solutions it is necessary that three of the four 
numbers ai. cx2, cx3 and CX4 should be equal to one another. If 

a1 = a2 = aa =a, a4 = P then x1 = X2 = x3 = ~
2 

, x 4 =a ( p - ~) 
250. There is only one real solution: x = 1, y = I, z = 0. 
251. x = I, y = 0 and x = 0, y = I. 
252. X1 = X2 = X3 = X4 = X5 = 0 and x is arbitrary; Xi = X2 = X3 = X4 = 

= Xs are arbitrary and x = 2; x = (-I± ,.,/5)/2, X1 and x2 are arbitrary, x3 = 
= XX2 - Xi, X4 = -x(x1 + X2) and Xs = XX1 - X2. 

253. Either all the numbers are equal to I or three of them are equal to -1 
and the fourth one is equal to 3. 

254. For a> b > c > d we have x = t = !/(a - d), y = z = 0. 
255. Note that depending on the sign of the discriminant t::i, = (b -1) 2 -

-4ac the quadratic trinomial a£2 + (b-1)£+c either retains sign for all~ 
or turns into zero for a single value of £ or possesses two different roots 
£ = £1 and £ = £2. 

256. There are no solutions at all when n is even and a1aa ... an-I :¥= a2a4 ••• 

. . . an; there are infinitely many solutions when n is even and a 1a3 ••• 

. . . an-I = a2a4 ... an; there are two solutions when n is odd. 
257. (a) The number of real roots of the equation coincides with the num­

ber of the points of intersection of the sine curve y = sin x and the straight 
line y = x/100. (b) The number of the roots is equal to the number of the 
points of intersection of the graphs of the functions y = sin x and y = log x. 

258. All the numbers a1, a2, ... , a100 are equal. 
259. Investigate the coefficients of the equation 

P(x) = (x-a)(x-b)(x+d) =0 

260. Consider the reciprocal of the fraction indicated in the condition of the 
problem; eliminate radicals in the denominator of the resultant fraction. 

261. Denoting the numbers in question as a, b and I/ab we can express the 
assertion stated in the condition of the problem in the form a+ b + I/ab > 
> l/a + l/b +ab. • 

262. Prove (using the induction method) that for any natural numbers n 
and k the fact that a sum of n positive numbers is equal to I implies that the 
sum of all the possible products of k (where I < k,,::;:;; n) numbers chosen from 
the given numbers is less than I. 

263. 1/2. 
264. All the numbers a; (where i = l, 2, ... , 1973) are equal (consider se· 

parately the cases a1 > I and a1 < I). 
265. Apply the method of mathematical induction. 
266. This is impossible (for the second polynomial the answer to the question 

is positive). 
267. Use the method of mathematical induction. 

268. If 99 999 + 111 111 ,.,/3 =(A+ B ,.,j3)2 then 99 999 - 111 111 ,.,/3 = 
= (A - B ,.,j3)2• . 

269. Prove that the assumption that ~2 = p + q ,Yr leads to the wrong 
conclusion that -f/2 is a rational number. 

~70. Let A = -'rn; then x + 1/-' = n. 



424 Answers and Hints 

271. There are no such numbers. 
272. This is impossible. 
273. For x = (6k + 5)/(3- k2) where k is a rational number. 
274. Estimate the difference Yi - Xi between those roots of the equauons 

x 2 + px + q = 0 and y 2 + py +Qi= 0 where I Qi - q I :::::: 0.01 

which are close to each other. 
275. Let <Xi, a2, ••. , <Xn where 0 <<Xi < <X2 < ... < <Xn denote the frac­

tional parts of the given numbers ai, a2 ... , an; take the minor approximations 
of the numbers ai. a2, ... , an and the major approximations of the numbers 
ak+i. ak+ 2 • ••• , an after which choose an appropriate value of the index k. 

276. O; 0.5; 0.50 I; 0.502; ... ; 0.999; 1. 
277. Cons:der the fractional parts of the numbers 0, a, 2a, 3a, •.. , lOOOa 

and use Dirichlet's principle (see· page 9). 
278. (a) Prove that if a< I - (0.1) ioo then also ,.,/a< 1 - (0.1) 100• (b) Take 

\nto account that the number x under consideration is equal to 
hh - (1/IO)ioo)/3. Answer: with an accuracy of 300 decimal places we have 

x = 0. 3333 . . . 333166666 ... 6666250000 ... 000 ._ _____ .....,; ---....--- ..___ ___ ....,,, 
100 threes 100 sixes 97 noughts 

279. The second of the two given expressions is greater than the first one. 
280. x = (a1 + a2 + ... +an)/n. 
281. (a) ai, a2, a4, a3• (b) Prove that if aia and a1

