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Preface

The present book contains 350 problems selected from the ma.
terial of the mathematical olympiads and school mathematics
hobby groups in Moscow. About 15 problems have been taken from
the manuscript of the late D. O. Shklyarsky (1918-1942), one of the
founders of the mathematics hobby group for pupils at the State
University of Moscow.

It is a great pleasure to thank I. Bernstein, N. Vasilyev, G. Gal-
perin, Yu. lonin, A. Leman, A. Savin, A. Tolpygo, A. Toom, V. Gu-
tenmacher, L. Makar-Limanov and L. I. Golovina for valuable
advice and help in the preparation of the book.

IM. Yaglom
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Instructions

This book contains the conditions of problems, the answers and hints to them
and the solutions of the problems. The conditions of the most difficult problems
are marked by stars.

We recommend the reader to start with trying to solve without assistance
the problem he is interested in. In case this attempt fails he can read the hint
or the answer to the problem, which may facilitate the solution. Finally, if this
does not help, the solution of the problem given in the book should be studied.
However, for the starred problems it may turn out to be appropriate to begin
with reading the hints or the answers before proceeding to solve the problems.

Most of the problems in the book are independent of one another except
those in the last two sections (“Complex Numbers” and “Several Problems im
Number Theory”) where the problems are more closely interrelated.

It is advisable to choose a definite section of the book and to spend some
time on sclving the problems of that section. Only after that (this does not of
course meaun that all the problems or most of the problems must necessarily be
solved) should the reader pass to another section and so on. However, the or-
der in which the sections are arranged in the book may not be followed. The
solutions of some problems include indications concerning possible generaliza-
tions of the conditions of the problems. The reader is advised to think of sim-
ilar generalizations for other problems; it is also interesting to try to state
new problems akin to those collected in this book.



Problems

1. Introductory Problems

Most of the problems collected in this section are exercises
meant for logical training and they are not connected with any
definite division of mathematics. Some of these problems are
purely arithmetical (for instance, see Problems 25-29) while some
others can be associated with the graph theory. By a graph is
meant a system of points (see Fig. la) some of which are con-
nected by lines. Sometimes certain directions of motion are indi-
cated by arrows on some (or all) of these lines. Then we speak
of a directed graph (see Fig. 15). For instance, those of the prob-
lems below which are related to transportation systems can be
stated in terms of the graph theory (and systems of roads with
one-way traffic should naturally be represented by means of di-
rected graphs). Similarly, a group of people some of whom are
acquainted with one another can also be represented as a system
of points among which those representing the people acquainted
with one another are connected by lines *.

Most of the problems of this section do not require any special
knowledge of mathematics and therefore their solutions can easily
be understood by junior pupils. However, the solutions of some of
the problems are based on the method of mathematical induction
with which usually only senior pupils are familiar. For the solu-
tion of some other problems Dirichlet’s principle ** can be of use;
conditionally, this principle is stated as follows: if there are seven
rabbits and five cages (or, generally, m rabbits and n cages
where n < m) and if it is required to put the rabbits in the cages
then it is necessary to put two (or more) rabbits in at least one
cage.

1. Two hundred soldiers form a rectangular array with ten sol-
diers in each line and 20 soldiers in each file. From each line the
smallest soldier is chosen, after which among the 20 soldiers thus
taken the tallest one is chosen. Then from each file of the same
array of 200 soldiers the tallest soldier is chosen, after which

* In the problems of the present section an acquaintance relation is always
assumed to he symmetric in the sense that if a person A is said to be acquaint-
ed with a person B then it is automatically meant that B is acquainted
with A. If this convention is not introduced then a system of acquaintance rela-
tions should be represented by a directed graph.

** Peter Gustav Lejeune Dirichlet (1805-1859), a distinguished German
mathematician. o
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among the 10 soldiers thus taken the smallest one is chosen. Whictr
of the two soldiers, that is the smallest among the tallest soldiers
or the tallest among the smallest soldiers (provided that these
are different persons), is taller?

2. Each of the people who has ever lived on the Earth has
shaken hands with a number of other people. Prove that the
number of people each of whom has shaken hands an odd number
of times is even.

(a) (b)
Fig. 1

3. Prove that among any six people there are three people
pairwise acquainted or three people pairwise not acquainted.

4. Several people take part in a meeting (it is of course meant
that the number of the people exceeds one because, if otherwise,
it would be senseless to speak of a “meeting™!).

(a) Is it possible that among them there are not two persons
who are acquainted with the same number of people present at
the meeting?

(b) Prove that there can be the case when for any number of
the participants of the meeting there are not three people each
of whom is acquainted with the same number of people present
at the meeting.

5. 2n people take part in a meeting and each of them is ac-
quainted with not less than n people present. Prove that among
these people there are four persons who can be seated at a round
table so that each of them is acquainted with the neighbours sit-
ting on his leit and on his right.

6. A number of scientists took part in a congress. Some of themr
had been acquainted with some other participants of the congress
before and some were not. It turned out that among the scientists
there were not two persons who were acquainted with the same
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number of participants and who had a mutual acquaintance. Prove
that among the scientists who attended the congress there was
a person who was acquainted with only one of the participants.

7. At a congress there are 1000 delegates from various coun-
4ries. It is known that every three delegates can speak with one
another without the help of the rest (but it may happen that one
of the three persons has to serve as an interpreter for the other
two). Prove that all the participants of the congress can be put
up at a hotel with double rooms so that in each room there are
two delegates who can speak with each other.

8. Seventeen scientists take part in an international conference.
There are three languages such that each of the 17 scientists
knows at least one of them. It is known that every two partici-
pants of the conference can speak with each other in at least one
of the three languages. Prove that among the participants of the
conference there are three persons who can speak with one
another in one and the same language.

9. There are n people at a meeting. It is known that every two
of the participants of the meeting who are acquainted with each
other have no mutual acquaintances and that every two partici-
pants who are not acquainted with each other have exactly two
mutual acquaintances.

(a) Prove that all the participants have the same number of
acquaintances.

(b) For what n can the conditions of the problem be fulfilled?

10. In the town of “Manifold” there are 10000 inhabitants and
every two of them are either iriends or enemies. Every day not
more than one of the inhabitants of the town can quarrel with all
his friends and, simultaneously, make friends with all his enemies;
besides, any three inhabitants can make friends with one another.
Prove that in a number of days all the inhabitants without ex-
.ception can make friends with one another. What is the least
number of days sufficient for it?

11*. In the State of Oz there are several castles from each of
-which three toads start. A knight-errant leaves his ancestral castle
‘to travel in the country. The knight is fond of variety and there-
fore when he arrives at a castle he always turns to the left if he
turned to the right the previous time and turns to the right if he
turned to the left the previous time. (When going past the first
castle on his way the knight may turn in any direction.) Prove
that eventually the knight will return to his own castle.

12*, 2n Knights of the Round Table gathered at King Arthur’s
court, each of them having not more than n — 1 enemies among
the knights present. Prove that Merlin (King Arthur’s Counsellor)
can seat the knights at the round table so that none of them sits
next to his enemy.
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13. (a) Among 80 given coins one coin is known to be false
(it is also known that the false coin is lighter than a genuine
coin; all the genuine coins are of the same weight). It is required
to detect the false coin by means of four weighings using a beam
balance without weights.

(b) It is known that among n given coins there is a false one
which is lighter than a genuine coin; all the genuine coins are
of the same weight. What is the least number & such that it is
aiways possible to detect the false coin by means of £ weighings
using a beam balance without weights? ,

14. There are 20 metal cubes of the same size and look some of
which are made of aluminium while the others are made of du-
ralumin, the latter being heavier. How can we determine the num-
ber of the cubes made of duralumin with the aid of not more than
11 weighings using a beam balance without weights?

Remark. In this problem we assume that it is possible that all the cubes are
made of aluminium and that they cannot be all made of duralumin (because
without this assumption it would be impossible to find whether the cubes are
made of aluminium or of duralumin in case all the cubes turn out to be of the
same weight).

15*%, There is a false coin among 12 given coins. It is known
that the false coin differs in its weight from a genuine coin but
it is unkown whether it is lighter or heavier. All the genuine coins
are of the same weight. It is required to detect the false coin with
the aid of three weighings using a beam balance without weights
and, simultaneously, to find whether that coin is lighter or heavier
than the other coins.

Remark. Under the conditions given in Problem 15 it is possible, using three
weighings, to detect the false coin not only among 12 but also among 13 giv-
en coins; however, in the latter case it is impossble to find whether the false
coin is lighter or heavier than a genuine coin. It turns out that 14 coins need
four weighings.

It can also be proved (although the proof is rather intricate!) that if we
are given an arbitrary N of coins one of which is false and differs in its
weight from a genuine coin (all the genuine coins are of the same weight) then
the least number k of weighings with the aid of a bearn balance without weights
making it possible to detect the false coin and simultaneously, to find whether
it is lighter or heavier than a genuine coin is equal to logs(2N + 3) in case
the number 2N - 3 is equal to an integral power of the number 3 and is equal
to [logs(2N < 3) 4+ 1] in case 2N 4+ 3 is not equal to an integral power of 3
(that is in case the number logs(2N 4- 3) is not integral). Here the square brack-
ets denote the infegral part of a number (see page 36). For N = 12 this ge-
neral statement implies that &2 = 3. For the general case of N coins it would
also be interesting to determine the least number %, of weighings making it
possible to detect the false coin without finding whether it is lighter or heavier
than a genuine coin (for N = 12 or N = 13 we have k; = 3 while for N = 14
we have & = 4; so far as we know the general expression 2, = &, (N) has
not yet been determined).
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16. (a) Once a man entered an inn, He had no money but he
had a silver chain consisting of seven links. He was put up at the
inn and it was agreed that every day he would give the innkeeper
one of the links of the chain. What is the least number of the links
of the chain that must be cut so that the man can pay the inn-
keeper for seven days (if necessary, the man can take back from
ihe innkeeper some of the links he has already given to him and
give him some other links in exchange)?

(b) A chain consists of 2000 links. What is the least number
of the links of the chain that should be cut so that it is possible
to take any number of links ranging from 1 to 2000 by using
the parts of the chain thus obtained?

i7. In the town of Liss all the underground stations are con-
nected so that it is possible to go from any station to any other
(if necessary, the passengers are allowed to change trains). Prove
that in these conditions there is an underground station such that
when it is closed (the trains are not allowed to go past the sta-
tion which is closed) it is still possible to go from any of the
remaining stations to any other,

18%. There was two-way traffic in all the streets of the town of
Zurbagan. When it was necessary to have all the roads repaired
the municipal authorities had to introduce temporarily one-way
traffic in some of the streets, two-way traffic remaining in the
rest of the streets. After part of the streets were repaired two-way
traffic was restored in them and in the others one-ray traffic was
introduced. During both periods of the repairs it was possible to
go from any place of Zurbagan to any other place. Prove that
one-way traffic can be introduced in all the streets of the town
in such a way that it is possible to go from any place to any
other.

19*. There are n towns in the state of Dolphinia every two of
which are connected by a road, the traffic in the roads being
one-way. Prove that if n 5= 2 or n = 4 then the direction of the
movement along the roads can be chosen so that one can go from
any town to any other town without going through more than one
town. Also prove that for the case n = 2 or n = 4 such organiza-
tion of traffic is impossible.

20*. In the state of Shvambrania there are 100 towns. It is
known that if two towns A and B have no direct telephone com-
munication then there are air routes from A to B and irom B to
A and that if there is direct telephone communication between A
and B then there are no such routes. It is also known that any
two towns in Shvambrania can have telephone communication
(possibly with the aid of several intermediate telephone ex-
changes) and that it is possible to go by air from any town to
any other town (possibly with several landings). Prove that there
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are four towns in Shvambrania such that there can be telephone
communication between any two of them and one can fly from
any of these towns to any other using, if necessary, only two of
these four towns as intermediate points.

21. Can a knight move from the left lower corner of an ordinary
chess-board to the right upper corner passing through each of the
squares of the chess-board exactly once?

22. A king’s suicide problem. On a chess-board of 1000 X 1000
squares there are 499 black rooks and a white king. Prove that
for arbitrary initial positions of all these chessmen and for an
arbitrary strategy of the black the king can “play at give-away”,
that is arrive in several moves at a square where it must be taken
by one of the rooks. (The chessmen on the chess-board are sup-
posed to move according to the ordinary rules.)

23. Twelve squares are arranged in a circular order and four
neighbouring squares are occupied by four counters of different
colour: red, yellow, green and blue.

Any counter can be moved from the square it occupies across
any four squares to the fifth one (provided that the latter is not
occupied) in any of the two possible directions. After a number
of such moves the counters may again occupy the four initial
squares. What permutations of the counters can we have in this
case?

24. The students admitted to a university include exactly
50 speaking English, exactly 50 speaking French and exactly 50
speaking German. Of course, some of the students may speak two
or three of the languages and therefore, in the general case, the
total number of the students (each of whom speaks at least one
of the languages) may be less than 3-50 = 150. Prove that all
the students can be divided into 5 groups (generally consisting
of a different number of students) so that each group contains
exactly 10 people speaking English, exactly 10 people speaking
French and exactly 10 people speaking German.

25. (a) Twenty athletes took part in a contest, and there were
9 referees. According to his judgement on the achievements of
the athletes every reieree made a list in which he arranged the
athletes from the 1st to the 20th place. It turned out that there
was no considerable difference in the judgment of all the referees:
the places which each of the athletes was given by any two of the
referees differed by not more than three. The final distribution of
the places was done by determining the “average place” of every
athlete, that is by dividing by 9 the sum of the places he was
given by all the nine referees. What is the greatest possible value
of the “average place” of the best of the 20 athletes?

(b) The Tennis Federation gave qualification numbers to all
the tennis-players of the country: the best player received the st
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number, the next received the 2nd number and so on. It is known
that in a game of any two of the tennis-players whose numbers
differ by more than 2 the one having a smaller number always
wins.

In the Olympic games the 1024 tennis-players of the country
take part (this means that after every round of the contest all the
losers leave and the rest of the participants are divided into con-
testing pairs in a random way and then take part in the next
round). What is the greatest value of the qualification number
the winner of such games can have?

26*%. The Games lasted n days and N sets of medals were
awarded to the winners during the Games: one set of medals and
1/7 of the remaining medals on the Ist day, 2 sets of medals and
1/7 of the remaining part on the 2nd day,..., (n — 1) sets of med-
als and 1/7 of the rest on the (n—1)th day (the last but one
day) and, finally, all the n remaining sets of medals on the last
day. How many days did the Games last and how many sets of
medals were awarded to the winners?

27. There were five friends one of whom had a monkey. Once
they bought a bag of nuts and decided to share the nuts among
themselves the next morning. At night one of them woke up. He
divided the nuts into five equal parts, found that one extra nut
remained after the division, gave it to the monkey, ate his part
of the nuts and fell asleep again. After that another owner of the
nuts woke up. He did not know that some of the nuts had been
taken and therefore he divided all the nuts remaining in the bag
into five equal parts. He also found that there remained one nut
after the division which he gave to the monkey. He ate one of
these five parts and fell asleep. Then the three remaining friends
performed, in succession, the same operations, that is, each of
them divided the rest of the nuts into five parts not knowing what
his friends had done, found that there remained one nut after the
division, gave it to the monkey and ate one of the five parts. Fi-
nally, in the morning all the five friends divided the remaining
nuts into five parts, saw that there remained one nut after the
sharing and gave it to the monkey. It is required to determine the
least possible number of the nuts in the bag for such a sharing
to be possible.

28. Two brothers had a flock of sheep. They sold the flock and
got as many rubles for every sheep as was the number of the sheep
in the flock. The money was shared in the following way: first the
elder brother took ten rubles from the cash, then the younger
brother took ten rubles, after which the elder brother took ten
rubles again and so on. Finally, it turned out that at the last
stage when it was the younger brother’s turn to take money there
remained less than ten rubles. Therefore the younger brother took
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the rest of the money and the elder brother gave him his knife for
the sharing to be fair. How much did the knife cost?

29. (a) Which of the two days, Saturday or Sunday, happens
to be more frequently a New Year’s Day?

(b) What day of the week happens to be most frequently the
30th day of a month?

2. Permutation of Digits in a Number

30. A whole number decreases an integral number of times
when its last digit is deleted. Find all such numbers.

31. (a) Find all whole numbers which begin with the digit 6
and decrease 25 times when this digit is deleted.

(b) Prove that there is no whole number which decreases
35 times when its initial digit is deleted.

32*, A whole number decreases 9 times when one of its digits
is deleted, and the resultant number is divisible by 9.

(a) Prove that in order to divide the resultant number by 9 it
is also sufficient to delete one of its digits.

(b) Find all the whole numbers satisfying the condition of the
problem.

33. (a) Find all whole numbers which decrease an integral
number of times when their third digits are deleted.

(b)* Find all whole numbers which decrease an integral num-
ber of times when their second digits are deleted.

34. (a) Find the least whole number which begins with the
digit 1 and increases 3 times when this digit is carried to the end
of the number. Find all the numbers possessing this property.

(b) What digits can stand at the beginning of the whole num-
bers which increase three times when these initial digits are car-
ried to the end of the numbers? Find all such numbers.

35. Find the least natural number whose last digit is 6 such
that it increases 4 times when this last d1g1t is carried to the
beginning of the number.

36. Prove that there are no positive integral numbers which
increase 5 or 6 or 8 times when their initial digits are carried to
the end of the numbers.

37. Prove that there are no positive integral numbers which in-
crease twice when their initial digits are carried to the end of
the numbers.

38. (a) Prove that there are no positive integral numbers which
increase 7 or 9 times when their initial digits are carried fo the
end.

(b) Prove that there are no positive integral numbers which
increase 4 times when their initial digits are carried to the end
of the numbers.
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39. Find the least whole number whose initial digit is 7 which
decreases 3 times when this digit is carried to the end of the
number. Find all such numbers.

40. (a) Prove that a positive integer cannot be 2, 3, 5, 6, 7 or
8 times as small as its “reversion”, that is as the number consist-
ing of the same digits written in the reverse order.

(b)*. Find all positive integers which are 4 or 9 times as small
as their reversions.

41. (a) Find a 6-digit number which increases 6 times when
its three last digits are carried to the beginning of the number
without their order being changed.

(b) Prove that there exists no 8-digit number which increases
6 times when its last four digits are carried to the beginning of
the number with the preservation of their order.

42. Find a 6-digit number whose products by 2, 3, 4, 5 and 6
are written with the aid of the same digits as the original number
but in some other order.

43. A whole number is equal to the arithmetic mean of all the
numbers obtained from the given number with the aid of all the
possible permutations of its digits (including, of course, the “iden-
tity permutation” under which all the digits retain their places).
Find all whole numbers possessing this property.

44. Let A be a positive integer and A’ be a number written
with the aid of the same digits which are arranged in some other
order. Prove that if 4 4 A" = 10!9 then A is divisible by 10.

45. Let M be a 17-digit number and N be the number obtained
from M by writing the same digits in the reverse order. Prove
that at least one digit in the decimal representation of the number
M 4 N is even.

3. Problems in Divisibility of Numbers

Most of the topics whose study is started in this section
are related to “higher arithmetic”, that is to number theory. The
study is in-some way continued in the following sections and first
of all in Secs. 4, 5 and 11.

46. Prove that for any integer n
(a) n®—n is divisible by 3;
(b) n®—n is divisible by 5;

{¢) n”—n is divisible by 7;

(d) n'' —n is divisible by 11;

{e) n'® —n is divisible by 13.
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Remark. Note that n® —n must not necessarily be divisible by 9 (for in-
stance, 2°—2 == 510 is not divisible by 9).

Problems (a)-(e) deal with special cases of a more general theorem; see
Problem 340 (page 67).

47. Prove that for any integer n

(a) 387 — 267 g divisible by 35 (here n = 0);

(b) n®—5n® 4 4n is divisible by 120;

(c) n?+4 3n + 5 is not divisible by 121,

48. Prove that for any integers m and n

(a)* mn(mb — n8%) is divisible by 56 786 730;

(b) m®+ 3m*n — d5m3n? — 15m?2n® + 4mn* 4 12n% is not equal
to 33.

49. For what positive integers n the number 207 4- 167 — 37 — 1
is divisible by 323?

50. Is there a natural number n such that n24n -1 is di-
visible by 19557

51. What number can be obtained in the remainder when the
hundredth power of a whole number is divided by 125?

52. Prove that if a whole number N is relatively prime to 10
then the 101th power of the number N has the same last three
digits as N (for instance, the last three digits of 12331%! are 233
and those of 37191 are 037).

53. Find a three-digit number which, when raised to any inte-
gral power, gives a number whose last three digits form the
original number.

54*. Let N be an even number not divisible by 10. What digit
is in the tens place of the number N?°? What digit is in the
hundreds place of the number N200?

55. Prove that a sum of the form

1P 495438 .., +nf

where n is an arbitrary positive integer and & is odd, is divisible
byl+2+3+4+...+n

56. Derive the test for divisibility of whole numbers by 11.

57. The number 123456789 (10) (11) (12) (13) (14) is written in
the number system to base 15, that is this number is equal to
(14)+(13) - 15 +(12) - 152 4 (11) - 15 ... -+ 2-15'2 4 15'3, What
number is obtained in the remainder when the given number is
divided by 7?

58. Let us consider all numbers K such that if a number N is
divisible by K then every number obtained from the number N
by any permutation of its digits is also divisible by K. Prove
that K can only be equal to 1, 3 and 9. (For K = 1 the indicated
property is quite obvious and for K=3 and K =9 it follows
from the well-known tests for divisibility by 3 and by 9.)
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59. Find the least whole number whose decimal representation
consists only of 1's which is exactly divisible by the number
333 ... 33.

\——v—/

100 threes

60. Let a be the last digit of a whole number N = 2% and A
be the number obtained by deleting this last digit in N. Prove
that for all £ > 3 the number aA is divisible by 6.

61. Prove that the expression 27 1958 — 108878 4- 101528 is
exactly divisible by 26 460.

62. Prove that 11! — 1 is divisible by 100.

63. Prove that 2222555 |- 55552222 {5 divisible by 7.

64. Prove that any number composed of 3" similar digits is di-
visible by 37 (for example, the number 222 is divisible by 3, the
number 777 777 777 is divisible by 9 and so on).

65. Find the remainder which is obtained when the number

1010 + 10109 + e + 1010

is divided by 7.

66. (a) Find the last digit of the number 9% and of the num-
ber 20%.

(b) Find the last two digits of the numbers 299 and 39%°.

(c)* Find the last two digits of the number 1404,

67. Prove that

(a) the decimal representations of the numbers 9% and 9o’
{(where, for instance, 9° means 9(%) have the same last two
digits.

77

(b)* the decimal representations of the numbers 77" and 77
have the same last six digits.

68. (a) What is the last digit of the decimal representation of

the number
(e (@)

where the raising to the power 7 is repeated 1000 times? What
are the last two digits of that number?
(b) What is the last digit in the decimal representation of the

number
( .(1(77)) )
7\7

which is written with the aid of 1001 sevens as in Problem (a)
but the order of the raising to the power is changed? What are
the last two digits of this number?
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69*. Lel us consider the number

( (o(e9) )
N=9\9

written with the aid of 1001 nines by analogy with the number in
Problem 68 (b). Find the last five digits of this number.

70. For what natural numbers n is the sum 57 4- n5 divisible
by 13? What is the least number n satisfying this condition?

71. Find the last two digits of the number

-+ 1)+ @42+ ...+ (n+99)°

where n is an arbitrary nonnegative integer and
(a) a=4,;
(b) a=28.
72*, Find the last 1000 digits of the number

N=1450450"+450°+ ... + 509

73. A natural number M is divisible by 7; prove that if the
number of the digits in the decimal representation of the number M
is divisible by 6 then the number N obtained by carrying the last
digit of M to its beginning is also divisible by 7.

74. How many noughts stand at the end of the product of all
whole numbers from 1 to 100 inclusive?

We shall use the notation
1.2.3:4...(n—1) - n=nl

(n! is called factorial n). The problemn can briefly be stated as follows: how ma-
ny noughts are there at the end of the number 1001?

75. (a) Prove that a product of n consecutive whole numbers
is divisible by n!.

(b) Prove that a fraction of the form m’—nl—k—,
whole number provided thata 64 ...+ bk < n.

(c) Prove that (n!)! is divisible by nl(*=11,

(d)* Prove that a product of n whole numbers forming an
arithmetic progression whose common difference is relatively
prime to n! is divisible by n!.

Remark. Problem 75 (d) is a generalization of Problem 75 (a).

is equal to a

76. Is the number of combinations of 1000 things taken 500 at
a time divisible by 7?

77. (a) Find all those numbers n lying between 1 and 100 for
which (n — 1)! is not divisible by n.
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(b) Find all those numbers n lying between 1 and 100 for
which (n — 1)1 is not divisible by n2

78*, Find all whole numbers n divisible by all whole numbers.
not exceeding 4/n.

79. (a) Prove that a sum of squares of five consecutive whole-
numbers cannot be a perfect square of a whole number.

(b) Prove that a sum of powers of three consecutive whole:
numbers with equal even exponents cannot be equal to an even
power of a whole number.

(¢) Prove that a sum of powers of nine consecutive whole:
numbers with equal even exponents cannot be equal to any power
(of course, with an exponent exceeding 1) of a whole number.

80. (a) Let A and B be two different seven-digit numbers each
of which is composed of all the digits from 1 to 7. Prove that A
is not divisible by B.

(b) Using all the digits from 1 to 9 compose three 3-digit
numbers which are in the ratio 1 : 2: 3.

81. A square of a whole number has four equal digits at its
end. What are these digits?

82. Prove that if the lengths of two sides of a rectangle and of
its diagonal are expressed by whole numbers then the area of the:
rectangle is divisible by 12,

83. Prove that if the coeificients of a quadratic equation

ax?+bx+c=0
are odd integers then the roots of the equation cannot be rational
numbers.
84. Prove that if the sum of fractions
1 1 1
n + n+41 + n+2

where n is a whole number, is written in decimal notation then
the resultant expression is a mixed periodic decimal.
85. Prove that the expressions

1 1 1
1 1 1 1
b V=Pt o togs T o Togms
. 1 1 1

© K=g+g+ ... +o57
where n and m are positive integers, cannot be equal to whole
numbers.

. a® -+ 2a

86. (a) Prove that a fraction of the form ST T

be reduced by a factor for any integral value of a.

cannot.
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5n4+6

8n 17 can

(b) Find all (natural) numbers by which a fraction
be reduced for an integral n.

87. 1953 digits are written in a circular order. Prove that if the
1953-digit numbers obtained when we read these digits in clock-
wise direction beginning with one of the digits is divisible by 27
then if we read these digits in the same direction beginning with
any other digit the new 1953-digit number is also divisible by 27.

88. Prove that there exists a number divisible by 5190 whose
decimal representation involves no noughts,

89. Prove that all numbers of the form 10001; 10001000!;
1000 100 010 001, . .. are composite.

90. Prove that any two numbers in the sequence

241, 241, 2641, 2841, 2641,..., 22"41,...

are relatively prime.

Remark. In particular, the result of this problem implies that there are in-
finitely many prime numbers (in this connection also see Problems 234 and 349).
Indeed, if the set of the prime numbers were finite there could not exist infi-
nitely many numbers among which any two numbers are relatively prime.

91. Prove that if one of the numbers 27 — 1 and 2" 4+ 1 where
n > 2 is prime then the other number is composite (for n = 2
both 2¢# — 1 = 3 and 2" 4 | = 5 are prime numbers).

92. (a) Prove that if p and 8p — 1 are prime numbers then
8p + 1 is a composite number.

(b) Prove that if p and 8p® 4 1 are prime numbers then 8p2 — 1
is also a prime number.

93. Prove that when any prime number different from 2 and 3
is divided by 12 we obtain 1 in the remainder.

94. Prove that if three prime numbers exceeding the number 3
form an arithmetic progression then the common difference of
the progression is divisible by &.

95*. (a) Ten prime numbers each of which is less than 3000
form an arithmetic progression. Find these numbers.

(b) Prove that there are not 11 prime numbers each of which
is less than 20 000 such that they form an arithmetic progression.

96. (a) Prove that from any five consecutive whole numbers it
is always possible to choose a number which is relatively prime to
the other four numbers.

(b) Prove that, given 16 consecutive whole numbers, it is al-
-ways pdUssible to choose a number from them which is relatively
prime to the other 15 numbers.
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4. Miscellaneous Problems in Arithmetic

-97. A number A is written in decimal number system with t
aid of 666 threes and a number B with the aid of 666 sixgs Of
what digits does the decimal representation of the product A-B
consist?

98. A decimal representation of a number A consists of 1001 sev-
ens. Find the quotient and the remainder resulting from the di-
vision of A by the number 1001.

99. Find the least square (of a whole number) whose decimal
representation starts with six 2’s.

160. Are there whole numbers m and n such that m? = n2 4+
-+ 1954?

101. Add three digits to 523 so that the resultant six-digit
pumber is divisible by 7, by 8 and by 9.

102. Find a four-digit number whose division by 131 leaves
a remainder of 112 and whose division by 132 leaves a remainder
of 98.

103. (a) Prove that the sum of all n-digit numbers (n > 2) is
equal to 494 99 ... 9 55 00 ... O (for instance, the sum of all

(n—3) times (\n——z?,—/iimes
three-digit numbers is equal to 494 550 and the sum of all six-digit
numbers is equal to 494 999 550 000).

(b) Find the sum of all even four-digit numbers which can be
written with the aid of the digits 0, 1, 2, 3, 4 and 5 (it is allowable
to repeat any digit in a number).

104. How many digits and what digits are needed to write all
whole numbers from 1 to 100 000 000 inclusive?

105. Suppose that all whole numbers are consecutively written
down from left to right. Find the 206 788th digit in this infinite
sequence.

106. Let us consider an infinite decimal of the form
0.1234567891011121314 ... where all the whole numbers are con-
secutively written after the decimal point. Is this decimal pe-
riodic?

107. Each of the whole numbers from 1 to 1 000 000 000 inclu-
sive is replaced by the sum of the digits forming the number (of
course, under this operation 1-digit numbers do not change where-
as all the other numbers decrease). Then each of the resultant
numbers is again replaced by the sum of its digits, and the op-
eration is performed repeatedly until we obtain a sequence of
1- dlglt numbers containing 1000 000 000 members. Is the number
of I's in this sequence greater than the number of 2's or not?

108. (a) A decimal representation of a whole number involves.
only a number of sixes and a number of noughts. Can this num-
ber be a perfect square?
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(b) Answer the same question for a whole number in whose
decimal representation the digits 1, 2, 3, 4, 5, 6, 7, 8 and 9 are
present, each of the digits is used only once, and the digit 5 stands
at the end of the number,

109. Each of the five digit numbers from 11 111 to 99 999 inclu-
sive is written on a separate card (the number of these cards is
obviously equal to 88 889). Then the cards are arranged in an
arbitrary manner to form a chain. Prove that the 444 445-digit
number obtained in this way (444 445 = 88 889.5) is not equal
to a power of two.

110. In the decimal representation of a 10-digit number the ini-
tial digit is equal to the number of noughts in the representation,
the next digit is equal to the number of ones and so on (accord-
ingly, the last digit is equal to the number of nines in the repre-
-sentation). Find all such 10-digit numbers.

111. By what factor should the number 999 999 999 be mul-
tiplied in order to obtain a number consisting only of ones?

112. Let A be a natural number. Prove that there exist infi-
nitely many (natural) numbers N whose decimal representations
involve only the digits 1, 2, ..., 9 (and do not involve noughts!)
such that the sums of the digits in the decimal representations of
the numbers N and AN are equal *.

113. Let ay, ay, ... be all nonnegative integers with not more
than n(n = 2) decimal places for which the sums of their digits
are even and let by, by, ... be all non-negative integers with not

more than n decimal places for which the sums of their digits
are odd. Prove that

a +a5+ ... =bl"+ b+ ...

for all (natural) m << n. Does this assertion remain true for
mz=n?
114. In the triangular number array

1
111
12321
1367631

.........

* The stipulation that the decimal representations of the numbers N do not
involve noughts is made because if we write any number of noughts at the
end of the representation of N the sums of the digits in the (new) number N
and in the number AN -do not of course change, and therefore without this
stipulation the existence of only one number N satisfying the condition of the
problem would automatically imply the existence of an infinifude of such num-
bers.
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each of the numbers is equal to the sum of the three numbers
written in the preceding horizontal row above the given number
and above the numbers standing on the right and on the left of
this number; in case one of the two such numbers is absent in
the preceding row they are replaced by zeros.

Prove that, beginning with the third row, there is an even num-
ber in every row,

115. Consider the triangular number array

0123 ........0.. 1956 1957 1958
1 35,0000, 3913 3915
S 7828

-------------

in which every number except those in the upper horizontal row
is equal to the sum of the two numbers standing above this num-
ber in the preceding row. Prove that the last number standing in
the lowermost row is divisible by 1958.

116. The distance between two stations A and B is equal to
099 km. Kilometre poles along the railway connecting A and B
show the distances from the poles to 4 and to B. They read thus:

01999; 11998, 2]997;...; 999/0

How many of these poles are such that there are only two different:
digits on them?

117. A boy passing by the cinema on a bus could notice only
the hours (but not the minutes!) when four (of the eight) shows
began:

Ist show —12 (hours). . . (minutes)
2nd show —13 (hours) . . . (minutes)

...................

7th show —23 (hours), . . (minutes)
8th show —24 (hours). . . (minutes)

It is required to restore from these data the exact time of the
beginning of all the shows (it is implied that the duration of all
the eight shows is the same).

118. A highway with round-the-clock bus service crosses a rail--
way. Every hour two trains run along the railway and approach
the level crossing exactly at n hours and at n hours 38 minutes.
vespectively where n assumes the values from 0 to 23. When a
train passes the crossing the lifting gate stops the road traffic for
< minutes. Is it possible to work out a timetable for the buses so
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that they go with an interval of T minutes and so that no bus
stops at the crossing? For what intervals T between the buses not
exceeding half an hour is it possible to schedule the bus service
in the required manner?

119. Find the greatest possible value of the ratio of a three-digit
number to the sum of its digits.
120. Delete 100 digits in the number

12345678910111213 ... 979899100

so that the resultant number has

(a) the greatest possible value;

(b) the least possible value,

121. Using all the digits from 1 to 9 compose three 3-digit
numbers so that their product has

(a) the least possible value;

(b) the greatest possible value.

122. A sum of several consecutive positive integers is equal to
1000. Find these integers.

123. (a) Prove that every whole number which is not equal to
a power of two can be represented in the form of a sum of at least
two consecutive positive integers and that for the powers of two
such a representation is impossible,

(b) Prove that every odd composite number can be represented
as a sum of at least two consecutive odd numbers and that no
prime number can be represented in that way. What even numbers
can be represented in the form of a sum of several consecutive
odd numbers?

(c¢) Prove that every power of a positive integer n (with the
exponent greater than 1) can be represented as a sum of n con-
secutive odd numbers.

124. Prove that every sum of 1 and a product of four con-
secutive whole numbers is a perfect square.

125. Let us consider a collection of 4n positive numbers such
that its any four pairwise different members can be arranged as
a geometric progression. Prove that there are n equal numbers
among the given collection of numbers.

126. There are 27 weights of magnitudes 12, 22, 32, ..., 272 re-
spectively. It is required to divide them into three groups of equal
weight.

127. There are 13 weights, each weighing an integral number
of grams. It is known that any 12 of the weights can be divided
into two groups of 6 weights balancing each other when put on
the scales. Prove that all the weights are identical.
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128*. Four (arbitrary) numbers a, b, ¢ and d are written in a
line. Another 4-tuple consisting of the numbers a; = ab, b, = bc,
¢; = ¢d and d, = da is written under these numbers. Then under
the numbers ay, b;, ¢, and d; a new 4-tuple a; = aiby, b, = bicy,
cs = C2dy and ds = dya, is written and so on. Prove that all the
4-tuples thus formed either are pairwise different or, beginning
with one of them, become identical.

129. There is an arbitrary set of N numbers ay, as, ..., an
(where N is an exact power of two: N = 2%) each of which is
equal fo 41 or to —1. Starting with this set, a new number set is
formed according to the formulasal =a,a,, as=asas, ..., ay—1=
=ay—1an, AN = ana;, each of the new numbers being again equal
to 41 or to —1. Then, using the numbers af, a5, ..., ay, a new
N-tuple of numbers af, a3, ..., ay is formed in accordance
with the above rule, and so on. Prove that proceeding in this way
we eventually arrive at an N-tuple consisting only of the numbers
+1.

130*. Let a,, ay, ..., a, where n> 2 be integers. Using these

. g a a
numbers a new sequence consisting of the numbers af=—‘———g—2,

ah= ‘“';as e, a;_.=ﬂl2—t—a—"-, a{,=a"—_2}—al is formed. Then,
proceedmg from the numbers af, a3, ..., an, new numbers af
aj, ..., a, are formed in accordance with the same rule (that 1s
al = '_‘2_02 , a¥, ..., a, etc), and so on. Prove that if all the
numbers thus obtained are integers then ¢,=a,= ... =a,,.

131. Let x =1 and let y and 2z be arbitrary numbers. We shall
denote the absolute values |x —y|, |y—=z| and |z2— x| of the
pairwise differences of the three original numbers as x,, y, and z;
respectively. Similarly, we shall denote the absolute values of the
pairwise differences of the numbers x,, y;, and z;, that is the quan-
tities |y — 1], }y1 — 21| and |21 — x|, as x2, y2 and 2z, respec-
tively, the absolute values of the differences of the numbers x5, y»
and z, as x3, ys and z; respectively, and so on. It is known that
for some n the triple of the numbers x,, y» and 2, coincides with
the original triple of the numbers x, y and 2. Find the numbers y
amd z.

132*, (a) There are four arbitrary positive integers A, B, C
and D. Let us denote by Ay, By, C, and D, the diflerences between
A and B, B and C, C and D and D and A (it is meant that every
time we subtract a smaller number from a greater one). Then,
proceeding from the numbers A,, By, C; and D;, we similarly form
a 4-tuple of numbers A, By, Co, and Dy, and so on. Prove that
after the procedure has been repeated several times we must ne-
cessarily arrive at a 4-tuple of zeros.
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For instance, starting with the numbers 32, 1, 110 and 7 we ob-
tain, in succession,

32, 1, 110, 7
31, 109, 103, 25
78, 6, 78, 6

72, 72, 72, T2
0, 0, 0 0

(b) Does the assertion stated in Problem (a) remain true
when A, B, C and D are positive rational numbers and not neces-
sarily integers? What is the answer to the same question when A4,
B, C and D are irrational numbers?

133*%, (a) Arrange the numbers from 1 to 1000 as a sequence
'such that any 11 numbers (not necessarily consecutive members
of the sequence) arbitrarily chosen from it do not form an in-
creasing or a decreasing sequence.

(b) Prove that from any sequence formed by arranging in a
certain way the numbers from 1 to 101 it is always possible to
choose 11 numbers (which must not necessarily be consecutive
members of the sequence) which form an increasing or a decreas-
ing number sequence.

134. (a) Let there be 101 numbers arbitrarily chosen from the
first 200 whole numbers 1, 2, ..., 200. Prove that among the
chosen numbers there is a pair of numbers such that one of them
is divisible by the other.

(b) Choose 100 numbers from the first 200 whole numbers so
that none of them is divisible by any other.

(c) Prove that if at least one of 100 whole numbers not exceed-
ing 200 is less than 16 then one of these numbers must necessarily
be divisible by some other.

135. Prove that

(a) from any 52 integers it is always possible to choose two
numbers such that their sum or difference is divisible by 100;

(b) from any 100 integers it is always possible to choose sev-
eral numbers (or, perhaps, one number) whose sum is divisible
by 100;

y(c) if the numbers in Problem (b) are positive and do not ex-
ceed 100 and their sum is equal to 200 then it is possible to choose
several numbers from them such that their sum is equal to 100;

(d)* from any 200 integers it is possible to choose 100 numbers
whose sum is divisible by 100.

136. Let there be a nonincreasing sequence a;, as, ..., @, oOf
positive numbers whose sum is equal to 1, the greatest number
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in the sequence being equal to where % is a whole number:

1
2k
5‘73_=a1>a2>a3> oo =20, >0, at+a+ ... +a,=1

Prove that it is possible to chose 2 numbers from this sequence
such that the smallest of them exceeds half the greatest number.

137. Let there be p crosses and ¢ noughts written in a circular
order. Let a denote the number of pairs of crosses standing side
by side and & denote the number of pairs of noughts standing side
by side. Prove thata — b = p — q.

"138. Let iy, ig, ..., in be a sequence of numbers 1, 2,..., n
which, in the general case, are arranged in some new order. Prove
that for even n the product (1 —i1)) (2 — i) (3—is) ... (n—in)
can be even and can be odd and that for an odd n this product
must necessarily be even.

139. Given n numbers xy, Xs, X3, ..., ¥» each of which is equal
to 4-1 or to —1, prove that if x,x; 4 xox3 + . . . F Xn_1¥n 4 Xax1=0
then n is divisible by 4.

140. Prove that the set of all whole numbers whose decimal
represertations involve only the digits 1 and 2 can be divided
into two groups such that the decimal representation of the sum
of any two numbers which belong to any of the groups involves
not less than two digits 3.

141. There are five 100-digit numbers whose decimal represen-
tations involve only the digits 1 and 2. It is known that any two
of the numbers have the same digits in exactly r of the 100 dec-
imal places and that in no decimal place the corresponding five
digits of the given five numbers coincide. Prove that this is only
possible when r lies within the limits from 40 to 60: 40 << r << 60.

142. There are two sets of the signs “4” and “—" each of
which contains 1958 signs. It is allowed to perform repeatedly the
operation of changing eleven signs arbitrarily chosen from the
first set to the opposite. Prove that after a number of such ope-
rations it is possible to transform the first set into the second.
(The sets are considered identical when they contain similar
signs in the same places.)

143*. When training a chess-player plays at least one game of
chess a day but in order to avoid overstrain he plays not more
than 12 games a week. Prove that there must be a period of sev-
eral consecutive days during which he plays exactly 20 games.

144. Let N be an arbitrary positive integer. Prove that there is
a whole number multiple of N whose decimal representation is
formed only of the digits 0 and 1. Besides, for the case when N
is relative prime to 10 (that is when N is divisible neither by 2
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nor by 5) prove that there exists a multiple of N whose decimal

representation consists only of ones (if N is not relatively prime

to 10 then, obviously, no number of the form 11 ... 1 can be di-
N, s/

n times
visible by N).

145. Construct a system of line segments lying on the number
line and not overlapping one another (that is, having no common
internal points and no common end points) each of which is of
length 1 such that any (infinite) arithmetic progression (with an

7 7 ] 72
7 7 7 3 7
} : "_II_J : : —O {J T t
0 { 2 3 4 ) 6 7
Fig. 2

arbitrary first term and an arbitrary common difference!) con-
tains at least one number falling inside one of the segments be-
longing to this system.

146. Let m and n be two relatively prime positive integers.
Prove that if the fractions

m<4n 2{(m + n) 3(m+n) (m—1)(m+n)
m m ! m resee m
and
m+n 2(m-+n) 3(m-+n) (n— 1) {(m+n)
n n ' n e n

are represented by points on the number line then each of the in-
tervals (1, 2), (2,3), 3, 4), ..., m+nrn—2, m+n—1) con-
tains exactly one representing point (see Fig. 2 demonstrating the
case when m = 3 and n = 4).

147*%. Let ay, as, as, ..., a. be arbitrary positive integers each
of which is less than 1000. Let the least common multiple of any
two of them be greater than 1000. Prove that the sum of the reci-
procals of the numbers ay, as, as, ..., @, is less than two.

148*. A fraction of the form ¢/p whose denominator is an odd
prime number p % 5 is represented as an infinite repeating de-
cimal. Prove that if the number of the digits in the period of the
decimal is even then the arithmetic mean of all the digits form-
ing the period is equal to 4.5 (this arithmetic mean thus coincides
with the arithmetic mean of all the digits 0, 1, 2, ..., 9). This
allows us to say that the “great” and the “small” digits are en-
countered in the period “equally frequently”. Also prove that if
the number of the digits forming the period is odd then the arith-



Finding Integral Solutions of Equations 31

metic mean of all these digits must necessarily be different
from 4.5.
149*. Let fractions of the form

ay 7)) as Qn
' 2 1 T3 s v e ey s e
p' PP p p

(where p is a prime number different from 2 and 5 and ay, a,, ...
..., an are arbitrary whole numbers relatively prime to p) be re-
presented as infinite repeating decimals. Prove that the first sev-
eral fractions (or, perhaps, one fracion) have the same number
of digits in their periods and that for the other fractions the
number of digits in the period of every decimal is p times as
great as the number of digits in the period of the preceding dec-
imal.

. 1 = 4 - 10 ==~ 80 ————

For instance, 5=03, 5=04, 7 = 0.370, 5= 0.987654320,

11 has 27 digits in the period, S5 has 81 digits in the period
and so on.

5. Finding Integral Solutions
of Equations *

150. (a) Find a -four-digit number which is a perfect square
such that its first two digits are equal to each other and its last
two digits are equal to each other.

(b) A sum of a two-digit number and a number represented
with the aid of the same digits but written in the reverse order is
a perfect square. Find all such numbers.

151. Find a 4-digit number which is equal to the square of the
sum of two 2-digit numbers formed of the first two and the last
two digits of the given number.

152. Find all 4-digit numbers which are perfect squares and
whose decimal representations contain

(a) four even digits;
(b) four odd digits.

153. (a) Find all three-digit numbers equal to the sums of the
factorials of their digits.

(b) Find all whole numbers equal to the sums of the squares
of their digits.

* A method of finding integral solutions of certain algebraic equations is
referred to as Diophantine analysis and the equations are termed Diophantine
;quations after Diophantus of Alexandria (c. 250 A. D.), a Greek algebraist. —

T,
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154. Find all whole numbers which are equal to

(a) the squares of the sums of their digits;
(b) the sums of the digits in the decimal representations of
their cubes.

155. Find the integral solutions of the equations
(@ 4214314 ... +xl=y5%
(b) 121 4+31+4 ..o + xl=4~

156. In how many ways is it possible to represent 2* as a sum
of four squares of positive integers?

157. (a) Prove that the equality
A4y 2 =2xyz
can hold for whole numbers x, y and z only when x = y = 2 = 0,
(b) Find the whole numbers x, y, 2 and v such that
2+ 4 224 v =2xy2v
158*%, (a) For what integral values of k& can the equality
L4 g+ 2= kxyz
hold where x, y and z are positive integers?
(b) Among the first thousand whole numbers find the possible
triples of numbers for which the sums of their squares are divis«

ible by their products.
159. Find the integral solutions of the equation

x—2P —42P=0
160. Find the integral solutions of the equation
Crx=y'+y+y+y
161. Find the positive integral solutions of the equation
4 (x4 1) = (x + 2)"
162. Find the integral solutions of the equation
'\/x -+ x/x_-?_?c =z
7 square roots

163*. Prove that the equation x%2+4- x -+ 1 = py where the coel-
ficient p is a prime number possesses integral solutions x, y for
infinitely many values of p.

164*, Find four positive integers such that the sum of the
square of each of them and the remaining three numbers is a pers
fect square,
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165. Find all the pairs of integers whose sums are equal to their
products.

166. The sum of the reciprocals of three positive integers is
equal to 1. Find these integers.

167. (a) Prove that the equation %+71=71l- where n > 1

is a natural number has exactly three solutions x, y (where x and
y are natural numbers) for any prime number n (solutions of the
formx=a, y=>0 and x = b, y = a are considered to be differ-
ent when a = b) and more than three such solutions for any com-
posite number n.

(b) Find all integral solutions of Problem 167 (a) for n = 14.
(c)* Find the integral solutions of the equation —l +l=%
in x, y, 2 (derive the general formula expressing all the solu-
tions).

168. (a) Find all pairs of positive integers x and y not equal
to each other which satisiy the equation

x=y"

(b) Find all pairs of positive rational numbers x and y not
coinciding with each other which satisfy the equation

W=y

(derive the general formula expressing all such solutions).

169. Two pupils of the 5th form and several pupils of the 6ih
form participated in a chess tournament. Each pupil played once
with every other participant. The two pupils of the bth form to-
gether had 8 points; each of the pupils of the 6th form had one
and the same number of points (in the tournament a winner re-
ceives 1 point, a loser receives 0 and for a drawn game each of
the participants receives 1/2). How many pupils of the 6th form
participated in the fournament?

170. Pupils of the 5th and of the 6th form took part in a chess
tournament. Each participant played once with every other partic-
ipant. The number of the pupils of the 6th form was 10 times
that of the pupils of the 5th form and the number of points the
former had together was 4.5 times that the pupils of the 5th form
had. How many pupils of the 5th form participated in the tourna-
ment and how many points had they together?

171*. By an integer triangle we shall simply mean a triangle
the lengths of whose sides are expressed by whole numbers. Find
all integer triangles each of which has a perimeter equal to its
area.

2 —60
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Problem 171 belongs to an important division of the theory of
integral solutions of equations, and we do not go into detail here
because this topic is very extensive. For instance, there are very
interesting problems on integer triangles whose angles are com-
mensurable with an angle of 360°. It can be proved that an in-
teger triangle can have no angles commensurable with an angle
of 360° which are different from 60°, 90° and 120°, and it is not
difficult to derive formulas expressing the lengths of the sides of
all integer triangles with a given angle a where o is equal to 60°
or 90° or 120° (right integer triangles are often called Pythago-
rean triangles). It is also interesting to consider the problem of
finding integer triangles whose two angles are in a given ratio,
say one of them is twice or three times or five times or six times
as great as the other. For instance, it can readily be proved that
the smallest integer triangle one of whose angles is twice as great
as some other of its angles has sides of lengths 4, 5 and 6 and
that the least possible lengths of the sides of an integer triangle
one of whose angles is six times as great as some other of its
angles are 30421; 46656 and 72 930. Further, it is interesting to
impose some definite conditions on the angles and on the sides of
an integer triangle. For example, we can easily find infinitely
many Pythagorean triangles each of which has a hypotenuse or
one of the legs expressed by perfect squares whereas there is no
Pythagorean triangle the lengths of whose two sides are simulta-
neously perfect squares. Besides, among the Pythagorean trian-
gles each of which has a hypotenuse expressed by a perfect square
there are infinitely many triangles the sum of whose legs is also
a perfect square. The sides of all such triangles are very large:
as early as 1643 P. Fermat * showed that the smallest of the
Pythagorean triangles satisfying the above conditions has sides
whose lengths are

a=1061 652293520

b=4565 486 027 761
and

¢ =4687 298610289

6. Matrices, Sequences and Functions

An m X n maltrix (also called an m-by-n matrix) is simply a
rectangular array of numbers having m horizontal rows and n
columns. As examples, below are written a 2 X 4 matrix, a 3 X 3

* Pierre de Fermat (1602-1665), the great French mathematician, one of the
founders of the number theory.



Matrices, Sequences and Functions 85

matrix (which is a square matrix of the 3rd order), a 3 X | ma-
trix and a 1 X 5 matrix (1 X n matrices and m X 1 matrices are
also called vectors, the former being referred to as row wvectors
and the latter as column vectors):

2 —1/2 13 17 [ 5 2 0] [ V2
n ]; -1t 0 71 _1/5/2]:
[2/7 —4/3 3/4 0 N \
(10 —9 8 —7 6]

By an integer matrix we shall mean a matrix whose all elements
are integers. For instance, such are the second and the fourth (but
not the first and the third) of the matrices written above, We men-
tion here the notion of a matrix because it plays an important
role in mathematics.

A number sequence is a set of numbers ordered as are the posi-
tive integers:

Q1y Aoy A3y e ey Apy oo

(more often we deal with infinite sequences). To specify a se-
quence it is necessary to state a rule according to which its
members (elements) a,, a,, ... are formed. Such a rule can be ex-
pressed by a formula showing how an arbitrary element a, can
be computed for any given index n or by an algorithm which indi-
cates some method with the aid of which a. can be found for any
concrete value of n. For instance, in several problems in the
present section we shall encounter the Fibonacci * sequence

1,1, 2 3,5, 8 13, 21, 34, 55, 89, 144, 233, ... (%)

(its members are the Fibonacci numbers). An algorithm deter-
mining this sequence ** is specified by the following rules:

a=a=1 a,=a, 1+ a,_ for n>2 (%)

By the way, in mathematics we also encounter the so-called “ran-

dom sequences’ the formation of whose members is regulated by
no strict rules (ci. Problem 192).

* Leonardo Fibonacci (Leonardo de Pisa) (1180-1240), a distinguished me-
dieval European mathematician.

** There exist some other algorithms describing the Fibonacei numbers (*);
for instance, rule (**) implies the formula

w=gw [(55) - (5]

expressing the Fibonacci number u, directly in terms of n.

PAJ
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By a function y = f(x) is meant a law f: x — y specifying a
mapping of a set X of “admissible” values of the argument x onto
a set Y of the values y of the function; to each value x & X there
must correspond a single value y = f(x).

7 7
y={al Y1)
—- —
— —
1- — /k—»
g z ™ 3
— e
— —
(2) (b)
YA LA
y={af=z-[z]
2SS LS | _
! I ! Z
(c) (d)

Fig. 8

In number theory those functions are most important which are
connected with integers, that is those whose domain X and range
Y consist of integers. When the domain X = {l, 2, 3, ..} is the
set of all natural numbers the argument x is more oiten denoted
by the letter n; in this case a function n .+ y(n) or n — a, simply
reduces to a number sequence {a;, a, as, ...}. A typical (and fre-
guently encountered) example of a function whose range Y con-
sists of integers is the so-called integral part [x] of a number x
which is defined as the largest integer not exceeding x (for in-
stance, [2.6]=2, [4]= 4 and [—3.2]= —4). Another function
similar to [x] is the one which we denote as (x): it is equal to the
nearest integer to x, that is to the integer for which the absolute
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value of the difference between this integer and x assumes the
smallest possible value (in case there are two such integers (x)
is taken to be equal to the greatest of them; for instance, (2.5) =3,
(4)= 4 and (—3.2) = — 3; compare the graphs of [x] and of (x)
shown in Fig. 3,a and b). In some mathematical problems we
also deal with the function {x} = x —[x] which is called the frac-
tional part of the number x (see Fig. 3¢). (For the sake of visua-
lity, Fig. 3d shows the graph of the deviation of x from its nearest
inlgger.) However, the most important role is played in the
number theory by some “purely arithmetic” functions for which
both the domains X and the ranges Y consist of integers. As exam-
ples we can mention some of such functions which are encountered
in the problems below: the number of the divisors v(n)= 1, of a
(natural) number n, the sum o{n)= 6, of the divisors of n and
the Mobius * function p(n) defined by the rule: p(1)=1, p(n)=
=(—1)}* if n=pips ... pr where py, po, ..., pr are pairwise dis-
tinct positive prime numbers and u(n)= 0 for all the other posi-
tive integers n multiple of at least one square of a natural num-
ber; the Mobius function implicitly takes part in the solution of
Problem 197. (It should be noted that all the three functions t(n),
o(n) and u(n) possess the so-called “multiplication property”: if
@(n) is any of these functions then @(n,n:) = @(n,)p(ne) for any
relatively prime natural numbers n; and ny.)