13 
are some two of the 

given numbers (where a<~) and if aia+I and aif3+l are the numbers pre­

ceding a1a and following a1
13 

respectively in the sought-for arrangement then 

(aia - a,13) (ala-I - ai13+1) > 0 

282. (a) Consider a broken line AoAiA2 ... An such that the projections of 
the line segments AoAi. A1A2, ... , An-iAn on the axis Ox are equal to ai, 
a2, ••• , an respectively and the projections on the axis Oy are equal to bi. 
b2, ... , bn. The equality takes place when ai/bi = a2/b2 = ... = an/bn. (b) 
Make use of the inequality of Problem 282 (a). 

283. For an even n the problem can be solved geometrically by analogy with 
the solution of Problem 282 (a); the case when n Is odd can be reduced to the 
former case of an even n. The equality takes place for the even values of n 
when ai = I - a2 = aa = I - a4 = ... = an-1 - an and for the odd values of 
n it holds only when a 1 = az = ... = an = 1/2. 

284. Square both members of the inequality. 
285. The expression cos sin x is greater than sin cos x for any x. 
286. (a) Denoting log2 rt= a and logs :rt= b we can write :rtifa+lfb = JO. 

(b) Denoting log2 :rt = a and log "2 = b we can write b = If a. 
287. (a) Take ;nto account that sin x < x for every angle x lying in the 

first quadrant. (b) Take into account that tan x > x for every angle x lying in 
the first quadrant. 

288. Take into account that the tangents of angles can be defined geometri­
cally in terms of their line values (with the aid of unit circle used in trigono­
metry) and can also be interpreted as twice tbe areas of some triangles. 

289. arc sin cos a;c sin x + arc cos sin arc cos x = rt/2. 
290. Replace the angle x by x +:rt in the sum cos 32 x + a31 cos 31 x + ... . . . + a 1 cos x and add the resultant expression to the original sum. 
291. Using the formula 2 sin a/2 = ± ,Y2 - 2 cos a compute consecutively 

for n = I, 2, ... the expressions 

2 sin(ai + a1a2 + ... +·aia2 ··; C!n). 45• 
:2 2n- . 
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292. I. 
293. Take into account that the two given polynomials and the polynomials 

(1 + x2 + x3) 1000 and (I - x2 - x3) 100° have the same coefficients in xzo respec­
tively. 

294. Make use of the formula (a+ b) (a - b) = a2 
- b2• 

295. (a) C(IOOI, 50) = 10011/501·9511. (b) !OOOC(IOOl, 51)-C(lOOl, 52) = 
= 51050·1001!/521·950! 

296. Let us denote the given expression as Ilk; then Ilk = (Ilk-1- 2) 2• An-
swer: (42k-I _ 4k-I): 3. 

297. (a) 6. (b) 6x. 
298. -x + 3. 
299. Use the fact that the polynomial x4 + x3 + 2x2 + x + 1 is a divisor of 

the binomial x12 - 1. Answer: -1. 
300. P(x) = cx(x - 1) (x- 2) ... (x- 26) where c is constant. 
301. (a) Consider the numbers P(lON) for sufficiently large N. (b) Use the 

result of Problem 301 (a). 
302. In the equality x200y200 + 1 = f (x)g(y) first put y = 0 and then x = 0. 
303. Take into account that the quadratic trinomial p (x) - x retains sign 

for all x. 
304. Make use of the inequalities Ip(!) I ~I, lp(O) I ~I and Jp(-1) I ~I. 
305. Consider the two numbers p(x1) and p(x2) where p(x) Is the polyno-

mial on the left-hand side of equation (3). 
306. Q2 + q2 - pP(Q + q) + qP2 + Qp - 2Qq. 
307. a = 1 and a = -2. 
308. (a) a= 8 and a= 12. (b) b = I, c = 2, a= 3; b =-I, c = -2, 

a= -3; b = 2, c = -1, a= 1 and b = 1, c = -2, a= -1. 
309. (a) The representation is impossible. (b) Only when n = 2, a2 = a1 + 

+ 2 and n = 4; az = a1 - 1, aa = a1 + l, a4 = a1 + 2, 
310. Use the fact that If 

(x - a 1) 2 (x - a2)2 ••• (x - an)2 + 1 = p (x) q (x) 

then the polynomials p(x) and q(x) as well as the product (x-a1) 2(x­
- a2) 2 ••• (x - an) 2 + 1 cannot turn into zero for any x and therefore cannot 
change sign. In all the other respects the solution is quite analogous to. that of 
Prpblem 309 (a). 