The problems collected in this section are rather versatile both
in their content and in the methods of their solution. In particular,
in many of the problems the set of all points in the plane with in-
tegral coordinates is used; its application to number-theoretic prob-
lems was initiated in the works of H. Minkowski ** and G.F. Vo-
ronoi **¥, :

172. The numbers 1, 2, 3, ..., n? are arranged as a square table
‘of the form

T 1 2 3 N
n-t+1 n—+2 n+3 eee 2n
2n+1 2n+2 2n+3 . 3n

ln—Dan+1t —Dn+2 @—Dn+3 ... n2l

* Augustus Ferdinand Mobius (1790—1868), a distinguished German ma-
thematician whose primary field of interest was geometry.

. ** Hermann Minkowski (1864—1906), a distinguished German mathemati-
cian who contributed much to geometry, physics (relativity theory) and num-
ber theory; he was one of the founders of the “geometrical theory of numbers”,

*** G. F. Voronoi (1868-1908), a distinguished Russian mathematician, one
of the founders of the “geometrical theory of numbers”,
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From this table a number is chosen and the row and the co-
lumn containing this number are deleted. Then from the remain-
ing number array one more number is chosen and again the row
and the column containing this number are deleted and so forth
until there remains only one number in the table which is automat-
‘ically added to the set of the numbers chosen previously. Find
the sum of all the numbers thus chosen.

173. A square table with n? cells is filled with integers assum-
ing the values from 1 to n so that in each row and in each column
there are all numbers from 1 to n. Prove that if the original table
is symmetric about the diagonal joining its left upper corner and
its right lower corner and if the number n is odd then there are
all numbers from 1 to n on this diagonal. Does this assertion
remain true for the case when n is an even number?

174. There are n? numbers from | to n? which are arranged to:
form a square table of dimension n X n so that the number 1 occu-
pies an arbitrary place, the number 2 belongs to the row with
serial number equal to that of the column containing the number I,
the number 3 belongs to the row with serial number coinciding
with that of the column containing the number 2 and so on. What.
is the difference between the sum of the numbers belonging to the
row containing the number 1 and the sum of the numbers belong-
ing to the column containing the number n??

175, There is a rectangular table of dimension m X n in whose:
all cells some numbers are written. We are allowed to change to
the opposite the signs of all numbers belonging to one row or of
all numbers belonging to one column. Prove that on repeating
these admissible operations several times we can always arrive
at a table for which the sum of the numbers in each row and the
sum of the numbers in each column are nonnegative.

176. 800 numbers are written to form a rectangular table of
100 rows and 80 columns so that the product of all numbers
belonging to any column by the sum of all numbers belonging to:
any row is equal to the number standing at the intersection of this.
row and this column. It is known that the number standing in the
right upper corner of the table is positive. Find the sum of all the
numbers the table is formed of.

177. Sixty-four nonnegative numbers whose sum is equal to
1956 are written in the 64 squares of a chess-board. It is known
that the sum of the numbers belonging to each of the two diag-
onals of the board is equal to 112 and that the numbers occupy-
ing any two squares symmetric about any of the diagonals are
equal to each other. Prove that the sum of the numbers belonging
to any row or to any column of the board is less than 518.

178. In the squares of a board (resembling a chess-board) of
dimension n)n some numbers are written so that for any arrange-
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ment of n rooks on the board satisfying the condition that any
two rooks cannot take each other the sum of the numbers stand-
ing in the squares occupied by the rooks is one and the same. Let
ai; denote the number placed at the intersection of the ith row of
the board and the jth column. Prove that there exist two sets of
numbers xi, Xs, ..., ¥, and yi, ys, - .., Y- such that a; = x; 4 y;.

179. Some numbers are written in the squares of a chess-board
of dimension n X n. Let x,, denote the number in the intersection
of the pth row and the gth column. Prove that if for any ¢, j and &
(where 1 << i, j, k << n) there holds the identity xi; 4 %2 + xp:=0
then there exist n numbers ¢, £, ..., ¢, such that x; = t; — ¢;.

180. Stars are written in some of the squares of a chess-board
of dimension n X n. It is known that after an arbitrary number
of rows of the board have been deleted (but, of course, not all the
rows!) there remains a column containing exactly one star that
has not been deleted. (In particular, if none of the rows is deleted
then there is also a column containing exactly one star.) Prove
that if an arbitrary number of columns has been deleted (but not
all of them) then there remains a row containing exactly one
star that has not been deleted.

181*. In all the squares of a chess-board of dimension n X n
except one of them the signs “4” are written and the exceptional

square contains the sign “—". Let us consider two cases when it
is known that

(a) n = 4 and the sign “—” stands on a side of the board but
not in its corner;

(b) n =8 and the sign “—" is not placed in a corner of the
board.

We are allowed to change simultaneously to the opposite all
signs belonging to one (arbitrarily chosen) column or to one (also
arbitrarily chosen) row or to one (arbitrarily chosen) “inclined
line” parallel to one of the two diagonals of the board (in partic-
uvlar, as such an “inclined line” we can take oneof the diagonals
of the board or any corner square). Prove that we cannot get rid
of the sign “—" by repeating these “admissible” changes of signs
any number of times, that is we cannot arrive at the case when
there are only the signs “+” in all the squares of the board.

182. (a) In all the squares of an ordinary chess-board of di-
‘mension 8 X 8 the signs “+” or “—” are placed. We are allowed
1o choose an arbitrary smaller quadratic array of squares of the
board of dimension 3 X 3 or 4 X 4 with sides parallel to the sides
of the board and to change to the opposite all the signs in the
squares of such a rectangle. We can try to perform such opera-
tions repeatedly a number of times in order to arrive at an
arrangement of signs on the board involving the signs “4” solely.
Is it always possible?
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(b) Some natural numbers are written in all the squares of am
ordinary chess-board. We are allowed to increase by unity all
numbers placed in the squares forming a smaller quadratic array
consisting of four squares of the board adjoining one another or
all numbers placed in (any) two neighbouring rows of the board
or all numbers in (any) two neighbouring columns of the board.
Is it always possible to perform a number of such operations in
such a way that we arrive at the case when all the numbers on
the board are divisible by 10?

183. (a) There are three sets of balls. We are allowed to take
simultaneously one ball from each of the three sets or to duplicate
the number of the balls in one (arbitrary) set. Is it possible to
perform such operations several times so that all the balls are
taken from all the three sets?

(b) In all the cells in a rectangular table of 8 rows and 5 columns
some natural numbers are written. We are allowed to duplicate
any number in any column or to subtract unity from all numbers.
of one (arbitrary) row. Prove that it is possible to perform a
number of these “admissible” operations on the table in such a
way that all the numbers in all the places of the table become
equal to zero.

184. A table of positive integers having two columns and a
number of rows is formed according to the following rule. In the
upper row we write two arbitrary positive integers a and b, then
under a we write a (positive) integer @, which is equal to a/2 if
the number a is even and to (e —1)/2 if a is odd and under b
we write b, = 2b. Next we perform on the numbers a; and b, the
same operations as those performed on a and b, that is under a;
we write a number ay equal to a;/2 for an even q; and to
(ay — 1) /2 for an odd a; and under b, we write by = 2b;. Further,
under the numbers a, and by, we write new numbers a; and b;
which are obtained from a; and b, in the way in which a, and b,
were obtained from a; and b,, etc. This process of repeated opera-
tions is stopped when we arrive at a number a, = 1 (to which a
number b, = 2b,_, corresponds). Prove that the sum of all num-
bers b; in the right column to which odd numbers a; correspond is
equal to the product ab (here i can assume any value from 0 to n;
by a, and b, are meant the original numbers a and b respecti-
vely).

185. Prove that every natural number is either a Fibonacci
number (that is a member of the Fibonacci sequence (*); see
page 35) or can be represented in the form of a sum of several
(distinct) Fibonacci numbers.

186. Prove that there are not eight consecutive Fibonacci num-
bers (see Problem 185) whose sum is not a Fibonacci number.
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187. Prove that if a natural number n is divisible by 5 then the
nth member u, of the Fibonacci sequence (see Problem 185) is
also divisible by 5.

188. Is there a number among the first 100000001 Fibonacci
numbers (see Problem 185) whose decimal representation has four
noughts at the end?

189. Let us consider a number sequence a,, as, aa ... constructed

according to the following rule: a; =1 and a, = a,—, +—a%;for

n > 1. Prove that 14 <C aj00 << 18.

190. A number sequence ai, as, as, ..., @, is such that a; =0,
lae|=|a1 + 1}, |as| =|az + 1|, ..., |@a|=]an-y + 1|. Prove that
the arithmetic mean (a; 4 a2+ ... - a,)/n of these numbers is
not less than —1/2,

191*%. A sequence of natural numbers aq, ay, as, as, ... is formed
according to the following rule:

aama=la—al, m=|la—al ...
(generally, a, =|an—2— an_;| for all n = 2). The elements of
the sequence are computed until the first zero has been obtained.
1t is known that each of the numbers contained in the sequence
does not exceed 1967. What is the greatest number of terms which
stuch a sequence may contain?

192. Given an infinite sequence of digits ojososcs... in which
each of the digits can be equal to an arbitrary decimal digit ex-
cept nine. Prove that among the numbers a;; a0, 0,003 00005043
... (here by a,ay is meant the number o;-10 + a; and the like)
there are infinitely many composite numbers.

193. In a sequence 1975... each of the numbers, beginning with
the fifth one, is equal to the last digit of the decimal representa-
tion of the sum of the four foregoing digits. Is it possible that

(a) the sequence contains a group of the four consecutive
digits 1234?

(b) the four-tuple 1975 of the digits is again repeated in the
sequence?

194. All the integer multiples of 9 are written as a sequence of
the form

9: 18; 27; 36; 45; 54; 63; 72; 81; 90; 99; 108; 117; ... (%)
and for each of these numbers the sum of its digits is found:
9:9,9,9,9,9 9,9 9, 9 18,9, 9;... (%)

In what place in sequence (**) does the number 81 first appear?
‘What is the number following the first number 81? What occurs
earlier in the sequence: the appearance of 4 consecutive numbers
27 or the appearance of 3 consecutive numbers 362 What else can
you say about the alternation of the numbers in sequence (**)?
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195. Let us consider the following sequence of collections of
(natural) numbers. The initial collection /, consists of two unities:
1 and 1. Then, to obtain the following collection /;, we insert be-
tween the numbers forming the initial collection their sum
14-1=2, i.e. I} consists of the numbers 1, 2 and 1. Next we
insert between every two numbers belonging to the collection /)
their sum to obtain the collection /, consisting of the numbers 1,
3, 2, 3 and 1. Further, on performing the same operation on the
collection I, we arrive at the collection [5: 1, 4, 3, 5, 2, 5, 3, 4 and
1, etc. How many times is the number 1973 repeated in the mil-
lionth collection 11 000 ooo:I>

196. There is a (finite) sequence of noughts and ones such that
all the 5-tuples of consecutive digits which can be selected from
the sequence are distinct (the 5-tuples can, of course, overlap; for
instance, they can be like the 5-tuples 01011 and 01101 placed as

1
...0101101...). Prove that if the sequence cannot be continued

|
with the preservation of the indicated property then the first four
digits of the given sequence coincide with its last four digits,

197. Ali the divisors of the number N = 2.3.5-7-11-13-17.19-
-23-29-31:37 are written in one row. Under the divisor ! and
under those divisors which are products of an even number of
prime factors the numbers -1 are written and under the divisors
which are products of an odd number of prime factors the num-
bers —1 are written. Prove that the sum of all the numbers
written in the lower row is equal to zero.

198. Let p and g be two relatively prime natural numbers. We
shall call a natural number n “good” if it can be represented in
the form px 4 gy where x and y are nonnegative integers and
“bad” if otherwise.

(a) Prove that there exists a number A such that if a sum of
two integers is equal to A then one of them is necessarily “good™
whereas the other is “bad”.

(b) Given two relatively prime natural numbers p and g, it is
required to determine the number of all the possible “bad” natural
numbers corresponding to p and gq.

199. Prove that if n is a nonnegative integer then it can be
uniquely represented in the form n = [(x+4 y)?2+ 3x 4 y]/2
where x and y are nonnegative integers.

200. Let ¢ be an arbitrary positive number and let d(f) denote
the number of irreducible fractions p/¢ whose numerators p and
denominators ¢ do not exceed ¢{. Find the sum

= (1) 4 a(4L) +a (1) + .. +a(12) £ a(12)
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201. Prove the following -properties of the integral part of a
number (see page 36):

(D) [x+ gl =[]+ v}

©) [["1] [£] where n is a whole number;

@) [x+5]=l2x1 =}

@ b+ [+ ]+ e+ 2]+ [k =
202. Simplify the expression

e Rl il Bl bl R 2 RS

2 4 8

where n is a positive integer.
203*. Prove that if p and g are relatively prime whole numbers
then

[+ 5]+ - +[502)-

q q q q

S 50— et

204. Prove that
@ utnt kot nm[F] ][] 2]

where n is @ natural number and t, is the number of the divisors
of n.

) o1+ 0+ 0y + ... +o.=[T]+2[5] +3[5]+ ... +n[E]

where n is a natural number and o, is the sum of the divisors
of n.
205. Is there a positive integer n such that the fractional part

of the number (2 + 1/5)” (see page 37) exceeds 0.999999, that is
{2+ 2 =2 +42)"—[(2+ 4/2)"]> 0.999999

206*. (a) Prove that for any positive integer n the number

{(2 + 4/3)"] is odd.

(b) Find the highest power of 2 by which the number
{(1 +4/3)"] is divisible.
207. Prove that if p is a prime number greater than 2 then the

difference _
[(2+4/5)"]—2°*

is divisible by p.
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208*. Prove that if p is a prime number then the difference
cn p—[5]

is divisible by p where n is an arbitrary positive integer not less
than p and C(n, p) is the number of combinations of n things

n\
taken p at a time (C(n, p) is also denoted as C, or ,C, or (p)
and is called a binomial coefficient).

For instance, C(11, 5)=%%1=462, and the number

C(11, 5)—[11/5] = 462 — 2 = 460 is divisible by 5.

209. Find all numbers a such that the numbers [a], [2x],
[3x], ..., [Na] where N is a fixed natural number are all distinct
and the numbers [1/a], [2/a], [3/a], ..., [N/a] are also all
distinct.

In Problem 209 it is required to find a number o such that the
numbers [a], [22], [3a], ..., [Na] are distinct and the numbers
[B], [2B], {3B], ..., [NB] are distinct where f = 1/a.. A more in-
tricate problem of this kind is to find two numbers o and B (it is
no longer required that p = 1/a) such that the infinite sequences
[2], [2a], [3«], ... and [B], [2B], [3B], ... consist of pairwise
distinct numbers. It can be proved that these sequences contain
all the natural numbers and that each natural number is involved
exactly once in them if and only if a is an irrational number and
l/a+ 1/ = 1.

210%. Prove that in the equality

N N N N
N=?+T+?+ con +'2_n+ sen

where N is an arbitrary positive integer it is possible to replace
all the fractions by their nearest integers:

N=(N/2)+ N4+ NB)+ ... +(N2)+ ...

(on the terminolozy and notation see page 36).

7. Estimating Sums and Products

211. How many digits does the decimal representation of the
number 2!% contain?
212, (a) Prove that

1

10 4/2

99 i

< " 100 10

1 3 5
15< 4 6

1
2
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{b*) Prove that
1 3 5 99

-— — 4

T 7T 6 100<12

Remark. The result established in Problem 212 (b) obviously strengthens the
result of Problem 212 (a).

213. Which of the two numbers 31" and 17" is greater?
214. Which of the two numbers below is greater?
.2 .3
(a) A=29?" and B=3% where the expression of A
involves 1001 twos and the expression of B involves 1000 threes;
.4

(b) B (see Problem 214 (a)) and C=444.' where the expres-
sion of C involves 999 fours.

a
n
o -1

In this problem by an expression of the form ai”a°' is

(C- )

always meant the number g

215. Prove that in the decimal number system the representa-
tions of the numbers 1974" and 1974” + 2" contain the same num-
ber of digits for any natural number n.

216. Among all the differences of the form 36™ — 5% where m
and n are natural numbers find the one having the smallest ab-
solute value.

217. Prove that
2100

104/2

where C(100, 50) is the number of combinations of 100 things

taken 50 at a time.

218. Which of the two numbers 99”7 -} 100* and 101”* is greater
(here n is a positive integer)?

219. Which of the two numbers 1003% and 300! is greater?

220. Prove that for any positive integer n we have

2<(1+%)"<3

221. Which of the two numbers (1.000001)100000 and 2 is
greater?

222, Which of the two numbers 100019% and 100199 js greater?

223. Prove that for any integer n > 6 we have

(2)' > > (&)

< C(100, 50) < ——°-
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224*, Prove that for any m > n where m and n are positive
integers we have

@ (1++)" >(1+2)"

For instance, (1+1/22=9/4=2- and (1+ 1/3)°=64/27 =
=220 > 2.

® (1+D)" < (1+D)™ tor n>e.

For example, (1 + 1/2 =27/8 =32 and (1 4 1/3)" = 256/81 —=

13 3

=3 g <3
Remark. As it follows from Problem 224 (a), every number in the sequence
(141D, A+1/2)2 (1413)8 ..., (14 1/n)", ... is greater than the pre-

ceding one. On the other hand, none of these numbers exceeds 3 (see Problem
220), and therefore the expression (1 4+ 1/n)” tends to a definite limit as n— oo
(it is evident that this limit lies between 2 and 3). This limit is denoted as e,
the approximate value of the number e accurate to 15 decimal places is
2.718281828459045.

Analogously, Problem 224 (b) implies that in the number sequence (1 4- 1/2)8,
(1 +1/3)%, (14 1/4)% ..., (14 1/n)"+! every term is less than the foregoing
one, and since all the terms are greater than 1 it follows that for n increasing
indefinitely the expression (1 -+ 1/n)"+! tends to a definite limit. At the same
time, the terms of the former sequence (1-+-1/2)% (1-1/3)? ..., (1
-+ 1/n)", ... tend to the corresponding terms of the latter sequence for n—0
because the difference between the ratio (14 l/n)*+Y (14 1/n)" =14 1/n
and 1 is equal to 1/n and it decreases indefinitely as n— oo. Consequently, the
limit of the latter sequence must be equal to the same number e. The number e
plays an extremely important role in mathematics and is encountered in
various problems (for instance, see Problem 225 or the remarks to Problems
231 and 234).

225. Prove that for any integer n exceeding six there hold the

inequalities . .
(5) <m<n(3)

where e = 2.71828... is the limit of the expression (14 1/n)"
for n— oo,

This assertion strengthens the result established in Problem 223.
In particular, it implies that, given any two numbers a, and a,
such that a, << e << ay (for instance, a; = 2.7 and a; = 2.8 or
a; = 271 and a; = 2.72 or a,= 2718 and a; = 2.719 etc.), we

have the inequality " n
(&) >n>(3)

for all values of n exceeding a definite number (this number is
different for different values of a,).
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“Thus, the number e -serves as the “boundary” which separates
the numbers a such that (n/a)" increases “faster” than n! for
n— oo from the numbers a such that (n/a)” increases “slower”
than n! (the existence of this boundary follows from Problem 223).

Indeed, (n/as)* << n! for any n exceeding 6 (because as; >¢
and, according to Problem 225, n! > (n/e)” for n > 6). Further,
from the results established in Problems 220 and 224 it follows
that for n = 3 there hold the inequalities

n+l

n>e>(1—|— 1) (n+1), Attt > (n 4 1)* and 1/n>q/n——

and hence for n = 3 the expression x/n decreasesas n grows. It
can read1ly be seen that for sufficiently large values of n the ex-

pression f\/n becomes arbitrarily close to unity; for instance, this
10k

follows from the fact that log 4/10% = k/10* becomes arbitrarily
small for sufficiently large k. Now let us choose N so that the
N

inequality '\/]T/<—ae—l holds; from this inequality it follows thal

n
for n > N we must have 4/n <ail. By the result established in

Problem 225, the last inequality implies that n! <(—§,{i)n <(n/a;)".
Vn

The inequality of Problem 225 can be made considerably more

precise. Namely, it can be shown that for large values of n the

number n! is approximately equal to C A/n (nfe)* where C is a con-
stant number equal to 4/2m:

—_— n n
n! =~ q/Qam (—é—)
(more precisely, it is possible to prove that the ratio
—_ n
n!/[«\/2:rm (%) ]

tends to unity as n increases indefinitely).

226. Prove that

1 k41
e AR LR P LIS LB S nk<(1+) k+1

netl

where n and & are arbitrary positive integers.
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Remark. In particular, from the result established in Problem 226 it follows
that

lim L2485 L 4k 1
n-»oo nkt! k41

227. Prove that for any integer n > 1 we have

1 1 1 1 3
@) s<z¥FTtayzt o T <7
1 1 1
(b) 1<'n+—l+n_+2+“'+3n_+l<2'

228*, (a) Find the integral part of the number

1 1 1 1
1+4/2'+1/3“+4/I+ +V1000000

(b) Compute the sum

1 1 1
4/10000 + 4/10001 + 4/10 002

1
4/1000 000

+ ..+

to an accuracy of 1/50.
229*, Find the integral part of the number

1 1

et
AT A5 4/6 4/1000 000
230. (a) Compute the sum

1
+ ..o+ 1000?

1 1 1
10? + 112 + 122

to an accuracy of 0.006.
(b) Compute the sum

1 1 ] i
ottt o o

to an accuracy of 0.000 000 015.
231. Prove that the sum

1 1 1
R = T T
becomes greater than any given number N when the value of n

is sufficiently large.

Remark. The result established in Problem 231 can be made considerably
more precise. Namely, it is possible to show that for large n the sum 1+ 1/2 4
+1/3+1/44 ... + 1/n differs very slightly from log.n {where e = 2.718...,;
see the remark after Problem 224 *. The logarithm log.a of a number a is usual-
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1y denoted Ina*). More precisely, it can be proved that the difference
1 1 1 1
l+—2-+-é-+'z‘+ “ee +71-—lnn
(here In n = logen) does not exceed unity for any n.

232. Prove that if we delete from the sum
1 1 1 1
1+7+g+7+n.+;

all the terms the decimal representation of whose denominators
contains the digit 9 then, for any n, the sum of the remaining
terms will be less than 80.

233. (a) Prove that

1 1 1 1 1
l+s+5+tmt+tEt+ - +7<2
for any n.
(b) Prove that

1 1 1 1 3
l+z+‘§+'l_6"+ cee DT <1—4—
for any n.
It is evident that the result established in Problem 233 (b) is
stronger than the one expressed by the inequality in Problem

233 (a). A still stronger result is established in Problem 332.
Namely, as follows from Problem 332, the sum

1 1 i
l+7+5+ ... +=
is less than n?/6 = 1.6449340668 ... for any n (but, at the same
time, for any N less than n%/6, say for N = 1.64 or N = 1.644934,
it is possible to indicate a number n such that the sum 1 4 1/4 +
=+ 1/9+ ...+ 1/n?is greater than N).
234*. Let us consider the sum

l+5+5+5+7+m+mtrrtet - +o

where the denominators of the fractions are all prime numbers
from 2 to some prime number p inclusive. Prove that this sum can
be made to exceed any preassigned number N (to this end it is
only necessary to choose a sufficiently large prime number p).
Remark. The result established in Problem 234 can be considerably strength-
ened. Namely, it can be shown that for large p the diiference between the

sum 14124134+ 1/54+1/74+1/114-...41/p and In In p is comparatively
small (as was mentioned, In means the logarithm to base e = 2.718...). More

* Ina = logea is called the natural logarithm of a or the Napierian loga-
ri_ttl;]m of 1; after J. Napier (1550-1617), the Scottish inventor of such loga-
rithms, — Tr.



50 Problems

precisely, it 1s possible to prove that the difference
1 1 1 1 1 1
1+3+§+—5*+7+-1—1-+ +7—1ﬂ1ﬂ p

(Inln p = logelog.p) does not exceed the number 15,

It should also be noted that the comparison of the result established in Prob-
lem 234 with the results of Problems 232 and 233 allows us fo say that there
are “rather many” prime numbers in the sequence of all natural numbers (in
particular, as follows from Problem 234, there is an-infinitude of prime num-
bers). We can say that the prime numbers are encountered in the sequence of
natural numbers “more frequently” than perfect squares or than those num-
bers whose decimal representations do not contain the digit 9 because, for in-
stance, the sum of the reciprocals of all the squares of all natural numbers and
the sum of the reciprocals of all natural numbers whose decimal representations
do not involve the digit nine are bounded whereas the sum of the reciprocals.
of prime numbers can be made arbitrarily large.

8. Miscellaneous Problems in Algebra

Most of the problems collected in this book deal with arith-
metical questions (and with some ideas of “higher arithmetic”,
that is number theory) but the problems in Secs. 8-10 are related
to algebra and trigonometry. The solutions of some of these prob-
lems involve a number of rather important general notions. For
instance, such are the so-called fundamental theorem of algebra
asserting that every polynomial (algebraic) equation of degree n
(with arbitrary real or complex coefficients) has exactly n roois
(these roots can be real or complex numbers and must not nec-
essarily be all pairwise distinct), Vieta’s * formulas expressing
the coefficients of an arbitrary algebraic equation in terms of its
roots, the rule for long division of polynomials and geometrical
representation of complex numbers.

235. Prove that

(@4 b+ )P — ¢33 — p3 _ (33
is divisible by
(@a+b+cP—a—b—cb
236. Factor the expression
a®+4a®+1
237. Prove that the polynomial
x9999 | 8888 | 77T | (6666 | 5555 | yaded | 3333 L 2020 4 LIIIL 4§
is divisible by
B i A e A A il

* Francois Vieta (1540-1603), a distinguished French mathematician, one of
the creators of algebra and of modern algebraic notation.
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238. (a) Factor the expression
a® -+ b° 4 ¢® — 3abe

(b) Using the result established in Problem 238 (a) derive the
general formula for the solutions of the cubic equation

X+ px~+qg=0

Remark. It should be noted that, proceeding from the result established in
Problem 238, we can solve any equation of the third degree. Indeed, let

B4 Ax24+Bx4C=0

be an arbitrary cubic equation (given any algebraic equation of the third degree
with an arbitrary nonzero coefficient in x% we can always bring it to the form
in which the coefficient in x? is equal to |; to this end we simply divide the
whole equation by that leading coefficient). Let us make the substitution x =
== y + ¢ in the given equation. This yields

y3+30y2+30"’y+0"'+A(y2+2cy+'cé)+3(y+0)+0=0
whence

P+ @+ Ay 4+ Bc2+24c+ B y+(¢*+ A2+ Bc 4+ C)=0

Now we put ¢=~—~ % (that is x = y — A/3) and thus arrive at an equation
of the form
34? 2A? A? A3 AB
3 — ———— —_——— —— —— ==
y"‘(g 3 +B)-"+( 57 T3 3+C) 0
which belongs to the type of the equations considered in Problem 238:
Y +py+q=0

243

AB
3 TC

where p=——%2— + B and ¢g=
239. Solve the equation

'\/a - «\/a +x =x
240*. Find the real roots of the equation

x2+2ax+T16—=—a+/\/a2+x——l—1€

where 0 << a << 1/4.
241. Find the real roots of the equation

'\/x+2\/x+2\/x-|- o 4245+ 2 4B =

n radical signs

(all the square roots involved in the equation are meant to be
positive).
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242, Soive the equation

14—

14 —1

L+

1-|--;-

where in the expression on the leit-hand side the sign of a fraction

is repeated n times.
243. Find the real roots of the equation

Alx+3—44/x—14+Axr+8—64x—1=1

(all the square roots are assumed to be positive).
244. Solve the equation

x4+ 1]—lx]+3lx—1|—2}x—2|=x+2
245. Solve the equation

x x(x—1) x{(x—1(x—2)
=5+ =7 - 1-2°3 + ...
x(x—=1Nx—2) ... (x—=n+1)
ver FH(=1)" - =0

246. Solve the equation x3 —[x] =3 where, as usual, [x] de-
notes the integral part of the number x (see page 36).
247. In the general case the system of equations

x’—y2=0}
(x—aP+y=1

possesses four solutions. For what values of a does the number of
the solutions of this system reduce to three or to two?
248. (a) Solve the system of equations

ax+y=a2}
x+ay=1

For what values of a does the system have no solutions at all?
For what values.of a does it have infinitely many solutions?
(b) Solve the same problem for the system

ax+y=a3}
x+ay=1
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(¢) Solve the same problem for the system

ax+y+z=1
x+tay+z2=a }
x+y+az=al

249. Find the conditions which should be satisfied by numbers-
ap, o2, o and o4 so that the system of six equations with four
unknowns of the form

X1t xg=a,0,
X1+ x3=0,0,
X+ xy=0a,04
Xg - X3 == Qg0
Xo T X4 =090
X3+ x4 =30,

is solvable. Find the values of the unknowns x;, xs, x3 and x, for
the case when these conditions (imposed on the numbers a,, as, o3
and o4) hold.

250. Determine the number of real solutions of the system of

equations
x+y=2
xy—2t=1 }
251. Find all real solutions of the system
Bt P=
v+ yi=1 }

252. Find all the possible solutions x, x;, x5, X3, x4, x5 of the
simultaneous equations

Xy F xg=1xx9, Xot X4==2xX3, X3+ X5=xx4,
Xt x1=xx5, x5+ Xo=1xx,
253. A 44uple of real numbers is such that the sum formed
by each of the four numbers and the product of the other three
numbers is equal to 2. Find all such 4-tuples.

254. Solve the following system of four equations with four
unknowns:

le—bly+la—clz+ja—d|t=1
Ib—alx +lb—clz+b—d|t=1
le—alx+lc—0bly +lc—dli=1
ld—alx+ld—bly+id—c|z = ]
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Here a, b, ¢, and d are some arbitrary pairwise distinct real num-

bers. ,
255. Consider the following system of n equations with the n

unknowns xy, Xz, ..., Xa!
axi+bx +ec=x, axi+bx,+c=x, ...

v, axi_ +bx,  ‘e=x, axldbx,+c=x
where a 5= 0. Prove that this system possesses no solutions when
(b —1)2 —4ac < 0, has a single solution for (8 —1)? —4ac =20
and has more than one solution for (b —1)2 — 4ac > 0.

256. Let ay, as ..., a; (where n == 2) be positive numbers. De-
termine the number of real solutions of the system of equations

XiXe=Q1, XoX3=qpy, «esy, Xp—1Xy3=0p~1;, XpXj=4a,
257. (a) Determine the number of roots of the equation
si —_x_
%= To0

(b) Determine the number of roots of the equation
sinx=Ilogx

258. 1t is known that
a; — 4(12 + 303 > 0;
a; — 4a; - 3a, =0,

gz — 4agg + 3ay =0,
Qg — 4ay; + 3a, =0,
Qoo — 4{11 + 3(12 > 0.

Let a; = 1; find the numbers ay, as, ..., Qjoo.
259. Let a, b, ¢ and d be four arbitrary positive numbers. Prove

that the three inequalities
atbv<ctd

(a+b)(c+d)<ab+cd
(a+b)cd <(c+d)ab

cannot hold simultaneously.
260. Prove that the fraction

2—AV2 V2t A2t ... + 42
2~A2 V2t ... + 42
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involving n radical signs in the numerator and n — 1 radical signs.
in the denominator is greater than 1/4 for any n > 1.

261. The product of three given positive numbers is equal to 1;
the sum of these numbers exceeds the sum of their reciprocals.
Prove that one of the three numbers is greater than unity while
the other two numbers are less than unity.

262. The sum of 1959 given positive numbers a,, as, as, ..., Q950
is equal to 1. Prove that the sum of all the possible products of
1000 different factors chosen from the set of these numbers is less
than 1. (The set of the products under consideration includes all
products which differ from one another in at least one factor; the
products differing from one another only in the order in which the
factors are multiplied are identified and only one of them is in-
cluded in the sum in question.)

263. Let N =2 be a natural number. Find the sum of all frac-
tions of the Torm I/mn where m and n are relatively prime
natural numbers such that l <<m <<n<<N and m+n > N.

264. Let 1973 positive numbers ay, ay, as, ..., Qg7 satisfy the
condition

ap=ay=ap= ... = (a1972)mm = (a1973)al

Prove that ay == Q1973.
265*. Prove that if x; and x, are the roots of the equatlon
x?—6x 4 1 = 0 then, for any integral n, the number x7 4 x7 is

an integer divisible by 5.
266. Let us consider the expression

(@i +as+ ... + ago -+ ajo00 2=
=al+taj+ ... +ag+alnt2aa,+2aa,+ ... + 2004,

where some of the numbers ay, ay, ..., A, @000 are positive while
the others are negative. Is it possible that the number of positive
pairwise products of different numbers in this expression is equial
to the number of negative pairwise products?

Answer the same question for the expression

(a4 as+ ... + aooos + Q10000)°

267. Prove that any integral power of the number 4/2 —1
can be represented in the form 4/N — 4/N — 1 where N is a whole:
number (for instance, (4/2—1)’=3—24/2=4/9—4/8 and
(/2 = 1)’ =54/2 — 7 =4/50 — 4/49).

268. Prove that the number 99999+ 111111 x/§ cannot be

represented in the form (A+Bx/3) where A and B are whole:
numbers.
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269. Prove that 4/2 cannot be written as A/2=p+g+/F
where p, ¢, and r are rational numbers.
270. It is known that a number A can be written in the form

——\
A=(f+—*/§”—z—_—‘—1—) where m and #>>2 are natural numbers.

E+ AR —4
2

Prove that A can also be represented as A== where £

is a natural number.
271. Are there rational numbers x, y, z and ¢ such that

(x+yv2)" +(+142)" =54 442
for some natural number n?

272. Suppose that there are two barrels of infinite volumes
filled with water. Is it possible to pour exactly one litre of water
from one of them into the other using two scoops of volumes
4/2 and 2 —4/2 litres respectively?

273. For what rational values of x is the expression 3x2—5x + 9
-equal to the square of a rational number?

274. The magnitude of the discriminant A = p? — 44 of a qua-
dratic equation x% + px 4+ g =0 is of the order of 10. Prove that
‘when the coefficient g of the equation is rounded so that its
variation is of the order of 0.01 the increments of the values of the
roots of the equation are of the order of 0.001.

275. Let us agree to round numbers by replacing them by in-
tegers differing from the original numbers by less than 1. Prove
that any n positive numbers can be rounded in this way so that
the sum of any of these numbers differs from the sum of the cor-
responding rounded numbers by not more than (n 4 1)/4.

276. Let a be a positive number. This number is replaced by a
number aq obtained by discarding all the digits in the decimal re-
presentation of a beginning with the fourth digit, that is the
number a is rounded to its minor decimal approximation with an
accuracy of 0.001. The number a, thus obtained is then divided by
the number a itself and the quotient is again rounded in the same
way to the same accuracy. Find all the numbers that can be ob-
tained in this manner.

277*. Let o be an arbitrary nonnegative irrational number and
n > 0 be an arbitrary integer. Then in the sequence 0/n, 1/n, 2/n,
3/n, ... there is a fraction which is the closest to a, the absolute
value of the difference between o and that fraction obviously being
not greater than half the fraction 1/an. Prove that there exists n
such that the fraction with the denominator n which is the closest
to a differs from « by less than 0.001: (1/n).

278. (a) Prove that if a number o has a decimal representa-
tion of the form 0.999... where there are 100 consecutive 9’s after
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the decimal point then the decimal representation of 4/a has the

form 4/a= 0.999 ... where there are also 100 consecutive 9's
after the decimal point.

(b*) Find the value of the root 4/0.1111 ... 111 to an accuracy
re—— 1 et p———

100 ones
of (1) 100; (2) 101; (3) 200 and (4) 300 decimal places after the
decimal point.
279. (a) Which of the two numbers

2.00000000004
(1.00000000004)* - 2.00000000004

and
2.00000000002

(1.00000000002) - 2.00000000002

is greater?
(b) Let a > & > 0. Which of the two numbers

l+at+a*+ ... +a*! 1+b4+02+ ... 471
l+a+a?4 ... +a” 1+ bo4624 ... + 0"

is greater?
280. Given n numbers ay, dg, a3, ..., Qn, find the number x such
that the sum

x—afl+x—a)l+ ... +(x—a,)

assumes the least possible value,

281. (a) Given four real pairwise distinct numbers a; << as <<
<< ag << aa, it is required to arrange them in a certain order as
a;'s ai, Qi a;, (wWhere iy, iy, i3 and i, are the same indices 1,2, 3
and 4 but possibly rearranged in some way) so that the sum

O= (ail - aiz)2 + (aiz - ai )2 4'- (aio - aiq)2 + (ah - ai|)2

{akes on the minimum possible value.
(b*) Given n pairwise distinct numbers ay, a, as, ..., a,, it is.
required to arrange them in a certain order as Qi Ay Qigy voes Ay,

to make the sum
D= (ail — ai2)2 + (afz - aia)z +. (aln—l - a‘n)2 + (a’n - ai1)2

assume the least possible value.
282. (a) Prove that for arbitrary real numbers ay, ay, ..., a,
and by, by, ..., by, we always have

NETBANET R+ - +AfE T E >
=Va+at ... taf+Gi+b+ ... 0,7

and
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Under what conditions does an exact equality take place here?

(b) A pyramid is said to be right if it is possible to inscribe
a circle in the base of the pyramid and if the centre of the circle
coincides with the foot of the altitude of the pyramid. Prove that
a right pyramid has a smaller lateral area than any other pyramid
of the same altitude the area and the perimeter of whose base
coincide with those of the base of the former pyramid.

Remark. The inequality established in Problem 282 (a) is a special case of
Minkowski’s inequality which is written as

A/EF O+ o A EAASH O+ . B+
AR L R
=V + .o a2+ O+ o F )+ G+ )P
283*. Prove that for any real numbers ay, ay, ..., a, there holds
the inequality
A+ —al+ Al + (1T —a)>+ ...
+ A T (L= )+ /R F (L —a) > “/2

For what values of these numbers is the left-hand member of
the inequality exactly equal to its right-hand member?

284, Prove that if the absolute values of two numbers x; and
xy do not exceed unity then

A T=2+AT= 2 < 2,\/1 "‘+"2)

For what values of x; and x; are the right-hand and the left-
hand members of this inequality exactly equal to each other?

285. Which of the two expressions cos sin x and sincos x has a
greater value?
286. Prove without using a table of logarithms that

(2) loggn + log m > 2

1 1
(b) logs 7 + logy 2

287. Prove that if o and § are acute angles and o << B then
(a) a —sina <P —sinf; (b) tanea—a <tanp—p.
288*. Prove that if o and B are acute angles and o << B then
tan a/a << tan B/.

289. Find the relation between arcsin cos arcsinx and
arccos sin arccos x.

> 2.
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290. Prove that it is impossible for the sum
cos 32x + a3 cos 3lx + azxcos30x + ... 4 asc0os2x 4 a;cosx

to take on only positive values for all x whatever the coefficients.
as, Q3o ..., Qg 4y

291. Let some (or all) of numbers ay, ay, ..., a. be equal to 41
and the rest of them be equal to —1. Prove that
. a az a,a,a, a\ds ... o ___
2 sin a1+—-2 —l--—-4 + .. = )45
=a,’\/2—l—a2’\/2+a3\/2+ . a2
For instance, for ay=a,=... =a,=1 we obtain

, 1,1 2 o 45
2 sin (1 totot +-2ﬁ—)45 =2cos =t
=V2+A2+ ... +47

n radical signs

9. Algebra of Polynomials

292. Find the sum of the coefficients of the polynomial obtained
after parentheses have been removed and like terms have been
collected in the product

(1 — 3x -+ 3x373 (1 + 3x — 3527

293. In which of the two polynomials obtained after parentheses
have been removed and like terms have been collected in the ex-
pressions

(1 4+ x2— 23190 and (1 — x? 4 x5)1000

is the coefficient in x?° greater?
294. Prove that the polynomial obtained after parentheses have
been removed and like terms have been collected in the product

M—x+ 22—+ .. — x4+ U+ x+ 224 ...+ £% + £

does not involve terms with odd powers of x.

295. Find the coefficients in x5 in the polynomials obtained
after parentheses have been removed and like terms have been
collected in the expressions

(@) (1 -+ 004 x (1 + %)%+ 2 (1 + )+ ... 4
(b) (1+ %) 421+ 22+ 3(1 4 x° + ... -+ 1000 (1 + x)1*.

296*. Determine the coeificient in x? appearing after parentheses
have been removed and like terms have been collected in the ex-
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pression
(oo ((x—2P =2 —2)2— .,, —2)?

k times

297. Find the remainder obtained when the polynomial
x4 1% 4 10 127 1B - 428
is divided

(a) by x —1; (b) by 2 — 1.

298. When an unknown polynomial is divided by x — 1 and by
x — 2 we obtain in the remainder 2 and 1 respectively. Find the
remainder resulting from the division of this polynomial by
(x—=1)(x—2).

299. When the polynomial x'9! — 1 is divided by x* -+ x% -
—|—2x2+x—|—l we obtain a quotient and a remainder. Find the
coefficient in x'* in the quotient.

300. Find all polynomials P(x) for which the identity

xP(x —1)=(x—26)P(x)
holds.

301. Let us consider a polynomial P(x)= aqux"+ a;x*! 4
~+ ...+ a,1x + a, whose coeificients aqo, a1, ..., @, are

(a) some natural numbers; (b) arbitrary integers.

Let us denote by s(n) the sum of the digits in the decimal re-
presentation of the number P(n) (it is clear that the sum s(n)
only makes sense when P(n) is a natural number; if otherwise,
a(n) simply does not exist).

Prove that if the sequence s(1), s(2), s(3), ... contains infinitely
many different numbers then it also contains infinitely many equal
numbers.

302. Prove that the polynomial x2%420° {1 in variables x and y
cannot be written as a product f(x)g(y) of two polynomials f(x)
and g(y) depending solely on x and solely on y respectively.

303. A quadratic trinomial p(x)= ax?+ bx -+ ¢ is such that
the equation p(x)= x has no real roots. Prove that in this case
the equation p(p(x))= x has no real roots either.

304. A quadratic trinomial p(x) = ax? 4 bx - ¢ is such that

p(x)]< 1 for |x| << 1. Prove that in this case from the condition
x|<1 it also follows that |pi(x) | << 2 where pi(x)= cx?+
+bx+a

305. Prove that if x; is a root of an equation of the form

ax®’+bx+c=0 (1

and x; is a root of the equation

—ax’+bx+c=0 (2)
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then there is a root x; of the equation
5 &+ bx+e=0 (3)

lying between x, and xs, that is x; << x5 << %3 or X = x5 = xa.
306. Let o and P be the roots of an equation

x*+px+q=0
and let y and 8 be the roots of an equation
x4+ Px+Q=0

Express the product
(@—v)B—v)(@—28)(B—29)

in terms of the coefficients of the given equations.
307. For the two equations

*+ax4-1=0 and x*4-x-4a=0

determine all the values of the coefficient a for which these equa-
tions have at least one common root.
308. (a) Find an integer a such that

(x—a){(x—10)+1

can be factored as a product {(x 4+ b) (x + ¢) of two factors in-
volving integral numbers b and c.

(b) Find all nonzero and pairwise different integers a, b and ¢
such that the polynomial

x(x—a)(x—b)(x—c)H4 1

of the fourth degree with integral coefficients can be represented
as a product of two polynomials with integral coefficients.

309. For what pairwise distinct integral coefficients a;, aa, ...
..., 0, can the polynomials

@ (x—a)(x—a)lx—ay)... (x—a,)—1
and
(b) (x—a)xr—a)(x—ag) ... (x—a,)+1
be represented as products of some other polynomials?

310%. Prove that for any pairwise distinct integers aq,, as, ..., an
the polynomial

(x—a)(x—a) ... (x—a,)+1
cannot be represented as a product of two other polynomials with

integral coefficients.
311. Prove that if a polynomial

P(x)=a0xn+alxn—l+ se e +an_1x+an
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with integral coefficients assumes the value 7 for four integral
values of x then it cannot take the value 14 for any integral value
of x.

312. Prove that if a polynomial of the 7th degree

apx’ + a;x8 + ax® + asxt 4 ax + asx® + agx + a;

takes on the values 41 and —1 for 7 integral values of x then it
cannot be represented as a product of two polynomials with in-
tegral coefficients.

313. Prove that if a polynomial

P(x)=apx"+aux" '+ ... +a,_1x+a,

with integral coefficients assumes odd values for x = 0 and x =1
then the equation P (x) = 0 possesses no integral roots.
314*. Prove that ii the absolute value of a polynomial

P(x)=aux" + ax" ' aux" 2+ ... +a,_1x+a,

with integral coefficients is equal to 1 for two integral values
x=p and x=¢ (p > q) of the argument and if the equation
P(x)= 0 has a rational root a, then p — ¢ is equal to 1 or 2 and

a=(p+q)/2
315*. Prove that the polynomials

(a) x2222+2x2220+ 4x2218+ 6x2216+ 8x22l4 'l‘ .

oo 4 2218x% 4- 222052 - 222927
and

(b) x250+x249+x248+x247+x246+ e -i—xz—l—x—l—l

cannot be represented as products of polynomials with integral
coefficients.

316. Prove that if a product of two polynomials with integral
coefficients is equal to a polynomial with even coefficients which
are not all divisible by 4 then all coefficients of one of the original
polynomials are even whereas not all coefficients of the other
polynomial are even.

317. Prove that all rational roots of a polynomial

Px)=x"4+ax" '+ a2+ ... +ap_1x+a,

with integral coefficients (the coefficient in the highest power of x
is equal to 1) are integers.
318*. Prove that there exists no polynomial of the form

P(x)=apx"+ax"'+ ... +a,_1x+a,

for which all the values P(0), P(l), P(2) ... are prime numbers.
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Remark. L. Euler * was the first to prove the assertion stated in this problem.
He also constructed examples of polynomials whose values corresponding to
many consecutive integers x are prime nurabers (for instance, in the case of the
polynomial P(x) = x*— 79x 4 1601 the 80 values P(0) = 1601, P(l) = 1523,
P(2), P3), ..., P(79) are prime numbers).

319. Prove that if a polynomial
Px)=x"+ Aix" 1+ Apx" 2+ ... +Auoix+ 4,

possesses the property that it assumes integral values for all in-
tegral values of x, then it can be represented in the form of a sum
of the polynomials
Pyy=1, Pi(x)=ux, Pz(x)=x(f,—;l), .

o xx—=Nx—=2) ... (x=n+1
o Pali)= [-2:3...n

multiplied by some integral factors. (According to Problem 75 (a),
each of the polynomials Po(x), ..., P.(x) possesses the same pro-
perty.)

320. (a) Prove that if a polynomial P(x) of the nth degree as-
sumes integral values for x =0, 1, 2, ..., n then it also assumes
integral values for all the other integral values of x.

(b) Prove that every polynomial of degree n which taken on
integral values for some n 4 1 consecutive integral values of x
assumes an integral value for any arbitrary integer x as well.

(c) Prove that if a polynomial P(x) of the nth degree assumes
integral values for x =10, 1, 4, 9, 16, ..., n? then it assumes an
integral value for any integral value of x which is a perfect square
(but such a polynomial must not necessarily assume integral
values for all integers x).

Give an example of a polynomial which assumes an integral
value for every integral value of x which is a perfect square and
at the same time assumes fractional values for some other integral
values of x.

10. Complex Numbers

321. (a) Prove that

cos ba = cos®a — 10 cos®a sin®a 4+ 5 cos o sina
and
sin Ba = sin®a — 10 sin®a cos?a -+ 5 sin a costa
* Leonard Euler (1707-1783), a Swiss mathematician who spent most of his
life in Russia was undoubtedly one of the greatest mathematicians of the 18th

century. He contributed many outstanding results to various divisions of
mathematics, mechanics and physics.
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(b) Prove that for natural n we have
cos na ==cos"a — C (n, 2) cos*~2a sin®a -- C (n, 4) cos"~*a sin*a —
—C (n, 6)cos"~%asin®a 1 ...
and
sinna=C(n, 1)cos® 'asina — C(n, 3)cos"*a sin’a +
4 C (n, 5)cos"~*a sin®a— ...
where C(n, k) is the number of combinations of n things, taken &
at a time and the dots designate the other terms the general rule
for whose construction can easily be guessed and which can be

written, in succession, as long as the binomial coefficients C(n, &)
make sense.

Remark. Problem 321 (b) is obviously a generalization of Problem 321 (a).
322. Express tan 6o in terms of tan a.
323. Prove that if x 4 1/x = 2 cos o then x" 4+ %= 2cos na.
324. Prove that

sing 4 sin (¢ 4 o)+ sin(p + 2a¢) + ...

sin _____(n -!—21)(1 sin (q) +_n2g)

. Q
s:n—2-—

v +sin(p 4 na)=

and

cos ¢ - cos (@ 4 a) 4- cos(p - 2a) 4+ ...

sin—(n—z—])acos ((p + n_2a)

e Fcos(p 4 na)= -
sin 7
325. Simplify the expressions
cos?a -+ cos?2a 4+ ... + cos’ra
and
sin?a + sin?2a 4+ ... -+ sin?na
326. Simplify the expressions

cosa -+ C(n, 1)cos2a+C(n, 2)cos3a+ ...

voo +C(n, n—1)cosna~+cos(n—+ 1a
and
sina 4 C(n, 1)sin2a 4 C(n, 2)sin3a-4- ...

ve. +C(n, n— 1D sinna+sin(n+ 1)a
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327. Prove that if m, n and p are arbitrary integers then the ex-
pression

2nn

in 3nn
+ si 5 4+ ...

. +sin —Dmn n (P _pl)'m

. mm . nin .
sin — sin — +-si
i o T

is equal to —p/2 when m 4+ n is divisible by 2p and m — n is not,
is equal to p/2 when m — n is divisible by 2p and m 4 n is not
and is equal to zero when both m 4+ n and m — n are divisible
by 2p or not divisible by 2p.

328. Prove that

25 2nn 1
08 57 tcos 211+2+C032n+1+ chs T =—1
329. Write equations whose roots are equal to the numbers
.9 T .o 2m . o Om . 9 AN
(a) sin“5 ., sin® g, sin® g e, e, st g
25 3n ni
2 2 <% 2= 2
(b) cotQ_H, cot T cot T cot T

330. Simplify the expressions of the sums

2 11 2 2 3n 2 nﬂ .

(a) cot T -+ cot 2n+l—|—cot ———2n+1+ . + cot T
3n o NN

(b) csc? 2n+1 + csc? 2n_| T —+ csc? o1 + ... 4 csc T

331. Simplify the expressions of the products

. i . 2n . 3n . nmn
(a) sin T S g TSIt g - SN gy
and
.o L 2W n3_n sin (n—n
sin o - sin g -sin5- ... ——
b 2n 3n ni
(b) €OS 5 €08 5~ COS e L. €OS 5 T
and
4 2:r5 3n (n—1mn
CcoSs 5 2!’! CcOSs on t " COST

332, Show that from the results established in Problems 330 (a)
and (b) it follows that for any positive integer n the value of the

sum
1 1 1
I+ +5+ ... +57
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. 1 2 n? 1
lies between (l —2—2'”_*_—1')(1 —W) 5 and (l —2n—+l)><
1 ELS
X (1 + T )T'
Remark. In particular, the assertion stated in Problem 332 implies that

1 1 1 e’
It t+gt+pm+ ... =%

where the sum of the infinite series 1 + % + %—+ % <+ ... is under-

stood as the limit to which the finite sum 1+—217+312—+ vee —r%-tends asn >

—>00,

333. (a) A point M lies on a circle circumscribed about a reg-
ular n-gon A4, ... A, Prove that the sum of the squares of the
distances from that point to all the vertices of the n-gon is inde-
pendent of the position the point occupies on the circle and is
equal to 2nR? where R is the radius of the circle.

(b) Prove that the sum of the squares of the distances from an
arbitrary point M lying in the plane of a regular n-gon A;A4,... Ax
to all the vertices of the n-gon is dependent solely on the distance
[ between M and the centre O of the n-gon and is equal to
n(R? +- 12) where R is the radius of the circle circumscribed about
the n-gon.

(c) Prove that the assertion stated in Problem 333 (b) remains
true for the case when the point M does not lie in the plane of
the n-gon A14y... An.

334. Let M be a point lying on an arc A,A, of a circle circum-
scribed about a regular n-gon A14,. .. A, Prove that

(a) if n is even then the sum of the squares of the distances
from the point M to the vertices of the n-gon with even indices
is equal to the sum of the squares of the distances from M to the
vertices with odd indices;

(b) if n is odd then the sum of the distances from the point M
to the vertices of the n-gon with even indices is equal to the sum
of the distances from M to the vertices with odd indices.

Remark. For a geometrical proof of the theorem stated in Problem 334(b)
see the solution of Problem 137 in book [8].

335. The radius of the circle circumscribed about a regular
n-gon A1Ay ... An is equal to R. Prove that

(a) the sum of the squares of all sides and of the squares of all
diagonals of the n-gon is equal to n?R?;

(b) the sum of all sides and of all diagonals of the n-gon is
equal to n cot(nR/2n);

(c) the product of all sides and of all diagonals of the n-gon
is equal to n"2Rn(n-D12,
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336*. Find the sum of the 50th powers of all the sides and of
all the diagonals of a regular 100-gon inscribed in a circle of ra-
dius R.

337. It is known that lz—{-—;—|=a where z is a complex

number. What are the greatest and the least possible values of
the modulus |z| of the complex number 2?

338. Let a sum of n complex numbers be equal to zero. Prove
that among them there are two numbers whose arguments differ
by not less than 120°.

Is it possible to replace in this problem the angle of 120° by a
smaller angle?

339. Let ¢y, ¢3, ..., ¢x and z be complex numbers such that

1 1 1
z2— + Zz2—C2 + o F Z2—cCp =0
Prove that if- the numbers ¢y, ¢q, ..., ¢. are represented in the
complex plane by the vertices of a convex n-gon then the number 2
is represented by a point lying inside that n-gon.

11. Several Problems in Number Theory

340. Fermat’'s theorem. Prove that if p is a prime number then
for any whole number a the difference a? — a is divisible by p.