311. Take into account that the number 14- 7 = 7 cannot be expressed as 
a product of several integral factors among which four factors are different. 

312. Use the fact that if the given polynomial can be expressed as a pro­
duct of polynomials with integral coefficients then the values of x for which 
the polynomial is equal to ±1 also turn the latter polynomials into ±1 and 
that a polynomial of the third degree cannot assume one and the same value 
more than three times. 

313. Take Into account that if p and q are two Integers then P(p) - P(q) 
is divisible by p - q. 

314. Prove that if P(k/l) = 0 then k-pl = ±1 and k-ql = ±1. 
315. (a) Equate the coefficients in like powers of x on both sides of the 

equality 

(ao + a1x + a2x2 + ... + anxn) (bo + b1x + b2x2 + ... + bnx") = 
=co + C1X + c2x

2 + ... + cn+mxn+m 

and, using the resultant formula, show that if the given polynomial could be 
expressed as a product of two polynomials with integral coefficients then all 
the coefficients of one of the polynomial factors must be even (which is im­
possible because the leading coefficient of the original polynomial is equal 
to 1). 
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(b) Put x = y + l in the given polynomial and then, by analogy with the 
solution of Problem 315 (a), show that if the resultant polynomial could be 
expressed as a product of two polynomial factors with integral coefficients then 
all the coefficients of one of the factors must be divisible by the prime num­
ber 251. 

316. Use the same formula as the one in the solution of Problem 315 (a) 
(see the hint to the latter problem). 

317. Prove that the expression P(p/q) where p/q is an irreducible fraction 
cannot be equal to an integral number. 

318. Let P(N) = M; prove that P(N + kM) - P(N) is divisible by M for 
any k. 

319. Write the polynomial P(x) which assumes integral values for the in­
tegral values of x in the form of a sum P(x) =b0P0 (x)+b 1Pi(x)+ ... +bnPn(x) 
with indeterminate coefficients b0, b1o ... , bn where Pk (x) = C (x, k) (for inte­
gral x ;;;;. k) and then determine these coefficients by substituting consecuti­
vely into the last equality the values x = 0, 1, 2, 3, ... , n. 

320. (a) See the hint to the foregoing problem. (b) Perform the change of 
variable y = x + k in the given polynomial. (c) Consider the polynomial 
Q(x) = P(x2). 

321. Use De Moivre's formula. 
322. Make use of the result of Problem 321 (b). 
323. If we put x + l/x = 2 cos a then x =cos a± i sin a. 
324. Use De Moivre's formula. 
325. Make use of the result of the foregoing problem. Answer: 

2 + 2 2 + + 2 n - l + sin (n + 1) a cos na 
cos a cos a . . . cos na = - 2- 2 sin a 

326. Use De Moivre's formula and Newton's binomial formula. 
327. Apply the formula 

sin A sin B = ~ [cos (A - B) - cos (A+ B)] 

and use the results of Problem 324. 
328. Consider the roots of the equation x2"+ 1 - I = 0. 
329. Make use of the formulas of Problem 321 (b). 
330. Make use of the result of Problem 329 (b). Answer: (a) n (2n - 1) /3. 

(b) 2n(n + 1)/3. 
331. Make use of the result of Problem 329 (a). Answer: (a) .../2n + l/2n and 

...;n,J2n- 1• (b) l/2n and ,Yfi,;2n- l. 
332. Take into account that for an angle a lying in the first quadrant we 

always have sin a < a < tan a. 
333. (a) and (b) Use the formula of Problem 324. (c) Use the result of 

Problem (b). 
334. (a) Use the proposition established in Problem (a). (b) Make use 

of the formula of Problem 324. 
335. (a) Use the proposition established in Problem 333 (a). (b) See the 

hint to Problem 334 (b). (c) Use the result of Problem 331 (a). 
336. Using De Moivre's formula represent sin 50a in the form of a sum of 

products of cosines of angles multiple of a by some coefficients. Answer: 
5000 C(50, 25)R50 = (5000-501 R50) : (25!) 2 

337. The greatest value is I z I= (a+ .../a2 + 4)/2; the smaHest value is 
I z I= (.../a2 + 4 - a)/2. 

338. Prove that if the greatest of the differences between the arguments of 
the given numbers is less than 120° then they can be multiplied by a number 
with unit absolute value such that the real part of the sum of the resultant 
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products is positive. It is impossible to replace the value 120° indicated in the 
condition of the problem by a greater value 

339. Use the fact that if the point A representing the number z In the com­
plex plane lies outside the polygon M = C1C2 ... Cn whose vertices represent 
the numbers Ci, c2 ... , en then A "lies on one side" of M in the sense that 
all the vectors AM where ME M go in one direction from a straight line I 
passing through A. 