Remark. The assertions proved in Problems 46 (a)-(e) are special cases of
this theorem.

341. Euler’s theorem. Let N be a whole number and r be the
number of integers belonging to the sequence 1, 2, 3, ..., N—1
which are relatively prime to N. Prove that if a is an arbitrary
whole number relatively prime to N then the difference a”—1 is
divisible by M.

Remark. 1f N is a prime number then all the numbers in the sequence 1, 2,
3, ..., N—1 are relatively prime to N, that is r = N — 1. In this case Euler’s
theorem reduces to the following theorem: the difference a*-!'— 1 where N is.
a pr.me number is divisible by N. We thus see that Fermat's theorem (Problem
240) can obviously be regarded as a special case of Euler’s theorem.

If N = p* where the number p is prime then among the N—1=pr—1t
numbers 1, 2, 8, ..., N— 1 only the numbers p, 2p, 3p, ..., N—p = (p*—' —
— I;p are not relatively prime to N = p~. In this case r = (p® — 1) — (p*~! —
— 1) = p*— p*1, and hence Euler’s theorem reduces to the following theorem:
the difference aP"—? — 1 where the number p is prime and a is not di-
visible by p must necessarily be divisible by p~.

o @, ay L . s s
If N=p|'p,? ... py® where p, pp, ..., px are pairwise distinct prime
numbers then the number r of positive integers which are less than N and are

n—1

3*
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relatively prime to N is given by the formula

r=N(l —L) (1 —L) (1 ——l-)
Pt P2 Pn
If N is a power of a prime number p, that is N = p*, then this formula yields
1
r== n(l__),: n__ n—l
p D p p
The last formula coincides with the result established above.

342*. According to Euler’s theorem, the difference 2* — 1 where
k = 5" — 51 is divisible by 5" (see Problem 341 and, in partic-
ular, the remark to it). Prove that the difference 2* — 1 cannot
be divisible by 5* for any & less than 57 — 571,

343. Let us write consecutively the powers of the number 2:

2; 4; 8; 16; 32; 64; 128; 256; 512; 1024; 2048; 4096; ...

It can easily be noticed that the last digits of the numbers f_o_fm<
ing this sequence repeat periodically with period of length 4:

2; 4; 8, 6; 2; 4, 8, 6; 2;4;, 8 6;...

. Prove that, beginning with some number belonging to the se-
quence of the powers of 2, the last 10 digits of the numbers form-
ing that sequence also repeat periodically. Find the length of the
period and the number in the sequence beginning with which this
periodicity takes place.

344*. Prove that there exists a power of the number 2 such
that the last 1000 digits in its decimal representation are all ones
and twos.

345. We shall call a pair of (different) natural numbers m and
n “good” if they contain the same prime factors (in the general
case raised to different powers). For example, such are the num-
bers 90 = 2-32.5 and 150 = 2.3-52. Further, we shall call such
a pair “very good” in case both m, n and m + 1, n 4 1 are “good
pairs” (for example, the numbers 6 = 2-3 and 48 =2%-3 form a
“very good” pair because 6 +1=7 and 484+ 1=49=7?). Is
the set of all “very good” pairs of natural numbers finite or not?

346. Let a, a+ d, a+ 2d, a4+ 3d, ... be an arbitrary (infinite)
arithmetic progression whose first term a and common difference
d are natural numbers. Prove that the progression contains infi-
nitely many terms whose factorizations contain the same prime
factors (of course, in the general case, the exponents of their
powers contained in the factorizations may be different).
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347. Wilson’s * theorem. Prove that if p is a prime number then
the number (p — 1)1 4-1 is divisible by p and if p is a composite
number then (p — 1)! 4 1 is not divisible by p.

348. Prove that

(a) for any prime number p there are integers x and y such
that x2 4- y2 4 1 is divisible by p;

(b*) if the division of a prime number p by 4 leaves a re-
mainder of 1 then there exists an integer x such that »24-1 is
divisible by p (in case the prime number p is odd the condition
imposed on p is necessary and sufficient for the existence of
such x).

Problem 348 is related to the part of number theory studying the represen-
tation of natural numbers as sums of powers (with equal exponents n > 1)
of some other natural numbers. For example, from the result established in
Problem 348 (b) we can draw the conclusion that a natural number N can be
represented in the form of a sum of squares of two natural numbers if and
only if the factorization of N as a product of prime factors contains even
powers of prime factors of the form 4n 43 (that is of all prime f[actors
whose division by 4 leaves a remainder of 3).

From the result established in Problem 348 (a) it is possible to deduce an
interesting theorem asserting that all the natural numbers without exception
can be represented as sums of squares of four natural numbers (or of a smal-
fer number of squares). In its turn, tbis theorem makes it possible to prove that
each natural number can be represented in the form of a sum of a bounded
number of fourth powers of natural numbers, say as a sum of 53 (or less)
exact fourth powers of natural numbers. (More intricate methods make it pos-
sible to replace 53 by 21; the last result can probably be made more precise:
some considerations indicate that every natural number can probably be repre-
sented as a sum of not more than 19 exact fourth powers of integers.) It is
also proved that every natural number can be represented as a sum of not more
than nine cubes of integers (in this case the number 9 cannot be replaced by a
smaller number!).

All these assertions are special cases of the following remarkable theorem:
for any positive integer k there is an integer N (which, of course, depends on
&) such that any positive integer can be represented in the form of a sum of
not more than N summands each of which is the kth power of an infeger **,
There exist several different proofs of the last theorem but in the proofs that
were known until recent years extremely intricate mathematical methods (relat-
ed to higher mathematics) were used. It was only in 1942 that the Soviet math-
ematician Yu. V. Linnik constructed a purely arithmetical proof of the theo-
rem which however is very complicated. It was also established that each ratio-
nal number can be represented as a sum of not more than three cubes of ratio-
nal numbers; in this connection it is interesting to note that the number 1 can-
not be represented in the form of a sum of cubes of two rational numbers.

349. Prove that there are infinitely many prime numbers.,

350. (a) Prove that among the terms of the arithmetic progres-
sions 3; 7; 11; 15; 19; 23; ... and 5; 11; 17; 23; 29; 35; ... there
are infinitely many prime numbers.

* John Wilson (1714-1793), a Scottish astronomer and mathematician.
** This-theorem is often referred to as Waring’s problem after Edward Wa-
ting (1734-1798), an English mathematician who posed this problem, — Tr.,
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(b*) Prove that among the terms of the arithmetic progression:
11; 21; 31; 41; b1; 61; ...

there are infinitely many prime numbers.

By analogy with the solutions of Problems 350 (a)-(b), but in a more com-
plex manner, it can be proved that among the terms of the arithmetic progres-
sion 5; 9; 13; 17; 21; 25; ... there are also infinitely many prime numbers. There
also holds a more general assertion: any arithmetic progression whose first
term is relatively prime to its common difference contains an infinitude of prime
numbers. This assertion is proved in an extremely difficult way. It is interesting
to mention that a proof of this classical theorem of number theory in which the
methods of higher mathematics are not used was for the first time elaborated
in 1950 by the Danish mathematician A. Selberg (this proof is however very
complicated). Before that only proofs based on higher mathematics were known.



Solutions

1. Let A be the first of the chosen soldiers and B the second
one. If A and B are in one line then B is taller than A because A
is the smallest soldier in his line; if A and B are in one file then
B is also taller than A because B is the tallest soldier in that file.
Finally, if A and B are in different lines and in different files, and
if C, another soldier, is in one line with A and in one file with B,
then B is taller than A since B is taller than C while A is smaller
than C.

2. Let us consider the sum of the numbers of times each person
has. ever shaken hands. The sum must necessarily be even because
when two persons A and B shake hands the number of times A
has shook hands increases by 1 and the number of times B has
ever shook hands also increases by 1, and hence this adds the
number 2 to the total sum of the numbers of the handshakes.
Since this sum consists of the numbers of times each person has
shaken hands and the sum is even, it follows that the number of
©odd addends in this sum is even, which is what we intended to
prove.

3. Let A be one of the six people. It is clear that

1° either A has three acquaintances B;, By, and B; among the
«other five persons or

2° there are three persons C,, C; and C; with neither of whom
A is acquainted (because A is either acquainted with three of the
five persons different from A or is not acquainted with three per«
sons among those five people).

If case 1° takes place and among B,, B, and Bj there are not
two persons who are acquainted with each other then B,, B, and
B form the triple of persons whose existence is asserted in the
problem; if in case 1° two of the three persons B, By and Bj, say
B; and B,, are acquainted with each other then among the three
persons A, B, and B, any two persons are acquainted with each
other. Similarly, if case 2° takes place and any two of the three
persons C;, Co and C; are acquainted with each other then they
form the triple we are interested in, and if in case 2° there are two
persons among C;, Cs and C;, say C, and C,; who are not ac-
quainted with each other then the triple consisting of A, C, and C,
is the one whose existence we want to prove,

4. (a) Each of the N persons present at the meeting can have
0, 1, 2, ..., N—1 acquaintances, that is the greatest possible
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number of his acquaintances is equal to N. However, if somebody
has 0 acquaintances then nobody has N — 1 acquaintances. On
the contrary, if somebody has N — 1 acquaintances then nobody
has 0 acquaintances. It follows that there must necessarily exist
two people having the same number of acquaintances (ci. what
was said about Dirichlet’s principle on page 9).

(b) We shall index the people taking part in the meeting with
the numbers 1, 2, ..., N and consider the following situation: let
for all the values i=20, 1, 2, ... where { << N/2 the person with
the index N — i be acquainted with all the people except the first i
persons (this means that the Nth person is acquainted with all
other people without exception, the (N — 1)th person is acquainted
with all other people except the Ist one, the (N — 2)th person is
acquainted with all other people except the 1st and the 2nd, etc.)
and let all the people with the indices i such that 1 << { <<(N 4 1)/2
be not acquainted with one another. In this case it is obvious that
for N = 3 the 1st and the 2nd persons are acquainted only with
the 3rd one while the 3rd person has two acquaintances. Similarly,
for N = 4 the lst person is acquainted only with the 4th one, the
2nd person with the 4th and the 3rd, the 3rd with the 4th and the
2nd persons and the 4th person has three acquaintances. In just
the same manner we can readily show that for an odd number
N = 2k + 1 the number n; (i =1, 2, ..., N) of the people the ith

person is acquainted with takes on the values ny =1, no =2, ...
N nkzk, ﬂ.k+1=k, nk+2=k—|-1, ey nN=N—1 and that
for an even number N =2k 4+ 2 we have nj=1,n,=2, ...
Cey I’Lk+1=k-}—l, ﬂk+2=k+1, nk+3=k+2, Ceey nN=N—1.

Thus, in the case under consideration there are not three persons
having the same number of acquaintances.

5. If all the participants of the meeting are acquainted with one
another then the possibility of seating four people in the required
manner is quite evident. Now let us suppose that two persons A
and B are not acquainted with each other. Each of them has not
less than n acquaintances among the other 2n — 2 participants.
Since n 4+ n = 2n = (2n — 2} + 2 we conclude that A and B have
at least two mutual acquaintances C; and C;, and we can seat A
and B opposite each other and seat C; and C; between them.

6. Let A be a scientist having the greafest number n of ac-
quaintances among the participants of the congress (there can be
several such scientists and then by A is meant one of them). It
is clear that n > 0 since we supposed that some of the partici-
pants of the congress had been acquainted with one another. All
the acquaintances of A have different numbers of acquaintances
(because A is a mutual acquaintance of any two of them); besides,
none of them has more than n acquaintances. Therefore B, one
of the acquaintances of A, must necessarily have only one ac-
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quaintance, some other of the acquaintances of A has exactly two
acquaintances, a third one has three acquaintances, ..., and,
finally, the last (the nth) of the acquaintances of A has, like 4, n
acquaintances. The existence of person B proves the assertion of
the problem.

7. Let us arbitrarily choose three delegates of the congress.
Among them there must be two persons knowing some one lan-
guage (one of the three languages). We shall lodge them in one
room. From the remaining 998 delegates of the congress we again
choose three persons among whom there are two people that can
be lodged in one room, and so on until there remain only four de-
legates A, B, C and D. If every two of them can speak with each
other there are no difficulties in lodging these four people; if A
and B cannot communicate with each other then both C and D
can serve as their interpreters (which makes the communication
in the triples A, B, C and A, B, D possible). Therefore we can,
for instance, lodge C and A in one room and D and B in another
T00Mm.

8. Let A be one of the participants of the conference. He can
speak with each of the other 16 participants in at least one of the
three languages. It is readily seen that there is a language (we
shall speak of this language as the first one) among the three
languages that A can speak in with not less than 6 participants.
Indeed, if otherwise, A could not speak with more than 5-3 = 15
scientists whereas, by the condition of the problem, every two
scientists can speak with each another. Further, if among these 6
scientists there are two who speak with each other in this lan-
guage the assertion of the problem turns out to be true. If other-
wise, these 6 participants can speak with one another using only
two languages.

Now, let B be an arbitrary scientist among the 6 chosen scien-
tists. It is clear that among the other 5 scientists there are 3 with
whom B can speak in one and the same language (we shall call
it the second language). Indeed, if otherwise, then among these
5 participants of the conference there would be not more than
2-2 = 4 persons with whom B could communicate. If among these
three scientists at least two, say C and D, can speak with each
other in the second language then the three scientists B, C and D
can speak with one another in one language, and the assertion of
the problem again turns out to be true. In case these three scien-
tists speak with one another in the third language then it is they
who form a triple of scientists whose existence we intended to

rove.

P 9. (a) Let us choose one of the participants of the meeting. We
shall denote him A and all the persons acquainted with him
Ay, Ag, ..., Ag respectively. It is clear that among A, Ay, ..., A
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there are not two persons acquainted with each other and that any
two of them, say A; and A;, have two mutual acquaintances,
namely A and Ay (here i, j=1, 2, ..., k and i 5 j). Besides, it
is obvious that among the k(& — 1) /2 participants A; there are
not two persons coinciding with each other because, if otherwise,
that person and person A would have not less than three mutual
acquaintances. On the other hand, since every participant who is
not acquainted with A and the person A himself have two mutual

acquaintances (they obviously belong to the set Ay, Ay, ..., Ax),
we see that all the participants who are not acquainted with 4
are Aig, Az, ..., Ary, &, and therefore the total number n of the
participants of the meeting is expressed as

n=1+k+t 2D (*)

(here 1 corresponds to A, k corresponds to all persons A; and
k(k — 1) /2 corresponds to the persons 4;).

Now we note that by virtue of equality (*) which can also be
rewritten as

R+ E—(2n—2)=0 (**)
it follows that
1 I AT -1
b=t A/ e —g =TT
(the other root of quadratic equation (**) is & = — /2 —

— 4/1/&4 + 2n — 2; it is negative and must therefore be discarded).
Hence, the number & of the people who are acquainted with an arbit-
rarily chosen person A is uniquely determined by the total num-
ber n of the participants of the meeting, that is & is one and the
same for all persons 4.

(b) By (*), we have

n=_k£;ﬂ.+l (***)

whence it follows that n exceeds by unity the number k(& 4 1) /2,
the latter being one of the so-called triangular numbers for n ex-
pressed by formula (***) the number of the acquaintances each of
the participants has is equal to &; here k=1, 2, 3, ... is an ar-
bitrary natural number. A

10. Let A, B and C be three arbitrary inhabitants of the town.
It is evident that there can be the case when all the three people
are friends; it is also possible that one of them (say A) is neither
a friend of B nor of C while B and C are friends. Then for 4, B
and C to make friends with one another it is sufficient that A4
should quarrel with all his friends and make friends with all his
enemies, It can also be easily seen that the other two cases when
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all the three inhabitants A, B and C are enemies and when one
of the inhabitants, say A, is a friend of both B and C while B and
C are enemies are impossible. Indeed, in both cases among the
three pairs A, B; A, C and B, C of the inhabitants of the town
of Manifold there is an odd number ¢ (equal to 3 or 1) of pairs
of enemies and an even number e (equal to 0 or 2) of pairs of
friends. In all the cases when A or B or C quarrels with his
friends and makes friends with his enemies the odd number ¢ and
the even number e either do not change or are replaced by an odd
number ¢’ and an even number e’ respectively, whence it follows
that all the three persons A, B and C can never make friends
with one another (because the number ¢ cannot become equal
to0 0).

The description of the “friendship relations” between any three
persons A, B and C shows that for the whole population of the
town these relations can be described in the following way: there
are two groups of people in the town (fwo parties # and &) such
that each of the inhabitants of the town belongs either to one
party or to the other (but never to both parties simultaneously),
every two of the members of one party being friends and any two
inhabitants belonging to the different parties being enemies. In-
deed, let us add to the above three inhabitants A, B and C an-
-other inhabitant D of the town of the Manifold. If A and B are
friends and D is a friend of at least one of them, then D is also
a friend of the other and hence he belongs to the same party as A
and B; if A and B are enemies then D is a friend of only one of
them (and must necessarily be a friend of one of them). This
argument shows that it is possible to divide the four-tuple of the
inhabitants A, B, C and D into two parties # and 4 (however,
.one of the parties may turn out to be “void”: this is the case when
all the inhabitants A, B, C and D are friends). Proceeding in this
way, that is adding consecutively new persons to the ones we have
already considered, we prove the possibility of dividing all the
10 000 inhabitants of the town into the two parties /£ and A°.

Now we can readily prove the assertion stated in the problem.
1{ all the inhabitants of the town are friends then no proof is
needed. If neither of the parties # and A& is “void” then it is
sufficient that every day one of the members of party .4 should
leave 4 and join the other party A°. If the number of the mem-
bers of party . is £ then all the inhabitants of the town can be-
come friends in & days. It follows that the period of 5000 days
(5000 days = 14 years) is sufficient for all the inhabitants of the
town to become friends (because at least one of the parties & and
A consists of not more than 5000 people).

11. It is natural to consider a line segment joining two points
representing two castles as a “road” connecting these castles
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(see Fig. 4). All the castles in the state of Oz are connected by a
finite number n of roads. If the knight travels in the country
sufficiently long he goes along sufficiently many roads. If the
number N of these roads is not less than 4n + | then the knight
must go along at least one road AB (where A and B are the castles
connected by that road) not less than 5 times. Besides, not
less than three times he must go along this road in one and the
same direction (say, from A to B). Therefore if BC and BD are
the other two roads starting from castle B then the knight must
at least fwice turn in one and the same direction when he leaves
B (where both times he came from A), say when he leaves B the

Fig. 4

ith and the jth time, j > i, and goes, say, from B to C. But in
that case the conditions of the problem imply that the knight not
only comes to B ifrom one castle (from castle A) the ith and the
jth time but he also comes to 4 both times from one and the same
castle (in Fig. 4 the castle from which the knight both times
comes to A is denoted as P; for, if the knight turns to road BC
when he leaves B, that is turns to the left, then he must turn to
the right when he leaves A, which means that he comes to 4
from P). We can similarly prove that the routes of the knight
which brought him to B the ith and the jth time coincide com-
pletely; for instance, he comes to castle P both times from one
and the same castle (which is denoted as U in Fig. 4), etc. It
follows that if before his ith visit to B the knight goes past a
number k of castles after he has left his own castle X then he
must necessarily be again at X before he goes past k£ castles to
visit B the jth time, which concludes the proof of the assertion
stated in the problem.

12. Zet us agree to call “friends” any two knights who are not
enemies. Further, we begin with seating all the knights at the
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round table in an arbitrary way. Suppose that if turns out that
knight A sits next to his enemy B. For definiteness, we suppose
that B sits to the right of A. Now we shall prove that there are
two seats where two knights A’, a friend of A, and B’, a friend
of B, sit next to each other, the knight B’ sitting to the right of
A’ (see Fig. 5a). Indeed, A has not less than n iriends. The num-
ber of seats to the right of the n friends of A is also equal to n,
and the number of the enemies of B does not exceed n—1,
whence it follows that there is at least one of the seats to the
right of the knight A’, a friend of A, where knight B’, a friend of

Fig. 5

knight B, sits. Now, let all the knights from B to A’ inclusive
who sit to the right of A change their seats and sit in the reverse
order (see Fig. bb). This will obviously change only the pairs A4,
B and A’, B’ of knights sitting next to each other: they will be re-
placed by the pairs of friends A, A’ and B, B’ respectively. This
means that the number of pairs of enemies sitting next to each
other will decrease by at least 1 (it will even decrease by 2 in
case knights A’ and B’ are enemies). Therefore, if Merlin con-
tinues to make the knights change their seats in the same manner
all the pairs of enemies sitting next to each other will eventually
be ceparated.

13. (a) Let us divide the given coins into three groups so that
in each of the first two groups there are 27 coins and the third
group contains 26 coins. In the first weighing let us put on the
scale pans the groups of 27 coins. If these groups do not balance
then the false coin is in the lighter group and if these groups
balance then the false coin is in the group of 26 coins. We see
that Problem 13 (a) reduces to the following problem: given
27 coins among which there is a false one, it is required to detect
the false coin by means of three weighings, for the problem of
detecting a false coin in the group of 26 coins can be reduced to
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the former by adding to those 26 coins one more arbitrary coin
taken from the remaining 54 coins.

In the second weighing we take the group of 27 coins contain-
ing the false one and divide it into three groups of 9 coins each.
On putting two of these groups of 9 coins on the scale pans we
find the group of 9 coins containing the false coin.

Next we take the group of 9 coins containing the false one,
divide it into three groups of 3 coins each and find the triple of
coins containing the false coin.

Finally, proceeding in the same manner we detfect the false coin
by means of the fourth weighing.

(b) Let & be a natural number for which the inequalities
31 << n << 3% hold. We shall show that the number £ satisfies
the conditions of the problem.

To begin with, we shall prove that it is always possible to de-
tect the false coin by means of 2 weighings. Let us divide the n
given coins into three groups so that the first two groups contain
3#—1 (or less) coins each, the third group containing not more
than 3*-! coins (this is possible since n << 3*). On putting the
first two groups on the scale pans we find which of the three
groups contains the false coin (cf. the solution of Problem 13a).
Hence, after the first weighing we find a group of 3*! coins con-
taining the false one (in case the false coin is in the group con-
taining less than 3*-! coins we add to these coins the required
number of arbitrary coins so that the resultant number of coins
is equal to 3*#!). In every consecutive weighing we divide the
group of coins containing the false coin (that is the group which
was found in the preceding weighing) into three groups of equal
number of coins in the way described above and find the smaller
group containing the false coin. Hence, after £ weighings we
arrive at a group of one coin, that is we detect the false coin.

Now it remains to show that %2 is the minimum number of
weighings with the aid of which it is always possible to detect
the false coin, that is it remains to show that after £ —1 weigh-
ings performed in an arbitrary manner there may occur an unfa-
vourable case when the false coin is not detected.

In every weighing the remaining coins are divided into three
groups, namely the two groups which are then put on the scale
pans and the third group which is not put on cither of the pans.
If the groups put on the scale pans contain the same number of
coins and if they balance each other then the false coin must be
in the group which is not put on either of the pans in this weigh-
ing. If one of the groups put on the scale pans turns out to be
heavier ‘and the number of coins in each of these groups is the
same, then the false coin is in the lighter group. Finally, if we put
different numbers of coins on the scale pans then in the case
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when the group containing the greater number of coins turns out
to be heavier the false coin may be in any of the three groups and
hence such a weighing gives us no information about the group
containing the false coin. Now suppose that in a sequence of ar-
bitrary weighings the result of each weighing turns out to be most
unfavourable, that is every time the false coin is in the group
which contains the greater number of coins. Then after each
weighing the number of coins in the group containing the false
coin decreases not more than 3 times (because when a group of
a certain number of coins is divided into three groups at least one
of the smaller groups always contains not less than one third of
the number of coins in the former group). Consequently, after
k — 1 weighings the number of coins in the group containing the
false coin remains not less than n/3*!, and since n > 3*-! the
false coin is not detected after £ — 1 weighings.

Remark. The answer to Problem 13 (b) can priefly be stated in the following
way: the minimum number of weighings requited for detecting the false coin
in a group of n coins is equal to [logs(n—1/2)]} + 1 where the square brackets
denote the infegral part of a number (see page 36).

14. Let us choose two arbitrary cubes and put them on the
scale pans (the first weighing). Here there can be the following
two different cases.

1°, In the first weighing one of the cubes turns out to be heavier.
Then one of the two cubes we are weighing must necessarily
be made of aluminium and the other of duralumin. Next we put
these two cubes on one of the scale pans and on the other scale
pan we put, in succession, each of the 9 pairs of cubes into which
the 18 remaining cubes are divided in an arbitrary way. If one of
these pairs turns out to be heavier than the initial pair, that
means that both cubes in the new pair are made of duralumin; if
the initial pair of cubes is heavier then both cubes in the new pair
are made of aluminium. Finally, if the two pairs balance, the new
pair consists of an aluminium cube and a duralumin cube. Thus,
in case 1° the number of cubes made of duralumin can be deter-
mined with the aid of 10 weighings (because after the first weigh-
ing we perform 9 more weighings).

2°. Insthe first weighing the first two cubes balance. Then the
cubes of the first pair are either both made of aluminium or both
made of duralumin. Next we put these two cubes on one scale
pan and on the other scale pan we put, in succession, each of the
9 pairs of cubes into which the remaining 18 cubes are arbitrarily
divided. Let us suppose that the first £ of these pairs turn out to
have the same weight as the initial pair while the (£ 4 1)th pair
is of some other weight. (If £ =9 then all the cubes are of the
same weight and, consequently, there are no duralumin cubes
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among them at all; the case when £ = 0 does not differ from the
general case.) For definiteness, let us suppose that the (& 4 1)th
pair turns out to be heavier than the initial pair (the argument
remains almost the same when the (&£ 4 1)th pair turns out to be
lighter). Then the first two cubes and, consequently, the cubes
forming the & pairs which have the same weight as the first one
must necessarily be made of aluminium. Hence, on performing
14 (24 1)=&+ 2 weighings we find £+ 1 pairs of aluminium
cubes. Next we put on the scale pans the two cubes forming the
last pair we have weighed (this is the (& -+ 3)th weighing). If
both cubes turn out to be of one weight then they both are made
of duralumin; if otherwise, one of them is made of aluminium and
the other is made of duralumin. In both cases after (&£ 4+ 3) weigh-
ings we can find a pair of cubes one of which is made of alumi-
nium while the other is made of duralumin. Using this pair we can
perform 8 — & weighings to determine the number of duralumin
cubes among the remaining 20 — 2 (& +4- 2) = 16 — 2k cubes by
analogy with what we did in case 1°. We see that in case 2° the
total number of weighings is equal to £ 4+ 3 +(8 — &)= 11.

15. Let us divide the given coins into three groups of four coins
each. In the first weighing on each of the scale pans we put a
group of four coins. There can be the following two cases here:

1°. The two groups balance.

2°. One of the groups turns out to be heavier.

Let us consider separately each of these possibilities.

1°. In the first weighing the two groups of four coins balance.
This means that the false coin is in the third group while the 8
coins put on the scale pans are genuine. Let us index the coins
in the remaining (third) group with the numbers 1, 2, 3 and 4. In
the second weighing we put coins 1, 2 and 3 on one scale pan
and three of the 8 coins known to be genuine on the other pan.
Here the following two sub-cases are possible:

A. The two groups of 3 coins put on the scale pans balance.
Then coin 4 is false. On weighing this coin and a genuine one we
find whether the false coin is lighter or heavier than the genuine
coin.

B. One of the two groups of 3 coins turns out to be heavier,
In this case one of the coins 1, 2 and 3 is false. If thergroup of
three genuine coins turns out to be heavier then the false coin is
lighter than a genuine coin. With the aid of one more weighing
we easily find the lighter of the three coins 1, 2 and 3 (cf. the so-
tution of Problem 13a). If the group of coins 1, 2 and 3 is heavier
then the false coin is heavier than a genuine coin. In that case
as well we readily detect it by means of one more weighing.

2°. In the first weighing one of the groups of four coins turns
out to be heavier. Then all the coins in the remaining third group
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are genuine. Let us index the four coins in the heavier group as
1, 2, 3 and 4 (if one of these coins is false then it is heavier than
a genuine coin) and let us denote the four coins on the other scale
pan as 1/, 2/, 3’ and 4’ (if one of the coins in the latter group is
false then it is lighter than a genuine coin). In the second weigh-
ing we put coins 1, 2 and 1’ on one scale pan and coins 3, 4 and 2’
on the other pan. Here we can have the following three possible
sub-cases:

A. The groups of 3 coins put on the scale pans balance. Then
one of the coins 3’ and 4’ is falseé (and it is lighter than a genuine
coin). In the third weighing we put coin 3’ on one scale pan and
coin 4’ on the other scale pan. The coin that turns out to be lighter
in this weighing is the false one.

B. The group of coins I, 2 and 1’ turns out to be heavier. In
ihis case coins 3, 4 and 1’ are genuine, for if one of the coins 3
and 4 were heavier than the others or if coin 1’ were lighter than
the others, the group of coins 3, 4 and 2" would be heavier in the
second weighing, which is not the case. Thus, either one of coins
1 and 2 is false (and then the false coin is heavier than a genuine
coin) or coin 2’ is false (in the latter case the false coin is lighter
than a genuine coin). Let us put, in the third weighing, coin 1 on
the scale pan and coin 2 on the other. If these coins balance then
coin 2’ is false and if one of the two coins is heavier then it is
this heavier coin that is false.

C. The group of coins 3, 4 and 2’ turns out to be heavier. Then
arguing by analogy with the above we conclude that coins 1, 2
and 2’ are genuine and that either one of the coins 3 and 4 is
false and is heavier than a genuine coin or coin 1’ is false and is
lighter than a genuine coin. In the third weighing we put coin 3
on one scale pan and coin 4 on the other. If these coins balance
then it is coin 1/ that is false. If one of the two coins turns out
to be heavier then it is the heavier coin that is false.

16. (a) It is sufficient to cut the third link; then the chain is
divided into two parts consisting of 2 and 4 links respectively and
one separate link that was cut. On the first day the man gives the
innkeeper the link that was cut; on the second day he takes this
link back from the innkeeper and gives him in exchange the part
of the chain consisting of two links; on the third day he again
gives the innkeeper the link that was cut in addition to the links
already given; on the fourth day he takes back all the links he
gave before and gives the innkeeper the part of the chain consist-
ing of four links; on the fifth day he once again gives the inn-
keeper the link that was cut; on the sixth day he takes that link
back and gives the innkeeper the part of the chain consisting of
two links in exchange; finally, on the seventh day he gives the
innkeeper the remaining link.



82 Solutions

(b) We begin with solving the following problem: what must
be the greatest number n of an n-link chain for which it is suifi-
cient to cut & links so that it is possible to take any number of
links from 1 to n inclusive using some (or all) of the parts into
which the chain is divided? To solve this problem let us find what
is the best arrangement of the £ links to be cut. After & links have
been cut we have these & separate links at our disposal and there-
fore any number of links ranging from 1 to & inclusive can be
taken by using these % links only. But it is impossible to take
k4 1 links if we do not have a part of the chain consisting of
k + 1 links or of a smaller number of links. Clearly, it is best to
have a part consisting of exactly £+ 1 links; in this case we can
use this part and the & links we have cut to have any number of
links from 1 to 2k 4 1. To take 2k +2 = 2(k£ 4 1) links as well
it is necessary to have a part of the chain consisting of 2(£# + 1)
links or of a smaller number of links. Clearly, the best case is
when this part consists of exactly 2(£ 4 1) links. Now we can
take any number of links from 1 to 26+ 1+ 2(k 4+ 1) = 4L+ 3.
The next part of the chain we need must obviously consist of
4(k 4 1) links. Continuing to argue in this way we readily show
that the best case is when the £+ 1 parts of the chain obtained
after & links have been cut (here, when speaking of the parts of
the chain, we do not regard as parts the & separate links that
have been cut) consist of the following numbers of links res-
pectively:

B4-1, 2(k--1), 4¢k-+1), 8E-+1,..., 2°*k+1)

In this case we can take any number of links from 1 to n inclusive
where

n=k+{k4+1+20k+)+4¢k+D+ ... +2F¢E+1)}=

=r4+@" =D+ D=2 k+1)—1
by using the parts of the chain and the separate links that have
been cut.

Thus, if 28k < n << 22+ 1)—1, it is suificient to cut &
links but it is insufficient to cut £ — 1 links. In particular,

k=1 for 2<<n<7
k=2 for 8<Cn<C23
k=3 for 24<<n=<63
k=4 for 64<<n<159
k=5 for 160<Cn<<383
k=6 for 384<n<(89%5
k=7 for 896 <n<C2047
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We see that for n = 2000 the smallest number of links that should
be cut is equal to 7. The conditions of the problem will be fulfilled
if we choose these links so that the 8 parts obtained after the
7 links have been cut (here the 7 separate links that have been
cut are not included into the number of the parts) consist of 8, 16,
32, 64, 128, 256, 512 and 977 links respectively.

17. Let S be an arbitrary underground station and T be fthe
farthest stalion from S in the sense that on the shortest way
from S to T there are more (or at least not fewer) intermediate
stations than on the shortest way from S to any other station.
Now suppose that station T is closed. Then we can again go
from S to any other station U (which is not closed) since the
shortest way from S to U cannot go through T because, if other-
wise, station U would be farther from S than station T. There-
fore if U and V are two arbitrary underground stations different
from T, then from one of them we can undoubtedly go to the other
without passing through 7. Indeed, if, for instance, U and V differ
from S, then to go from U to V it is sufficient to go from U to §
and then from S to V.

18. We shall prove the assertion of the problem using the me-
thod of mathematical induction. Let us consider the Zurbagan
cross-roads from which more than two roads start. If there are
only two cross-roads A and B in Zurbagan then the assertion of
the problem is obvious: there are not less than two roads con-
necting A and B (if there were only one such road and if one-way
traific were introduced, say, in the direction from A to B, we
would not be able to go from B to A). Consequently, on introduc-
ing one-way traffic from A to B in one of the roads and from B
to A in the other road we can go from any cross-roads to any
other cross-roads different from the former. Fortunately, this
simple argument turns out to be applicable to the general situa-
tion as well. Let us suppose that the assertion stated in the pro-
blem has already been proved for all the towns where the number
of the cross-roads does not exceed n. Let us consider another town
(let this town be Zurbagan) having n -4 1 cross-roads. Let us
consider two neighbouring cross-roads A and B (among these
n + 1 cross-roads) which are connected by a road AB. Suppose
that one-way traffic is introduced in road AB (during the repairs),
say, in the direction from A to B. Since it remains possible to go
from B to A, it clearly follows that there is a “chain” of roads
which does not include AB and leads from B to A. (We can as-
sume that this “chain” of roads has no seli-intersections because
if the chain went twice through one and the same cross-roads C,
the “cycle” of streets starting at C and returning to C again
could simply be discarded.) Hence, there is a “ring” s, that is a
closed network of streets in Zurbagan, which starts from 4, leads
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to B, goes through a number of “intermediate” cross-roads and
then leads to A again. Now let us consider a map of a conditional
town which is obtained from the map of Zurbagan by “sticking
together” all the cross-roads of ring s to form one cross-road S.
All the streets which start from S in the conditional town go
through the cross-roads belonging to ring s in the real town of
Zurbagan *. The number of cross-roads in such a conditional town
is less than n - 1; therefore, by the hypothesis, it is possible to
introduce one-way traffic in the streets of this town so that all the
conditions of the problem are satisfied. Now it becomes clear that
if we introduce one-way ftraffic (in any direction!) in the streets
included in ring s and leave unchanged one-way traffic that has
been introduced in the conditional “town” in all the streets of Zur-
bagan which are not contained in ring s, then one-way traffic wiil
be introduced in all the streets of Zurbagan so that it will be
possible to go from any of the cross-roads to any other.

19. 1t is clear that if there are two towns in the state of Delphi-
nia which are connected by only one road with one-way traffic
then it is impossible to get from one of these towns to the other.
1f there are four towns we can represent them as four vertices of
a quadrilateral A4,, Ay, A;, Ay (see Fig. 6). It is evident that either
the movement along the sides of the quadrilateral is “cyclic” (as
shown in Fig. 6a) or there is a vertex, say A;, such that the two
sides of the quadrilateral emanating from it correspond to two
roads with the traffic in the direction from the town represented
by that vertex (see Fig. 66). In the former case the vertices of the
quadrilateral are quite equivalent, and any choice of the directions
of movement along the diagonals of the quadrilateral does not, in
principle, differ from any other choice; however, if the situation
is as shown in Fig. 6a it is impossible to get from A4; to A, going
only through one “intermediate” town. In case the movement
along roads A;A; and A4,A4 is in the direction from A,, then, in
accordance with the requirements stated in the problem, to go
from A, and from A4 to A, it is necessary to choose the directions
of traific along roads A.A4s, As4; and AsA, as is indicated by
arrows in Fig. 6b. But this again leads to a “symmetric” situation
for which it is sufficient to consider the organization of traffic
corresponding to any (quite arbitrary!) choice of the direction of
traffic along road AsA44, and in the case represented in Fig. 65 it
is impossible to get from A4 to A, going only through one town.

* This “map” of the conditional town can simply be understood as a table
in which all the stireets and all the cross-roads are enumerated and where it
is indicated which streets lead to each of the cross-roads. It may happen that
such a map of the “conditional town” cannot be depicted on a plane sheet of
paper and that for this aim a sphere or some other more complicated surface
is needed. For the argument we use here this is of no importance.



Solufions 85

For n =3 and n = 6 the choice of the directions of movement
satisfying all the requirements imposed in the problem is possible
(see Fig. 7a and b; in Fig. 7b even not all the roads are depicted
because the situation is quite clear).

Fig. 6
Now we shall make use of the mefhod of mathematical induc-

tion. Let us assume that the assertion stated in the problem has.
already been proved for a number n of towns and show that under

4 A
A
A
A ) As
Ay Az
A A
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Fig. 7

this assumption the assertion must also be true for the number
n -+ 2 of towns exceeding the former number by 2. To this end
let us introduce the directions of traffic along all the roads con-
necting any two of the first n towns Ay, Ay, ..., A, in such a way
that it is possible to get from any of these towns to any other
going through not more than one intermediate town (according
to the hypothesis, such a choice is possible). Further, along all
the roads connecting the (n-1)th town A,y with towns
Ay, Ay, ..., A we introduce the directions of traffic from A4, to
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Ay, As ..., A, and along the roads connecting each of the towns
Ay, Ay, ..., A, with the (n -+ 2)th town we introduce the directions
of traffic from Ay, Ag, ..., A, to Anpe (see Fig. 8). This makes it
possible to go from A, to each of the towns A, As, ..., A, and
from each of the towns A, Ay ..., An to Anye without going
through any intermediate town. Finally, let the traffic along the
roads connecting Anpgi and Aaqg
be in the direction from A4
to Anyy. Then it is possible to
go from A.yp to Ay without
going through an intermediate
town and to go from A,y to any
of towns A4y, A, ..., A, and
from any ot towns A;, 4. ...

.., 4, to Anp going through
one intermediate town (Ant
and An4e respectively).

Since the assertion of the
problem is true for n = 3 and
for n =6 it follows that it is
also true for all odd n = 3 and
for all even n = 6.

20. A purely mathematical
statement of the problem reads:
there are 100 points (towns)

Fig. 8 in the plane (a map of the
state of Shvambrania), every
two points are connected either by a continuous line (which means
that there is direct telephone communication between the corres-
ponding towns) or by a dotted line (which means that there is an
air route connecting the towns). Besides, it is known that from
any of the given points (from any of the towns) it is possible
to get to any other point by tracing a chain of continuous
lines (connecting the points) or a chain of dotted lines. We
have to prove that among the 100 given points there are four
points such that from any of these four points it is possible to
get to any of the other three points by tracing a chain of conti-
nuous lines or a chain of dotted lines using only the lines con-
necting these four points.

We shall prove the assertion by contradiction. To this end we
shall assume that there is no such four-tuple of points and then
show that, under this assumption, it is possible to choose an infi-
nite sequence of different points (representing the corresponding
towns) from the given 100 points, which of course cannot be true.

We start with two arbitrary points A; and A, connected by a
continuous line. By the condition of the problem, A, and A, can
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also be connected by a chain of dotfed lines. Let A ,A3A347 ... Az
be the shortest of such chains, that is the one passing through the
smallest number of intermediate points (towns). Then any two
points belonging to this chain which are not next to each other
are connected by a continuous line because, if otherwise, we could
shorten the chain by discarding all the points between those two
points. It follows that if the chain contained more than one inter-
mediate point (town), say points A;, A5 and A3 (where A may
coincide with Ay) then the points A, As, AF and Aj (see Fig.9a)

would form the required four-tuple of towns (pomts) which corn-

tradicts the hypothesis. Therefore A; and A, are connected by the:
two-link chain A;4:4, of dotted lines.

A A A
1 2 1
\ P
\ <, AN
\b— - A3 Ne?
Ay A 3
(a)
Fig. 9

Now let us consider the points A, and A; (which are connected
by a dotted line). In exactly the same way as above we conclude
that there exists a two-link continuous line A;A4A; which connects
A, and Aj;. Let us prove that the point A, is connected with A, by
a continuous line. Indeed, if A, and A, were connected by a dotted
line then A, Ay, As; and A, would form a four-tuple of points
possessing the required properties, which again contradicts the
hypothesis (cf. Fig. 9b).

Thus, we have found 4 points A,, Ap, 43 and A, such that A, is
connected with A; by a continuous line, A3 is connected with A4,
and A, by dotted lines and A, is connected with A, 4, and As
by continuous lines. Next we shall use the method of mathematical
induction. To this end let us assume that we have already found

points Ay, As, As, ..., A; such that each of the points A, 4s, ...
(having odd indices) is connected with all the preceding points
by dotted lines and each of the points A, A4 ... (having even

indices) is connected with the preceding points by continuous
lines and show that under this assumption the sequence of the
points Ay, ..., A; can be continued. For definiteness, let 4,_;A;
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be a continuous line. Let us consider the shorfest broken line
AiAiA; connecting Ay with A;. 1t is clear that the point Aiy
-does not coincide with any of the points A4y, As, ..., Ai—s (and, of
course, with A;; and A; either) because each of the points pre-
ceding A;; is connected by a continuous line with one of the
points A;_y and A; and by a dotted line with the other point while
Ay is connected by dotted lines with both of them. On the other
hand, the point A4y is connected by dotted lines with the points
Ay, A, ..., Ais (and with A;—; and A; as well) because if the
line A;A;y, (where j << i{—1) is continuous then A;, 4;,, A; and
Ay form a four-tuple of points which, according to the hypothesis,
cannot exist (Fig. 9b).

We have thus added one more point to the sequence of points
(towns) we are constructing and, consequently, the sequence
Ay, Ag, ..., Ay, Ai, Aigy, ... can be made infinitely long.

21. In order to move from the left lower corner to the right
upper corner of a 64-square chess-board and to pass exactly once
through each of the squares of the chess-board the knight must
make 63 moves. In each move the knight passes from a white
square to a black one or from a black square to a white one. There-
fore, after an even number of moves the knight gets to a squaie
having the same colour as the initial square and after an odd
number of moves to a square of the opposite colour. Consequently,
on making 63 moves the knight cannot get to a square lying on
the same diagonal as the initial square because all the squares on
one diagonal are of the same colour.

22. The king can choose the following “suicidal strategy™: it
first moves to the left lower corner and then moves along the
diagonal connecting that corner with the right upper corner. After
the first move along the diagonal the king gets to the square
marked by the star in Fig. 10a. If after the black’s move following
the last move of the king at least one of the rooks is outside the
square of dimension 997 X 997 shaded in the figure, then on mak-
ing its next move the king can reach a square where it must be
taken. It can similarly be shown that after the 998 moves along
the diagonal when the king reaches the square marked by the
star in Fig. 1056 all the rooks must be within the square of di-
mension 997 X 997 shaded in that figure. If during the king’s
movement at least one of the rooks remains in the same rank or
in the same file as before then the king crosses that rank or that
file in its movement and thus can be taken. Therefore, if the black
do not want to take the king, then during the movement of the
king from the position in Fig. 10a to the position in Fig. 106 (the
king makes 997 moves during that period) each of the 499 rooks
must make at least two moves (in every move a rook changes
either its rank or its file but it cannot change both of them simul-
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taneously). Hence, since 2.499 = 998 > 997, the black cannot
prevent the king from being taken!

23. Let us change the order in which the squares are arranged,
namely, let us rearrange them so that it becomes possible to
move from any square to the neighbouring ones. In other words,

(a) (b)
Fig. 10

let us place square 6 after square I (because, according to the
conditions of the problem, we are allowed to move a counter from
square [ to square 6), square /] after square 6 (because we are
allowed to move a counter from square 6 to square /1), square 4
after square /1 (because we are allowed to move a counter from
square /I to square 4) and so on. Then we arrive at the arrange-
ment of the squares shown in the following scheme:

R B Ye

] e [ e || i [ w—— [ w—— ]

| |

> 10 > 5 =2 7

\
o w

We can assume that we have the 12 squares arranged in that
very order and indexed as shown in the scheme (because the posi-
tion which a given square occupies is in fact of no importance).
We can also assume that the initial positions of the counters are
as shown in the scheme where R, B, Ye and G denote the red, the
blue, the yellow and the green counter respectively. For the new
arrangement of the squares the rules according to which the



‘90  Solutions

counters move become quite simple: every counter can move to
‘the next square on its right or on its left provided that this square
is not occupied.

Now it clearly follows that the only way in which the counters
can interchange their places is to move along the chain of squares
in one or in the other direction: none of the counters can “out-
strip” any other because the latter blocks the way. Hence, if coun-
‘ter R occupies square 4 then counter B must occupy square 2,
counter Ye must occupy square 3 and counter G must occupy
square I. If counter R occupies square 2 then counter B must
occupy square 3, counter Ye must occupy square I and counter G
must occupy square 4. If counter R occupies square 3 then counter
B must occupy square I, counter Ye must occupy square 4 and
counter G must occupy square 2.

No other new arrangements of the counters are possible.

24. First of all, let us prove the following auxiliary assertion:
if there are a number of students exactly n of whom (n = 2)
speak English (we symbolize this language as e), exactly n speak
French (f) and exactly n speak German (g) then it is possible to
form a group of students in which there will be exactly 2 people
speaking English, 2 people speaking French and 2 people speak-
ing German. It is clear that this auxiliary assertion implies the
assertion stated in the problem: on forming this group of students
we see that among the remaining students there are exactly
50 — 2 = 48 people speaking English, 48 people speaking French
and 48 people speaking German. From these remaining students
‘we can again choose a group in which there are exactly 2 people
speaking English, 2 people speaking French and 2 people speak-
ing German, and among the remaining students there will be
exactly 48 — 2 = 46 people speaking English, 46 people speak-
ing French and 46 people speaking German and so on. Then we
combine five of the smaller groups thus chosen and obtain the
first group in which exactly 10 people speak English, 10 people
speak French and 10 people speak German. Further, in just the
same way we choose smaller groups in each of which exactly
2 people speak English, 2 people speak French and 2 pcople speak
German and then combine them to form the second and the third
groups satisfying the required conditions (each of them is a com-
bination of 5 smaller groups).

To prove the auxiliary assertion we can make use of the me-
thod of mathematical induction. Indeed, it is clear that for n = 2
the auxiliary assertion is true (in this case the group in question
consists of all the students). Now let us assume that it is true
for any number of students smaller than a value n > 2 and prove
that under this assumption it is also true for the number of stu-
dents equal to n. Let us denote the number of students who can
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speak only English as N., the number of students who can speak
English and French but not German as N, and so on. Further,
let the symbol e (or ¢ or e”) denote a student who can speak
only English, the sumbol ef (or (ef)’) denote a student who can
speak English and French but not German, etc. If N, == 0, N; 5= 0,
Ng == 0 then we exclude three students e, f and g from the stu-
dent body and thus arrive at a group of students for which, by
the hypothesis, the auxiliary assertion is true. Similarly, if Nojg5%0
we exclude a student efg and again obtain a group of students
for which the assertion is true. Further, if N 5= 0, Neg 5= 0 and
Njg 5= 0 then the assertion must also be true because three stu-
dents ef, eg and fg form a group whose existence must be proved.
Finally, if two of the three numbers N.;, Neg and N, are different
from zero while the third one, say Njg, is equal to zero then the
numbers N; and N, are different from zero (because in the group
of all the students ef, (ef)” etc. and of all the students eg, (eg)’
etc. the number of the students who can speak language e exceeds
the number of the students who can speak language f and the
number of the students who speak language g). Therefore we can
exclude two students ef and g and again arrive at a group of stu-
dents in which there are exactly n — 1 people speaking English,
n — 1 people speaking French and n— 1 people speaking Ger-
man, and, according to the hypothesis, it is possible to choose a
subgroup of students from this group which satisfies the necessary
requirements. Similarly, if, for instance, only N.; is different from
zero while N, = N;jg = 0 then obviously Ng £ 0, and we can
again exclude students ef and g and use the induction hypothesis.
(It should be noted that the equalities Noj = N.g = N;g = 0 (and
N¢sg = 0) contradict the assumption that at least one of the num-
bers N., N; and N, is equal to zero.)

Remark. 1t is clear that the numbers 10 and 50 in the cend:tion of the prob-
lem are arbitrary: we can similarly prove that if in a student body there are
exactly n people speaking English, n people speaking French and n people speak-
ing German then, using the “smaller” groups described above, it is possible
to form groups of studentsin each of which there are m people speaking English,
m people speaking French and m people speaking German where m is any even
number not exceeding n; here the condition that the number m is even is essen-
tial and cannot be discarded (iry to prove this!). (By the way, it is also advis-

able to try to replace the number 3, the number of the languages in this prob-
lem, by some other number.)

25. (a) It is clear that the least possible value of the “average
place” is equal to 1. This is the case when all the referees give
the 1st place to one and the same athlete. On the other hand, 5 or
more athletes cannot be given the first place hy different referees.
Indeed, if this were the case then these n (n == 5) athletes would
be given altogether 9 first places by the nine referees and
9n —9 > 9.5—9 = 36 other places (because the total number
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-of places which the 9 referees give these n athletes is equal to
9n). By the condition of the problem, none of these places can be
worse than the 4th, which is impossible because the total number
-of places from the 2nd to the 4th given by the referees to the
athletes is equal to 3.9 = 27. Thus, it only remains to consider the
cases when the first place is given (by different referees) to 2, 3
or 4 athletes.

1°. If the referees give the first place only to fwo athletes then
at least one of them is given the first place by not less than five
teferees, and since the places given to that athlete by the other
referees are not worse than the 4th, the “average place” of that

. (B5:.1-4+4.4) 21 1

athlete is not worse than ————=-7-=2 5

2°. If three athletes are given the first places then these athletes
are given altogether 9 first places and 3-9 — 9 = 18 other places
none of which can be worse than the fourth one. Since the 9 re-
ferees can only give the athletes 9 fourth places, in the “worst”
case these athletes are given 9 fourth places and 9 third places.
Thus, the sum of the values of the places given to the athletes is
not more than 9-1+49-4 4 9.3 = 72, and, therefore, the sum of
the places of at least one of them does not exceed 72/3 = 24 and

o« 24 9
his “average place” is not worse than == 23

3° Finally, if the referees give the first place to four athletes
then these four people are given altogether 9 first places and
4.9 —9 = 27 other places none of which can be worse than the
4th. Among these 27 places there can be 9 fourth: places, 9 third
places and 9 second places. Thus, the total sum of the places of
these four athletes is equal to 9:-149.2-4-9.349-4 =90
(90 << 4-23); consequently the sum of the places of the best of
these athletes does not exceed 22 and his “average place” is not

worse than %= 2% < 2%.
Hence, the “average place” of the best athlete cannot be worse
than 2 —;—; it can be equal to 2% only when each of the three

best athletes is given the first place by three referees, the third
place by some other three referees and the fourth place by the last
three referees (in that case the three athletes become simulta«
neously the winners of the contest).

Remark. 1t is clear that if we replace the kth place in the above argument
by the (21 — k)th place, it will follow that the value of the “average place” of

the worst athlete cannot be better than 18% (but it can be equal to 18%).

(b) It is clear that after every round the number of the best of
the remaining tennis-players does not decrease; it is also clear
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that this number can increase by not more than 2 (it can increase
by 2 in case the best tennis-player accidentally loses a game to
another tennis-player whose number exceeds by 2 that of the
former). Since 1024 = 219 and since the number of the partici-
pants of the contest decreases by half after every round the total
number of the rounds is equal to 10. After the 10th round only
20 == 1 tennis-player, the winner, remains. Since after every round
the number of the best tennis-player can increase by 2 it may
seem that the 21st tennis-player may win.

But the 21st tennis-player cannot in fact be the winner. Indeed,
for the 21st tennis-player to win it is necessary that after every
round the two best tennis-players should leave; in other words, in
the first round the Ist and the 2nd tennis-players should lose to
the 3rd and the 4th tennis-players respectively, in the second
round the 3rd and the 4th tennis-players should lose to the 5th
and the 6th tennis-players respectively and so on. This means that
in the semi-finals the 17th and the 18th tennis-players should lose
to the 19th and the 20th tennis-players respectively. Therefore the
19th and the 20th tennis-players take part in the finals and hence
it is one of them that becomes the winner but not the 21st tennis-
player.

P Finally, let us show that the 20th tennis-player can be the win-
ner of the games. Indeed, if there are only 2! = 2 tennis-players
then of course the winner can have the number 2 = 2-1; if there
are 22 = 4 tennis-players then the winner can have the number
2-2 = 4 because in the pair of the first two tennis-players the 2nd
tennis-player can be the winner and in the pair of the other two
tennis-players the 4th can be the winner, and, in principle, it is
possible that in the finals the 4th tennis-player defeats the 2nd
one. Similarly, if there are 2% = 8 tennis-players then the 6th
tennis-player can be the winner: indeed, if the four best tennis-
players are in one sub-group then in this sub-group the 4th ten-
nis-player can win while in the other sub-group the 6th tennis-
player can defeat the 5th one; in the finals the 6th tennis-player
can defeat the 4th one. Similarly, using the method of mathema-
tical induction we can easily prove that if 2” tennis-players take
part in the Olympic games then the (27)th tennis-player can be-
come the winner: for this to happen it is sufficient that the first
2n — 2 tennis-players should -be in one sub-group of 27-! tennis-
players in which (by the induction hypothesis) the (2n— 2)th
tennis-player can win and that in the other sub-group the (2n)th
tennis-player should win because, in principle, it is possible that
in the finals the (2n)th tennis-player defeats the (2n — 2)th ten-
nis-player.