340. Take into account that if a is not divisible by p then the division of the 
numbers a, 2a, 3a, ... , (p - 1) a by p leaves different remainders. 

341. Take into account that if ki. k2 ... , k, are all positive integers smaller 
than N and relatively prime to N then the division of the numbers k1a, k2a, ... 
. . . , k,a by N leaves different remainders. 

342. Make use of the pr;nciple of mathematical induction. 
343. Apply Euler's theorem (see Problem 341). 
344. Using the induction method prove that for any whole number N there 

always exists a power of the number 2 the last N digits of whose decimal repre­
sentation are all unities and twos; to elaborate the proof make use of Euler's 
theorem (see Problem 341) and of the proposition of Problem 342. 

345. It is clear that a pair of numbers n and n2 is "good"; ~ompare the 
factorizations of the numbers n - 1 and n2 - !. 

346. Let a and d be relatively prime; using Euler's theorem (see Problem 
341) prove that the progression contains infinitely many powers of the num­
ber a with natural exponents. 

347. See the hint to Problem 340. 
348. (a) Prove that for every odd prime number p there exist two positive 

integers x and y (where x, y < p/2) such that the division of x' and y2 - 1 
by p leaves equal remainders. (b) Make use of Wilson's theorem (see Problem 
347). 

349. Let P1, P2 • ... , Pn be n prime numbers. Find a number which is divi­
sible by neither of these numbers and is greater than each of them. 

350. (a) Let pi, p2 , ••• , Pn be n prime numbers of the form 4k- 1 (or of 
the form 6k - 1). Find a number of the form 4N - 1 (or, accordingly, of the 
form 6N -1) which is divisible by neither of the numbers Pi. P2, ... , Pn and 
is greater than each of them. (b) The idea of the solution of this problem is 
close to the one on which the solution of Problem 350 (a) is based. 
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The present text covers the most elementary concepts and ideas under­
lying modern computational methods for solving problems in mechanics 
and mathematical physics. It also deals with the construction and in­
vestigation of appropriate computational algorithms. 
The presentation is simple and does not require that the reader have a 
substantial mathematical background. The text is designed for students 
of natural-science departments of colleges and universities. It will also 
be of interest to a broad range of physicists and engineers serving as 
an introductory course in computational mathematics. 
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This book is an expanded version of a course of lectures delivered h'I 
the author over a number of years to undergraduates, graduate students 
and associates of the Moscow Physico-Technical Institute and the Stek­
lov Mathematical Institute. It is designed for specialists interested in 
the applications of generalized functions. 

Algebra Can Be Fun 

Ya. PERELMAN 

This book comes from the pen of a talented popularizer of science, 
Yakov Perelman. The book aims at developing the reader's interest in 
algebra. The author employs various means for this purpose: problems 
with unusual subjects arousing curiosity, entertaining excursion in the 
field of history and mathematics, unexpected applications of algebra 
in day-to-day life, etc. The book covers material from school curriculum, 
touching upon almost all its branches. 
The book is intended for senior secondary-school students and for those 
interested in mathematics. 



The Fundamental The01·em of Arithmetic 

L. KALUZHNIN, D. Sc. 

This booklet is devoted to one of the fundamental propositions of the 
arithmetic of rational whole numbers - the unique factorization of 
whole numbers into prime multipliers. It gives a rigorous and complete 
proof of this basic fact. It is shown that uniqueness of factorization 
also exists in arithmetic of complex (Gaussian) whole numbers. The link 
between arithmetic of Gaussian numbers and the problem of representing 
whole numbers as sums of squares in indicated. An example of arithmetic 
in which uniqueness of expansion into prime multipliers does not hold 
is given. The booklet is intended for senior schoolchildren. It will help to 
acquaint them with the elements of number theory. It may also be useful 
for secondary school teachers. 

Systems of Linear Inequalities 

A. SOLODOVNIKOV, D. Sc. 

This booklet deals with relationship between systems of linear inequali· 
ties and convex polyhedrons, gives a method for finding all the solu­
tions for systems with two or three unknowns (is can be easily extended 
to systems with any number of unknowns). The question of consistency 
and inconsistency is dealt with, as also a description of linear pro­
gramming, as part of the theory of systems of linear inequalities. The 
last paragraph contains proof of the theorem of duality of linear pro· 
gramming. The algorithm, based on the idea of fundamental set of 
solutions, is considered for solution of a system of linear inequalities. 
The booklet is intended for senior schoolchildren and for all mathematics 
lovers, 
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