26. Let N; denote the number of sets of medals remaining
after the (i —n)th day, where i =1, 2, ..., n. By the way, we
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can also assume that the quantity N, makes sense for { > n: let
it be equal to 0 in such cases. The conditions of the problem (and
the above assumption) imply that Ny = N, N, = n and Npji = 0;
besides, N; and N,,, are connected by the relation

. 1 , 6
Nijy=N—i—= N, —i)==(N;—1)

that is ,
Ntzg‘Ni-H‘l‘i *)
Using (*) we find, in succession, that
7
Nn=n='€Nn+l+n'

Nooy=gn+(—1)

Noo=(§)n+g0a—0+0—2
Nos=(£) n+(§) 6—D+Fa—2+ (-3

...............................

N=(E)""n+ (D) a-0+E) T =2+ e

(the general formula can be of course readily proved with the aid
of the method of mathematical induction).
Thus, we obtain:

N=N,— (%)"_1 n+ (%)H(n — 4+ (-Z;)"_a(n —) 4+ ...

=[BT @) T HE) T -
(D)7 2EF) T+ =9t a—D]=Sn—s,

where S; and S, denote the sums in the square brackets. By the
formula for the sum of the members of a geometric progression,
we obviously have

= (@ 1= B ey )

On the other hand, it can readily be seen that

()-5i=5= @)+ @) et ()0
—simn=[(3) - 1]
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whence
$,=36[(5) — 1] —6n
and, consequently,

N=6[(£) —1]n—36[(%) — 1]+ 6n=6( —6)(5) +36 (**)

Since N is an integral number, the number 7% (n — 6) /67!
must be integral and therefore so must be the number
{(n —6)/(6" — 1). Therefore n is a multiple of 6. On the other
hand, it is evident that for all & = 2 the inequality 6& — 6 << 65%-1
holds (why?), that is £ — 1 << 652 It follows that the expression
(n — 6) /6! cannot be an integral number for n > 6. We thus
arrive at the single solution of the problem: n = 6, and therefore,
by (**), N = 36.

27. First solution. Let n denote the number of nuts each of
the friends got in the morning. Then the number of the nuts in
the bag the friends found in the morning was equal to 5n 4 1.

The last of the friends who woke up at night obviously took ——— on +1

nuts and before that there were 5 5n+1 +1= 25”4+9
the bag. The one but last of the friends who woke up at night

nuts in

took 711— . —2@4_{"—9 nuts and before that there were 5-% 25n + 9 +1=
=%1g_6—1 nuts in the bag. The third friend took 7-@12_—61
nuts and before that there were 5 -% -w-{— 1 -—=625n—;;369—
nuts in the bag. The second friend took — ! -925”64——ﬂ nuts

1 626n + 369

and before that there were 5'7 3125n + 210f

+1= 256

nuts. Finally, the first friend took %%;2‘0‘— nuts, and

the original number of the nuts in the bag was equal to

= 1 3125n+ 2101 156250 + 11529 92651 - 265
N=5-7 e T L= 1024 = 151 + 11 + —57

Since the number N must be integral the number 265(n - 1)
must be divisible by 1024. The smallest number n satisfying this
condition is obviously equal to 1023, and in that case

N=15.1023 4 11 4 265 =15621

Second solution. This problem can be solved in a simpler way
and almost without calculations if we consider the requirements
which are imposed on the total number N of the nuts by the con-
ditions of the problem. The first condition of the problem is that
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when the nuts in the bag are first divided into five parts there re-
mains one nut; hence, the division of N by 5 must leave a remain-
der of 1, that is N = 5/ - 1. The difference between any two neigh-
bouring numbers of the form 5/ 4 1 is equal to 45 or to —5, and
knowing one of the numbers we can find infinitely many other
numbers of this form by adding to that number (or subtracting
from it) any numbers multiple of 5. The second condition of the

problem implies that when number & =%(N — 1)=41[ is divided

by 5 the remainder is equal to 1, that is £ = 5{; 4+ 1. This condi-
tion is equivalent to the requirement that when [/ is divided by 5
the remainder should be equal to 4 whence it follows that when
N = 5l + 1 is divided by 25 the remainder should be equal to 21.
The difference between any two neighbouring numbers satisfying
this requirement is equal to 425 or to —25, and knowing one
such number we can obtain an arbitrary set of these numbers by
adding to that number (or by subtracting from it) any number
multiple of 25. Similarly, the third cendition of the problem im-

plies that when the number k,=%(k— 1)=4!, is divided by b5

the remainder is equal to 1. This condition determines the remain-
der resulting from the division of /; by 5, the remainders result-
ing from the division of 2 and ! by 25 and the remainder resulting
from the division of N by 125. All the conditions of the problem
determine the remainder resulting from the division of N by
55 = 15 625. The difference between any two neighbouring num-
bers satisfying these conditions is equal to 415 625 or to —15 625.

It is possible to calculate the remainder resulting from the di-
vision of the number N by 5% but we can do without it. The matter
is that one of the numbers satisfying all the conditions of the pro-
blem can readily be indicated: it is the number —4.

Indeed, when —4 is divided by 5 we obtain —1 in the quotient
and -1 in the remainder. Therefore if we subtract the number
1 from —4 and then take 4/5 of the resultant difference which is
divisible by 5 we again obtain the same number —4. Similarly,
all the following divisions by 5 will leave the same remainder 1.
However, the number —4 itself cannot be the answer to the pro-
blem because N must be a positive number. But knowing one of
the numbers satisfying the conditions of the problem we can find
an arbitrary number of others by adding to that number any
numbers multiple of 55. The smallest positive integer satisfying
the conditions is obviously equal to —4 4 5% = 15625 — 4 ==
=15621.

28. Let n denote the number of the sheep in the flock. Then the
brothers got n rubles for every sheep and, consequently, the total
cash they got was N = n.n = n? rubles. Let d be the quotient
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resulting from the division of n by 10 and let e be the digit in
the ones place of the number n; then n = 10d 4 e and

N =(10d + ¢)* = 100d? -+ 20 de + ¢*

The conditions of the problem imply that the quotient resulting
from the division by 10 of the number of rubles the elder brother
got exceeds by unity the quotient resulting from the division by
10 of the number of rubles the younger brother got, whence it
follows that the quotient resulting from the division by 10 of the
number N is odd. The number 10042 4- 20de = 20d (5d + e) is
divisible by 20 and therefore the quotient resulting from the divi-
sion of this number by 10 is even. Therefore, when the number ¢?
is divided by 10 we must obtain an odd number in the quotient.
Since e is less than 10, the number €2 can only assume one of the
values

1; 4; 9; 16; 2b; 36; 49; 64 and 81

Among these numbers only 16 and 36 have odd digits in their
tens places. Consequently, e* is equal either to 16 or to 36. Both
numbers end with 6, and hence when the younger brother’s last
turn to take his money came he got 6 rubles instead of 10 and
thus the elder brother got 4 rubles more than the younger brother.
Therefore, for the sharing to be fair the elder brother must pay
2 rubles to his younger brother, whence it follows that the knile
cost 2 rubles.

29. (a) In the Gregorian calendar (which is now in general
use) every year has 365 days with the exception of the leap years.
Each leap year has an additional (the 366th) day (the 29th of
February). The leap years are those divisible by 4 except the
years divisible by 100 but not divisible by 400. These years (for
instance, 1800, 1900 and 2100) have 365 (but not 366) days each
and they are not leap years; for instance, the year 2000 is a leap
year since the number 2000 is divisible by 400. A New Year’s Day
is on the Ist of January, and so we have 1o find which of the two
days, Saturday or Sunday, happens to be more frequently the 1st
of January.

The intervals between the days which are the 1st of January arc
not always constant but they vary periodically with period of
400 years. Four hundred years consist of an integral number of
weeks. Indeed, the common year consists of 52 weeks plus one
more day and the leap year consists of 52 weeks plus two days.
A period of four years one of which is a leap year consists of 4-52
weaks plus 5 more days. Since a period of 400 years includes three:
years which are divisible by 100 and are not divisible by 400 such-
a period consists of 400-52 weeks plus 5:100 — 3=497 days=7}

4 —60
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weeks, that is of an integral number of weeks. Therefore it is
sufficient to find which of the two days, Saturday or Sunday,
happens te be more frequently the Ist ai January during any pe-
riod of 400 years; for any other such period the answer to the
question is the same.
. Let us consider the period of 400 years from 1901 to 2301. It
should be noted that if during a period of 28 years every fourth
year is a leap year, that is if these 28 years do not contain a year
which is divisible by 100 and not divisible by 400, then these
28 years consist of an integral number of weeks because each sub-
interval of four years consists of an integral number of weeks
plus 5 days and the whole period of 28 years consists of an in-
tegral number of weeks plus 5.7 = 35 days = 5 weeks. Now we
note that the 1st of January of 1952 was Tuesday. Since each com-
mon year consists of an integral number of weeks plus one day
and the leap year consists of an integral number of weeks plus
2 days, the 1st of January of 1953 was Thursday (because 1952
was a leap year), the 1st of January of 1954 was Friday, the lst
of January of 1955 was Saturday and so on. We ‘similarly find
that the Ist of January of 1951 was Monday, the Ist of January
of 1950 was Sunday and so on. In this way we find that during
the 28 years from 1929 to 1956 the 1st of January happened to be
equally frequently (exactly 4 times) each of the seven days of
the week. Exactly the same distribution of the days of the week
which were New Year’s Days was during the 28 years from 1901
to 1928 (we remind the reader that if during a period of 28 years
every fourth year is a leap year then this period consists of an
integral number of weeks, and therefore the distribution of the
days of the week which are New Year’s Days during such periods
of 28 years is one and the same). The same distribution of the
days of the week which were New Year’s Days must have been
during the periods from 1957 to 1984, from 1985 to 2012 (because
the year 2000 will be a leap year since the number 2000 is divi-
sible by 400), from 2013 to 2040, from 2041 to 2068 and from 2069
to 2096. Thus, during the period from 1801 to 2096 the 1st of
January happens to be equally frequently every day of the week.
Further, the Ist of January of 2097 will be the same day of the
week as the Ist of January of 1901 or the 1st of January of 1929,
that is Tuesday. The Ist of January of 2098 will be Wednesday,
the Ist of January of 2099 will be Thursday, the 1st of January
of 2100 will be Friday and the 1st of January of 2101 will be
Saturday (because the year 2100 will not be a leap year). The
next period of 28 years will differ from the period irom 1901 to
1928; that period will start on Saturday instead of Tuesday;
however, since during the 28 years from 1901 to 1928 the Ist of
January was exactly 4 times every day of the week, during the
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period from 2101 to 2128 the 1st of January will again be exactly
4 times every day of the week. What has been said also refers to
the periods from 2129 to 2156 and from 2157 to 2184; the year
2185 will begin with the same day as 2101, that is with Saturday.
This makes it possible to find what days of the week will be the
Ist of January of 2185 and 2201. Simple calculations show that
during the period from 2185 to 2200 the 1st of January will be
exactly twice Monday, Wednesday, Thursday, Friday and Satur-
day and exactly 3 times Sunday and Tuesday. The 1st of January
of 2201 will be Thursday. During 3-28 = 84 years from 2201 to
2284 the 1st of January will happen to be equally frequently every
day of the week. The Ist of January of 2285 will be the same day
as the Ist of January of 2201, that is Thursday. This makes it pos-
sible to describe the distribution of the days of the week with
which the years will begin during the period from 2285 to 2300.
1t turns out that during this period the 1st of January will be
exactly twice Monday, Tuesday, Wednesday, Thursday and Satur-
day and exactly three times Sunday and Friday. Thus, in addition
to the periods during which the 1st of January happens to be
equally frequently every day of the week we have 2 4 2 = 4 Mon-
days, 14+3+4+2=06 Tuesdays, 14+24+2=5 Wednesdays,
1+ 2+ 2 =05 Thursdays, 1 4+ 2 4+ 3 = 6 Fridays, 2 4 2 = 4 Sa-
turdays and 3 4 3 = 6 Sundays. It follows that the Ist of January
is more irequently Sunday than Saturday.

(b) By analogy with the solution of Problem 29 (a), we can
show that during any period of 400 years the 30th day of a month
happens to be Sunday 687 times, Monday 685 times, Tuesday 685
times, Wednesday 687 times, Thursday 684 times, Friday 688 times
and Saturday 684 times. Thus, most ifrequently the 30th day of a
month happens to be Friday.

30. It can readily be seen that when the last digit of a number
is deleted the number decreases not less than 10 times. A number
which decreases exactly 10 times when its last digit is deleted
must have nought at the end; consequently all such numbers sa-
tisfy the condition of the problem.

Now let us suppose that a whole number x decreases more than
10 times when its last digit is deleted, namely let it decrease
10 4+ a times {(a = 1). Let y be the quotient resulting from the
division of the number x by 10 and let z be the digit in the ones
place of the number x:x = 10y 4 2. After the last digit of the
number x is deleted we obtain the number y; therefore the condi-
tions of the problem imply

=(10+a)y
that is
10y +2=(104+a)-y

4%
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whence
z=ay

Since 2 << 10 we have y << 10 and a << 10. Consequently, the
numbers possessing the required property have only two digits
and can decrease not more than 19 times when the last digit is
deleted. Now it can easily be seen that a number which decreases
11 times when its last digit is deleted can be equal only to 11; 22;
33; 44; 55; 66; 77; 88 and 99. Indeed, if 10 4~ a = 11 then a = 1;
consequently, z=ay =y and x =10y 4+ 2z = 11y where y =
=1,2 8, ..., 9. We similarly find that the numbers decreasing
12 times can only be equal to 12, 24, 36 and 48 and the numbers
decreasing 13 times are 13, 26 and 39. Analogously, the numbers
decreasing 14 times are 14 and 28, and the numbers decreasing
15, 16, 17, 18 and 19 times can only be equal to 15; 16; 17; 18
and 19 respectively.

31. (a) Let the sought-for number have £ 4 1 digits; then it can
be written in the form 6-10% 4 y where y is a k-digit number
(which may begin with one or several noughts). By the condition
of the problem, we have

6-10F+y=25.y

__ 6.10%
¥y="m

It follows that £ cannot be less than 2 (if otherwise, 6.10%
would not be divisible by 24). For £ = 2 the number y is equal to
25.10%-2, that is it has the form 250...0. Therefore all the

{k—2) noughts
sought-for numbers are of the form 6250...0 (n =0, 1, 2, ...).
[

whence

n noughts
(b) Let us apply the method used in Pgroblem 31 (a) to the
problem of finding a number which begins with a given digit a
and decreases 35 times when this digit is deleted. Then we arrive

at the equality .
a-10

Y

where y is a whole number (see the solution of Problem 31 (a)).
It now becomes obvious that there are no numbers a << 9 and &
for which this equality holds.

Remark. By complete analogy with the solutions of Problems 31 (a) and
{b), we can show that a number beginning with a known digit a decreases an
integral number of times b when this digit a is deleted only in the case when
&—1 is a number exceeding a such that all the prime factors of the number
b — 1 different from 2 and 5 are also contained in the number a, the exponents
of the powers of these factors being not less than those of the number b —1
{that is af(b —1) is a proper fraction which can be changed to a terminating
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decimal). For instance, there is no number which decreases 85 times when its
first digit is deleted (because 85— 1 = 84 is divisible by 3.7 whereas there is
no digit that can be simultaneously divisible by 3 and 7), and a number which
decreases 15 times when its first digit is deleted must begin with the digit 7
{15 —1 = 14 is divisible by 7). We can readily derive the general expression
for the numbers beginning with a known initial digit @ which decrease a
given number of times & when that initial digit is deleted.

32. (a) First of all let us show that if a number N decreases 9
times when one of its digits is deleted then this digit must be the
first or the second one. Indeed, if otherwise, then, on writing

a4 10" 4a,- 10"+ ... +a,=N

where aq, ay, ..., a, are the digits of the number N, we conclude
that N/9 has n digits the first two of which are ay and ay, that is

@ 10" fa 10" L =

The multiplication of the last equality by 10 and the subtraction
of the first equality from that product obtained yield

N n—1|
5 < 10

The last inequality cannot hold because

=g 10" L =107

On the other hand, the test for the divisibility by 9 implies that
if a number N and the number obtained from N by deleting one
of its digits are simultaneously divisible by 9 then this digit is
either 0 or 9. Thus, in the case under consideration the first or
the second digit of the number N can only be equal to 0 or 9,
and the deletion of this digit is equivalent to the division of N
by 9. However, the initial digit of the number N cannot be equal
to 0, and if it were equal to 9 the number N/9 would have the
same number of digits as N and could not be obtained from N by
deleting one digit. Further, if the second digit of the number N
is equal to 9 and if the number obtained from N by deleting this
digit is equal to N/9 then we have

N=gq;-10"4+9. 10" Fa,- 10" 24 ... +a,

and

¥ = 10" 44, 10" L. o,

Now, on multiplying the second of these equalities by 10 and
subtracting the first equality from the resulting product, we ob-
tain

¥ <iom!
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(because a; << 9). Thus, we see that in order to decrease the num-
ber N nine times we must delete the second digit which is equal
to 0.

Now we have

N=ay-10"+a,- 10" 2+ ... +a,
and

«::IZ

=q 10" 4a,- 10"+ ... +aq,
It follows that

N =N—0- 10"+, 10" =N —g,- 10"+ 9
and, finally,
1 N N n—1
T =9 %10

which means that in order to divide the number N/9 by 9 it is:
sufficient to delete its initial digit.
(b) We have (see the solution of Problem 32 (a))

N —N—g-10""-9
whence it readily follows that
N=

ao-107"1.81
8

Now, making a, assume, in succession, the values 1, 2, 3, etc.
we conclude that the number N can be equal to one of the num-
bers 10 125; 2025; 30 375; 405; 50 625; 6075 and 70875 or it can
differ from one of these numbers in a group of noughts placed at
the end (ao cannot be equal to 8 or 9 because in this case the
second digit of N cannot be equal to 0).

33. (a) Let us suppose that a-whole number N decreases m
times when its third digit is deleted. Then, by analogy with the
solution of Problem 32 (a), we can write

N=qy-10"+a,- 10" " 4+ a,- 10" 2+ ... +aq,
and

10- X =gy 10"+ 0, 10" +0,- 10" 4 ... 4 g, 10

For m << 10 we obtain (10 — m)N/m <C 1071, which is impossible
because (10 —m)/m > 1/10 and N/10 == qo- 10" + ... = 107,
For m > 11 we obtain (m — 10)N/m < 10!, which is impos-
sible (the same reason: (m — 10)/m > 1/10). Finally, if m = 11,
there must be N/11'<< 1071, that is the number of digits of
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N/m = N/I1 is less by two than the number of digits of N,
which is impossible.

Hence, the only possible case is m = 10; consequently, the con-
dition of the problem is satisfied by those and only those numbers
whose all digits except the first two are noughts.

Remark. We can analogously show that the whole numbers which decrease

an integral number of times when their kth digits are deleted (where %2 > 3)
are those whose all digits except the first £ — 1 digits are noughts.

(b) By analogy with the solution of Problem 32, we can write
the equalities
N=gy-10"+a,- 10" " +0a,- 10" 2+ ... +a,

and

Y 0y 107 - 1072 L g,

m

for a whole number N which decreases m times when its second
digit is deleted. It follows that

YN —ap- 10" —a 10" 4 g - 10"

whence, after simple transformations, we obtain

. n—l .
N = O+ 1'1’;)_110 m (*)

The last relation can be rewritten in the form

R n—1
N=gay-10"4+qa;- 10" — g+ 10""" + 9(ao+a1)-10

m—1

On the other hand, we know that N is an (n -4 1)-digit number
whose first two digits are ao and a;, that is

N=ay-10"+4a,- 10" 40, 10" 2+ ... +a,

where we can assume that not all the digits ay, ..., a. are noughts
(if otherwise, the problem reduces to the consideration of two-
digit numbers N; see the solution of Problem 30). We see that the
inequalities

n—1 | (9ao+ a;)-10"71 -1
qmust hold; they are equivalent to the inequalities

ap< 2E8 gt (%)

Thus, we can finally state the following results. The sought-for
numbers N are expressed by formula (*) where 0 < ap << 9 and
0 << a; << 9; since N is a whole number and the numbers m and
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m — 1 are relatively prime, it follows that the proper fraction:
(9ao + a1)/(m — 1) can be changed to a terminating decimal;
the admissible values of ao, a; and m must satisfy inequalities
(**). Besides, to these possible values of N we must add the two-
digit numbers obtained in the solution of Problem 30.

Now it only remains to consider consecutively all the possible
values of ao.

1°. ap = 1. In this case inequalities (**) result in

9
m—1

<2 and m—1>4

1< m—1<is;
m—1

On making m — 1 assume, in succession, the values 5, 6, 7,...,17
and choosing every time the appropriate values of a; we obtain the
following values of N:

N =108; 105; 10125; 1125; 12375; 135; 14 625; 1575;
16 875; 121; 132; 143; 154; 165; 176; 187; 198;
1625; 195; 192; 180625; 19125
To each of these numbers we can add an arbitrary number of
noughts at the end.
Further, in a similar manner we obtain:
2°, Qp == 2:
N =2025; 21375; 225; 23 625; 2475; 25875; 231; 242;
253; 264; 275; 286; 297; 2925

3°. Qg = 3:
N =230725; 315; 32625; 3375; 34875; 341; 352; 363;
374; 385; 396
4°, Qo = 4.
N =405; 41625; 4275; 43 875; 451; 462; 473; 484; 495
5° ap = 5:
N =>50625; 5175; 52875; 561; 572; 583; 594
6°. ay =
N =6075; 61 875; 671; 682; 693
7° a=T:
N =781; 792
8°. Qg = 8:
N =891

There are no values of N which correspond to ay =29,
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Altogether, including the results of Problem 30, we obtain for the
number N one hundred and four values to each of which we can
add an arbitrary number of noughts at the end.

34. (a) First solution. Let us denote as X the (m-digit) num-
ber which is obtained when the initial digit 1 is deleted in the
;ought-for number. Then, by the condition of the problem, we
have

(1-10" 4 X)-3=10X+1

whernce
3.10m —1
X ——

From the last equality we can easily find the number X. To this
end let us consider the process of long division of the number
3:10m =30000... by 7 until 1 is obtained in the remainder. We
have:
42 857
7) 3000...0
— 28
20
— 14
60
— 56

40
— 35

50
— 49

1

Thus, the least possible value of the number X is equal to 42 857
and the least possible value of the sought-for number is 142 857.

Aiter the first digit 1 is obtained, the process of long division
could be continued until the next digit 1 is obtained and so on.
This would result in the numbers of the form

142857 142857 ... 142857

N, o e e, e N o v’
k times

which also satisfy the condition of the problem.

Second solution. Let us denote the second digit of the sought-
for number as x, the third digit as y etc, that is let us suppose
that the sought-for number has the form lxy ... 2f (the bar
above this expression means that we deal here with a number
whose digits are 1, %, 4, ..., 2, ¢ but not with the product
1-x-y.,.2-t). Then, by the condition of the problem, we have

lxy...2t-3=xy ... 2l
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It follows that { = 7 (if otherwise, the product on the left-hand’
side could not end with 1). Consequently, the digit in the tens
place of the number on the right-hand side is equal to 7. This is
only possible if the product z-3 ends with 7— 2 =5 (here the-
number 2 which is subtracted from 7 appears due to the product
of the last digit 7 of the sought-for number by 3), that is z = 5.
We have thus found that the digit in the hundreds place in the-
number on the right-hand side is equal to 5; therefore the mul-
tiplication of the digit in the hundreds place of the sought-for
number by 3 must result in a number which ends with 5 —1 =4
(here 1 is the digit in the tens place of the product 5-3). These
calculations finish when we arrive at the first digit 1. The
calculation process can be conveniently represented by arranging:
the operations in the following way:

1 4 2 8 5 7 42 857
. . . . Lo X3=.. .. 1
4—1=3; 2—0=2; 8—2=6; b—1=4; 7—2=5

(the calculations are carried from right to left). Thus, the least
number satisfying the conditions of the problem is 142 857.

If these calculations are continued after the first unity is ob-
tained we find the other numbers satisfying the conditions of the
problem:

142 857 142857 ... 142857

N o e et Nt Nt o mma
k times

(b) Since the number of the digits does not increase when the
whole number in question is increased three times, it follows that
the initial digit of that number can only be equal to 1, 2, or 3.

As is seen from the solution of Problem 34 (a), it is possible
that this digit is equal to 1. Now let us show that it cannot be
equal to 3.

Indeed, if the initial digit of the sought-for number were equal
to 3 then its second digit (which coincides with the first digit of
the number equal to the given number times three) would be equal
to 9. But the number obtained when a number beginning with the
digits 39 is multiplied by 3 has more digits than the original num-
ber itself; therefore it cannot be obtained from the original number
by carrying its initial digit to the end.

Let the reader prove that the sought-for numbers can begin with
the digit 2. The smallest of these numbers is 285 714; all such
numbers beginning with the digit 2 have the form

285714 285714 ... 285714

N\, S O

k times

(the proof is analogous to the solution of Problem 34 (a)).
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35. First solution. Let X be the number satisfying the conditions
.of the problem. Then we have

X=aay...a,_,6 and 4X=6qa; ... a,_,

where ay, @, ..., a,— and 6 are the digits of the number X. Since
‘the last digit of the number X is 6, the last digit a.-; of the num-
ber 4X is 4; hence, X = a4, . .. a,—246; this makes it possible to
find the last but one digit a.—s = 8 of the number 4X. Now, on
writing X in the form ... 846 we can determine a,_3 = 3 etc. Let
.us continue this process until the digit 6 is obtained in the num-
ber 4X; this digit can be regarded as being carried from the end
of the number X. In this way we find that the smallest number
-satisfying the condition of the problem is X = 153 846 and that
4X = 615 384.

Second solution. Since the sought-for number X has the digit 6
.at its end, it can be written in the form X = 10x + 6 where x is
the number obtained from X by deleting that last digit 6. If x is
an n-digit number, the conditions of the problem imply that

4.(10x+6)=6-10"+x
‘that is

39x =6 (10" —4) whence x=21T=% )

The number 107 — 4 is obviously equal to 6 or to 96, or to 996,
or to 9996, ... . The smallest of these numbers which is multiple
.of 13 is the number 99 996 = 13:7692, and the value of n corres-
ponding to it is equal to 5. It follows that equality (*) results in
x = 15 384 and, consequently, X = 153 846.

36. If the multiplication of a number by 5 does not change the
number of its digits, the initial digit of the number must be 1.
When this digit is carried to the end we obtain a number whose
dast digit is 1. But such a number cannot be divisible by 5.

[n a similar way it can be proved that there are no numbers
-‘which increase 6 or 8 times when their initial digits are carried
1o the end.

37. First solution. Since the product of the sought-for number
by 2 has the same number of digits as the original number, the
initial digit of that number cannot exceed 4. When the initial digit
is carried to the end the resultant number must be even (it is
-equal to the duplicated original number), and therefore the initial
-digit of the sought-for number must be even. Hence, it can only
be equal to 2 or 4.

Now let us suppose that the initial digit of the sought-for num-
ber is equal to 2 or 4. On denoting as X the number obtained from
ithe sought-for number by discarding its initial digit, we can write,
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by analogy with the first solution of Problem 34 (a), the equality
4.-10"—-2  2.10" —1

2:-10"4-X)-2=10-X+2 whence X= . — .
or
(410" 4+ X)-2=10-X +4 whence x=21%—=%_ 21001

Now we see that neither of the formulas for the number X we
have derived can hold because a whole number cannot be equal to
a fraction whose numerator is odd and denominator is even.

Second solution. As in the first solution, we conclude that the
initial digit of the sought-for number can only be equal to 2 or 4.
Further, using the notation introduced earlier (see the second so-
lution of Problem 34 (a)) we can write

2xy ...22=xy ... 212 or 4xy...2-2=xy ... 24

From the first of these relations it follows that ¢ can only be
equal to 1 or 6 (because, if otherwise, the product on the left-hand
side could not end with 2). However, if ¢ = 1 then on the left-
hand side we obtain a number which is not divisible by 4 whereas
on the right-hand side a number divisible by 4 (because its last
two digits are 12). If £ = 6 then, on the contrary, we obtain a
number divisible by 4 on the left-hand side and a number which
is not divisible by 4 (because its last two digits are 62) on the
right-hand side.

From the second of the last two relations it follows that ¢ can
be equal to 2 or 7. If £ = 2 then, by analogy with the second so-
lution of Problem 34 (a), we find that z=1or z=6; for z =1
the product on the left-hand side is divisible by 8 (since it is
equal to the product of a number whose last two digits are 12 by
the number 2) whereas the number on the right-hand side is not
divisible by 8 (because it ends with 124). For 2 = 6 the number
on the right-hand side is divisible by 8 whereas the product on
the left-hand side is divisible by 4 buf not by 8. It can similarly
be shown that ¢ cannot be equal to 7.

38. (a) First solution. A number which increases 7 times when
its initial digit is carried to the end must begin with the digit 1
(if otherwise, the number which is 7 times as great as the original
number must have more digits than the original number). Further,
on denoting by X the m-digit number obtained from the original
number by discarding its initial digit we can write (ci. the solu-
tion of Problem 34 (a)) the equality

(1.10"4+X):7=10-X+1
whence
7.10m —1

X= 3
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Now it becomes clear that for any m X cannot be an m-digit num-
ber because (7-10™ —1)/3 > 107,
We can similarly prove that there are no numbers which in-
crease 9 times when their initial digits are carried to the end.
Second solution. As in the first solution, we conclude that the
sought-for number can only have 1 as its initial digit. Further,
using the notation introduced earlier we can write

Ixy ...2t - T=xy ... 21

1t follows immediately that the last digit of the product £-7 is 1.
Consequently, { = 3. On substituting this value of ¢ into the above
equality we obtain lxy...z23:7=xy...23l. Since we have
3.7 = 21 and since the product of the number 23 by 7 ends in 31,
the product 2-7 must have 1 as its last digit. Consequently, z is
equal to 3. In just the same way we can prove that every conse-
cutive digit of the number in question is equal to 3 (it is meant
here that the digits are read from right to left). At the same time,
the initial digit must be equal to 1, which can never be achieved.
Therefore there are no numbers which increase 7 times when their
initial digits are carried to the end.

It can similarly be shown that there are no numbers increasing
9 times when their initial digits are carried to the end.

(b) First solution. Since the product of the sought-for number
by 4 has not more digits than the original number, the initial digit
of the original number cannot be greater than 2. When the initial
digit is carried to the end we obtain an even number and there-
fore that initial digit must be equal to 2. Further, on denoting by
X the m-digit number obtained when the initial digit of the sought-
for number is discarded, we obtain

8.-10"—2

(2:-10"4X)-4=10X+2 whence X= 5

This relation is impossible because (8-10™ — 2)/6 > 10™ (cf. the
solution of Problem 38 (a)).

Second solution. As in the first solution, we conclude that the
initial digit of the sought-for number can only be equal to 2. Fur-
ther, we have

2xy ... 2t d=xy ... 22

whence it follows that { = 3 or { = 8 since -4 ends in 2.

If ¢ were equal to 8, the number on the right-hand side would
end with 22 and therefore it would not be divisible by 4. In case
/ = 3 we have

2xy ... 23+4=xy ... 232
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whence

2xy ... 20 4d=xy ... 220
and

2y ... 2 d=xy ... 22

Thus, we see that the number 2xy ... 2 possesses the same property
as 2xy...zt. Therefore, using the same argument, we conclude
that z = 3. On continuing these calculations from right to leit
we consecutively find the digits and see that the decimal repre-
sentation of the number in question involves only the digits 3. On
the other hand, this number must have 2 as its initial digit, and
consequently such a number does not exist.

39. First solution. Let us denote by %, y, ..., 2, ¢ the unknown
digits of the sought-for -number. Using the notation of the second
solution of Problem 34 (a) we can write

Txy ... zt-%=xy...zt?
whence

XY oo 207 3=Txy ... 2t

Now it becomes clear that { = 1; after that we can determine
the digit z (17-3 ends in 51, and therefore 2 = 5). In this way,
moving from right to left, we can consecutively find the digits of
the sought-for number. The calculations should be stopped when
we arrive at the digit 7. It is convenient to arrange the calcula-
tions in the following way:

241379310344827586206896551 7241379310344827586206895551

‘(the calculations are carried out from right to left). Thus,
the least number satisfying the conditions of the problem is
7 241 379 310 344 827 586 206 896 551.

If the calculation process is continued after the first digit 7 is
obtained we find the other numbers satisfying the condition of the
problem. All such numbers have the form

7241379310344827586206896551 . .. 7241379310344827586206896551

\—

k times

Second solution. Let 7xyz...t be the sought-for number. Then

its division by 3 results in the number xyz...¢7. Let us write the
division process in the form

xyz ... (7
3) Txyz ... t
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It follows that x = 2. If we substitute 2 for x into the dividend
and into the quotient this will allow us to determine the second
digit of the quotient; using this digit we can then find the third
digit of the dividend; this makes it possible to determine the third
digit of the quotient etc. The process ends when the last digit we
obtain in the quotient is equal to 7 and when the dividend we
find is exactly divisible by 3.

It can readily be seen that we thus find the sought-for number
because if we carry its initial digit 7 to the end we obtain the new
number which we have written as the quotient, that is a number
which is three times as small as the sought-for number. In the
above process every consecutive digit is determined uniquely by
the digits found earlier, and therefore the number we obtained is
the smallest of the numbers possessing the required properties.
The calculations can be conveniently arranged as follows: in the
upper line we write the digits of the dividend, in the second line
we write the number for which every step of its division by 3 gives
us the corresponding digit of the quotient and in the lower line
we write the digits thus determined:

7 24 1 3 7 9 3 t 0 3 4 48 2 7 5 86 2
7 12 4 11 23 27 9 3 1 10 13 14 24 8 22 17 25 18 6 2
2 41 3 7 9 3 1 0 3 4 4 82 7 5 8 620

0O 6 8 9 6 5 5 1
20 26 28 19 16 15 5 21
6 8 9 6 5 51 7

Thus, the smallest number possessing the required property is
7 241 379 310 344 827 586 206 896 551.

Third solution. By analogy with the first solution of Problem
34 (a), we obtain, using similar notation, the equality

(710" 4+ X) - 5 = 10X +7

whence
7.10™ — 21
X= 29

The problem thus reduces to the determination of a number of
the form 70000 ... whose division by 29 leaves a remainder of 21.
Let the reader check that this procedure leads to the same resuit
as in the first two solutions.

Remark. We can analogously solve the following problem:

It is required to find the smallest number with a given initial digit which
decreases 3 times when the initial digit is carried to the end of the number. In
order to include those solutions which begin with the digits 1 and 2 as well
it is convenient to assume thas 0 can stand at the beginning of the numbers.
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If the initial digit of a number is 0, it can readily be shown that only the
number O posseses the required property. Let us write down the other (28-di-
git) numbers possessing this property:

1 034 482 758 620 689 655 172 413 793
068 965 517 241 379 310 344 827 586
103 448 275 862 068 965 517 241 379
137 931 034 482 758 620 689 655 172
172 413 793 103 448 275 862 068 965
206 896 551 724 137 931 034 482 758
275 862 068 965 517 241 379 310 344
310 344 827 586 206 896 551 724 137

© 00 O G W N

In just the same way we can solve the following problem:

It is required to find the smallest whole number with a given initial digit a
which decreases [ times when this digit is carried to the end. It is also requi-
red to find all the numbers possessing the indicated property.

40. (a) By the condition of the problem, we have

xy . .2-a=1z ... yx

where a is one of the numbers 2, 3, 5, 6, 7 and 8 (the bars desig-
nate the numbers consisting of the corresponding digits).
If a =5 then x must be equal to 1 because, if otherwise, the

number xy...2{-5 would have more digits than the number
xy...2t (we exclude the value x =0 because in this case
y...2t =2-tz...y, that is we arrive at the same problem with

a = 2). But the number fz...yl cannot be divisible by 5. In the
same way we prove that a cannot be equal to 6 or 8.
If @ = 7 then x must also be equal to 1. But in this case ¢ must

be equal to 3 because, if otherwise, the number 1y...2¢{-7 cannot

end with the digit 1. As to the equality ly...23-7=3z...yl, it
is quite obvious that it is inconsistent (because it is clear that the
left-hand member of the equality is greater than the right-hand
member).

If a = 2 then x cannot be greater than 4. Since in this case the

number fz...yx is even, we conclude that x must be equal to 2
or 4. For x = 4 the digit ¢ (the initial digit of the number
4y ...z2t-2) can only be equal to 8 or 9, and neither 4y...28-2

nor 4y...29-2 can have 4 as the last digit. If x = 2 then ¢ (the

initial digit of the number 2y... 2¢-2) can only be equal to 4 or 5;

but neither 2y ... 24-2 nor 2y ... 25-2 can end with 2.
Finally, if @ = 3, the digit x cannot be greater than 3. If x =1
then ¢ must be equal to 7 (because the last digit of the number
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-3 is equal to 1). If x = 2 the digit £ must be equal to 4 and if
x = 3 the digit # must be equal to 1. But in the first case tx...yx
is greater than xy...z¢3, and in the second and in the th1rd
cases fx...yx is less than xy...2t-3.

(b) Let Xy ...zt be the sought-for number; then

Xy oo2led=tz ... yx

Since the number xy...z¢t-4 has the same number of digits as
the number xy... zf, the digit x can be equal to 0, 1 or 2; since
z...yx is divisible by 4, the digit x must be even. Consequently,
x can only be equal to 0 or 2.

Let x = 0. It is evident that the number 0 possesses the re-
quired property. For the sake of convenience, we shall use decimal
representations having one or more noughts at the beginning.
Then we have y...2f-4 =tz...40 whence ¢t = 0 (since ¢t << 4)
and y...2-4==2z...y because if a number possessing the re-
quired property begins with nought then its last digit is also
equal to 0 and the number which is obtained when the first and
the last noughts are deleted also possesses the required property.

Therefore it suffices to consider the value x = 2. In that case
we have 2y...2f-4 =tz...y2. Since 2.4 = 8, the digit ¢ can
only be equal to 8 or 0. However the last digit of the product £-4
is 2; consequently, { = 8, that is we can write 2y...28-4 =<
= 8z...y2. Since 23-4 > 90, the digit y can only be equal to
0, 1 or 2. At the same time, the digit in the tens place of the pro-
duct 28:4 is odd for any 2. Consequenily, y = 1. Knowing ths
last two digits of the product 2y...28-4 we conclude that the last
but one digit z of this number can only be equal to 2 or 7. Now,
since 21-4 > 82, it follows that z = 7.

Thus, the sought-for number has the form 21...78. If it has
four digits we obtain the number 2178 satisiying the condition of
the problem. Now let us consider the case when the number of
digits of the sought-for number exceeds 4. In that case we have

21uv ... rs78+-4=287sr ... vul2
whence, after simple transformations, we obtain

84.10¢+2 43124 uv ... rs00 -4 =87 - 10*+2 4 12 +sr ... vu0
and

uv ... rs+4+4+3=3sr ... vu

Since the product of the number uv...rs by 4 has more digits
than the given number itself and since this product has the initial
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digit 3 (or begins with the combination of the digits 29) we see
that « can only be equal to 9, 8, or 7. Further, since 3sr...vu is
an odd number, u can only be equal to 9 or 7. Let ‘us consider
separately these two possibilities.

1°. u = 9. In this case we obviously have

99 ... rs-4+3=3sr ... 09

whence it follows that s = 9 (because s-4 ends with 6; if s = 4
then 34r ... 09 is less than' 9v ... r4-4 + 3) and

9 ... r9:4+3=39...09 and v...r-44+3=3r... v

Thus, the number obtained from the number wv...rs by discard-
ing the digits 9 standing at the beginning and at the end pos-
sesses the same property as the number wv...rs itself. In parti-
cular, uv...rs can be equal to 9; 99; 999 etc.; in this way we
obtain the numbers

21978 219978; 2199978; ...

satisfying the conditions of the problem.
2°. u = 17. In this case we have

v ...rs+4+3=3sr ... 07

whence, by analogy with the argument at the beginning of the
solution of the problem, we readily find that s=1, v =8 and

r = 2, that is the number uv...rs is of the form 78...21 and the

number obtained from wv...rs by discarding the combinations
of the digits 78 and 21 at the beginning and at the end respecti-
vely is 4 times as small as its reversion.

It follows that if a number which is 4 times as small as its
reversion differs from the numbers in the sequence

0; 2178; 21978; 219978; ...; 2199 ... 978; 2199 .., 9978; ... (*)

e e’ Nt s

k digits (k+1) digits
then there are the same combinations of digits at the beginning
and at the end of this number and these digits form one of the
numbers belonging to the above sequence; besides, if these com-
binations of digits are deleted (both at the beginning and at the
end) then we also obtain a number which is 4 times as small as
its reversion or, as in the case of the number 21 782 178, all the
digits of the number turn out to be deleted.

Therefore the decimal representation of any number which is

4 times as small as its reversion must have the form

PPy ... P,_P,P,_ ... PP
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or the form
P1P2 s o Pn-lpnpnpn_l cae P2P1

where Py, Ps, ..., P, are combinations of digits forming some of
the numbers belonging to sequence (*). For instance, such are the

numbers
2197 821978; 2199782178219978;

21978021997 800219978021 978 and 02199 999780

{the last of these numbers can also be regarded as the solution of
tihe problem on condition that we are allowed to write 0 at the
beginning of the decimal representation of a number).

We can similarly prove that all the numbers which are 9 times
as small as their reversions are obtained from the numbers form-
ing the sequence
Q; 1089; 10989; 109989; ...; 1099 ... 989 .,.; 1099 ... 9989; ...

[ yi— N e
k times (k+1) times

in the same way as the numbers which are 4 times as small as
their reversions are obtained from the numbers belonging to se-
quence (*).

41. (a) Let us denote by p the number consisting of the first
three digits of the sought-for number N and by ¢ the number
consisting of the last three digits of N. Then the condition of the
problem implies

1000g + p=16(1000p 4+ q) =6N
whernce

(10009 + p) — (1000p + ¢) =999 (¢ — p) =5N

which means that ¥ is divisible by 999.

Further, we have p-+4 ¢={1000p -+ g) —999p =N — 999p
whence it follows that p 4 ¢ is also divisible by 999. On the other
hand, p and ¢ are three-digit numbers which obviously cannot be
equal to 999 simultaneously, and consequently

p+g=999
Now we readily find that
(1000g + p) + (1000p + g) = 1001 (p + q) =T7N
and, consequently,

7N =999999 and N ==142857

(b) By analogy with the solution of Problem 41 (a), on denot-
ing as p and ¢ the numbers formed of the first four and of the
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last four digits of the sought-for number N respectively, we can:

write
7N =10001(p + 9) = 99999 999

It is evident that this relation cannot hold for any integral num-
ber N (because 99 999 999 is not divisible by 7).

42. Let x be a number satisfying the condition of the problem.
Since both 6x and x are six-digit numbers, the initial digit is the
decimal representation of the number x is equal to 1. Therefore
we conclude that

(1) the initial digits of the decimal representations of the num-
bers x, 2x, 3x, 4x, bx and 6x are all different, and consequently
they form the whole set of digits contained in the decimal repre-
sentation of the number ;

(2) all the digits in the decimal representation of the number x.
are different from one another.

The set of these digits does not contain 0 and therefore the last
digit of the number x is odd (if otherwise, 5x would end with
nought) and differs from 5 (because, if otherwise, the last digit
of 2x would be 0). Therefore the last digits in the decimal repre-
sentations of the numbers x, 2x, 3x, 4x, 5x and 6x are all different,
and hence they also form the whole set of the digits contained in
the decimal representation of the number x. Consequently, this set
contains 1. The digit 1 can only be the last digit of the number 3x
because 2x, 4x, and 6x end with even digits and 5x ends with §
and the decimal representation of the number x involves one digit
1 which is its initial digit. Thus, the number x ends with the
digit 7, the number 2x with the digit 4, the number 3x with the
digit 1, the number 4x with the digit 8, the number 5x with the
digit 5 and the number 6x with the digit 2. Since the first digits
of these numbers belong to the same set of digits but are arranged
in the increasing order, we can write

xel==1Hxexy

X 2=2 %k % ok 3k 4
X 3=4****1
X+4=05*+**8g
X B=T7%**%%5h
X+ 6=8**¥*2
where the stars stand in the places occupied by the unknown di-

gits.

Now we note that in the table we have written not only every
line contains the six different digits 1, 2, 4, 5, 7, and 8 arranged
in a certain order but also every column consists of the same six
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different digits arranged in some order. Indeed, let us suppose
that, for instance, the third digits of the numbers x-2 and x-5
coincide and are equal to a (@ can assume one of the two values
not equal to the first and to the last digits of the two numbers in
question). Then the difference x-5 — x:2 = x-3 is a six-digit num-
ber the third digit of whose decimal representation is 0 or 9 (this.
follows from the rule according to which the subtraction of num--
bers written as a column is carried out). But this conclusion can-
not be true because, as we know, the decimal representation of the
number x-3 involves the digits 1, 2, 4, 5, 7 and 8.

Now let us again write as a column the numbers x-1, x-2, x-3,
x-4, x-5 and x-6 in order to add them together:

x,1=l****7

X+ Q=0 %¥xr 4
K3 goeenn |
x-4=DFrsrxg
x+B5=T7%***5
X6 =8r¥*Q

Taking into account that the sum of the digits of every column is.
equaltol +2+ 4+ 5474 8 = 27 we get
x+ 21 =2999 997

whence x = 142 857. The number x we have is nothing but the
sought-for number; indeed, it is readily seen that

x =142 857
2x=285714
3x =428571
4x=>5T71428
5x=7T71428b
6y =857 142

43. Let N = xyz = 100x - 10y + 2 be the sought-for number,
the symbols x, y and 2z designating its digits. The permutations
of the digits of the number N give us the new numbers N, =

= yxz = 100y 4+ 10x 4 2, ..., N5 = 2yx = 100z -+ 10y + x. The
sum N -+ N, 4+ ...+ N5 of all these numbers must be equal to the
product of the number N by 6 whence we readily obtain
2:.10042-104+2)(x+ y+ 2)=6(100x 4+ 10y + 2)
(because in the 6-tuple of the numbers N, N;, Ny, N3, Ny, N5 eacl
of the digits, for instance x, is encountered twice in the ones place,
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twice in the tens place and twice in the hundreds place). This
means that

37(x+y-+2=100x+ 10y 4 2

63x = 27y + 362
On cancelling by 9 we find
Tx=23y+ 4z, thatis 7T(x —y)=4(z—y)

whence

Now, since the absolute values of the differences x —y and z—y
do not exceed 9, it follows that the last equality can only hold
when x —y=0,2—y=00rx—y=42—y=7To0rx—y=
=—4 z2—y=—7.1f z—y=7 then x=29; 8 or 7 and if
2—y==—7then y = 9; 8 or 7. Therefore we obtain the follow-
ing 15 possible values of the number N:

N =111; 222; 333; 444; 555; 666; 777; 888; 999; 407; 518;
629; 370; 481 or 592

(the “solution” N == 000 has been discarded).

44, 1t is clear that A and A’ must be 10-digit numbers. Let
A = ajaas...a, and A" = alyadas ... ai (here ay, a9, a3, ..., &
are the consecutive digits of the number A and afo, a3, ..., ai
are the digits of the number A’). Suppose that we write the num-
bers A and A’ as a column to add them together. It is clear that
their sum can be equal to the number 10000 000 000 only in the
case when there is such an index { (where 0 <Ci <C 9) for which
a+al=0, a2+a3=0, ..., a;+ai=0,

ai+1+ aivi=10, aiye+alss=9, ..., a0+ alo=9 *)

(if i = 9 then there are no sums of the form a;4o+ ais2, a;43-+
~+ ajys, ... which are equal to nine and if { = 0 then there are no
sums of the form a;+af, ..., a; -+ a; which are equal to zero).
On adding together all sums (*) we obtain

(a+a)+(@+a)+ ... +(@ota)=104+9(9—i)

Since ayay, ..., ap and afaj, ..., ajp are sequences consisting
of the same digits but arranged in different order we conclude that
the right-hand member of the last equality is an even number
equal to 2(a; + a4 ... 4 aio); therefore the number 10 4- 99 —1i)
is also even. It follows that the index i must necessarily be odd,
that is { cannot be equal to zero (there must be i=1or i = 3 or
i==05, ...). Hence, a 4+ ai =0, which implies that aq;=a{=0.
The last equalities show that both numbers A and A’ are divisible
by 10.
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45. Let us write the numbers M 'and N as a column to add them
together in accordance with the ordinary rule of arithmetic. If we
suppose that all the digits of the resultant sum M+ N are odd
then the sum of the last digits is odd, which implies that the sum
of the initial digits is also odd (the columns consisting of the
initial digits and of the last digits differ only in the order in which
the digits are written). This is only possible if after the addition
of the digits in the 2nd column unity is not carried from that
column to the Ist column, which means that the sum of the digits.
of the 2nd column is less than 10 and, consequently, so is the sum
of the digits of the last but one column. Therefore unity is not
carried from the last but one column to the 3rd {counting off from
right to left) column either because the case when the sum of the
digits of the last but one column is equal to 9 << 10 and unity is
carried from that column to the next one because it is taken from
the last column is impossible. For, in this case, the last but one
digit of the sum M 4 N must be equal to 0, that is it must be
even, which contradicts the hypothesis. Thus, in the addition pro-
cess the digits in the last two (and in the first two) columns do
not affect the other digits of the sum M 4 N. Therefore we can
simply discard the first two and the last two digits in the num-
bers M and N and continue the argument for the corresponding
“truncated” (13-digit) numbers M, and N,.

Now let us consider the sum M; -4 N; of the numbers M, and
Ny; as before, it can be shown that if all the digits of the number
M, + N, are odd then when we write the 13-digit numbers M,
and Ny as a column to add them together the first two digits and
the last two digits of the numbers M, and N, do not affect the
other digits of the sum M;+ N, (that is they do not affect the
digits of the sum M; 4 N, except the first two and the last two.
digits). This means that we can “truncate” the numbers M, and
N, by discarding in each of them the first two and the last two
digits and pass to the corresponding 9-digit numbers M, and N,.
Next we perform the same operation on the numbers M, and ¥,
and pass to the corresponding 5-digit numbers M3 and Nj; finally,
in just the same way we pass from the numbers M3 and Nj to the
corresponding “truncated” (one-digit!) numbers M, and N, which
are equal to the digits of the numbers M and N standing at the
middle of the decimal representations of M and N, these digits
being coincident. It is clear that the digits (or, more precisely, one
digit!) of the number M, + N, = 2M, cannot be odd (because
the number 2M, is even!), whence we conclude that all the digits
of the sum M 4 N cannot be odd either.

Remark. Tt is clear that the above argument is of a general character and
remains applicable to any two numbers M and N (which are written with the-
aid of the same digits but taken in “reverse” order) provided that the number
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of the digits in each of them has the form 4n 4 1, that is provided that the di-
vision of the number of the digits by 4 leaves a remainder of 1. But if the num-
ber of the digits of the number M (and of the “reverted” number N) does not
have the form 4n 4 1, then it may happen that the sum M+ N is written only
‘with the aid of odd digits (let the reader prove this).

46. (a) We have n®—n=(n—1)n(n+ 1), and one of the
three consecutive whole numbers in the product on the right-hand
side must necessarily be divisible by 3.

(b) We have n5—n=n(n—1)(n+1)(n2+1). If the whole
number n ends with one of the digits 0, 1, 4, 5, 6 or 9 then one of
the first three factors on the right-hand side is divisible by 5. If n
ends with one of the digits 2, 3, 7 or 8 then the last digit of n?
is4or 9, and n? 4 1 is divisible by 5.

(c) We have n"—n=n(n—1)(n+1) (n?— n41) (n24n+1).
If n is divisible by 7 or if the division of n by 7 leaves a rema-
inder equal to 1 or 6 then one of the first three factors on the right-
hand side is divisible by 7. If the division of n by 7 leaves a
remainder equal to 2 (that is n = 7k - 2) then the division of n?
by 7 leaves a remainder of 4 (because n? = 49k% 428k 4 4), and
consequently n?2 4+ n +4 1 is divisible by 7. In the same way we can
prove that if the remainder resulting from the division of n by 7
is equal to 4 then n?2 4 n 4 1 is exactly divisible by 7 and if the
division of n by 7 leaves a remainder equal to 3 or 5 then
n? —n -+ 1 is divisible by 7.

(d) We have n!'!'—n=n(n—1)(n+1) (nd+né4n*+n2+1).
If n is divisible by 11 or if the division of n by 11 leaves a re-
mainder equal to 1 or 10 then one of the first three factors on the
right-hand side is divisible by 11. If the remainder resulting from
the division of n by 11 is equal to 2 or 9 (that is if n = 11k 4 2)
then the remainder resulting from the division of n? by 11 is equal
to 4 (because n? = 121k2% 4 44k + 4), the division of n* by 11 re-
sults in the remainder equal to 5 = 16 — 11, the division of n® by
11 leaves a remainder equal to 9 = 20— 11, (because nb =
= n*.n? = (11k; + 5) (11k: + 4) = 121k,ky + 11(4ky + 5k;) 4 20)
and the division of n® by 11 leaves 3=25 — 22 in the remainder.
it follows that n® 4 n® 4 n*+ n2 41 is divisible by 11. It can
similarly be shown that n® + n® 4 n* 4 n2 41 is divisible by 11
if the remainder resulting from the division of n by 11 is equal
to +3, =4 or =+5.

(e) We have n® —n=n(n—1)(n+ 1) (n2+1) (n* — n24+1) X
X (n* 4 n? 4 1). By analogy with the solutions of the foregoing
problems, we conclude that if n is divisible by 13 or if the divi-
sion of n by 13 leaves a remainder equal fo 41 or —1 then one
of the first three factors on the right-hand side is divisible by 13,
if the remainder resulting from the division of n by 13 is equal to
=5 then n? 4- 1 is divisible by 13, if the remainder resulting from
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the division of n by 13 is equal to 2 or +6 then n*—n2-+1 is
divisible by 13 and if the remainder resulting from the division
of n by 13 is equal to =3 or =4 then n*4-n?-41 is divisible
by 13.

47. (a) The difference of two powers with equal even exponents
is exactly divisible by the sum of the bases; therefore 3% — 261—
=27% — 821 is divisible by 27 + 8 = 35.

(b) It can easily be verified that

=+ dn=n(m—-1)?*—4)=n—2)n—nr+1)(n+2)

Here there are five consecutive whole numbers in the product on
the right-hand side one of which must necessarily be divisible
by 5; besides, at least one of the factors is divisible by 3 and at
least two of them are divisible by 2; further, at least one of the
last two factors must also be divisible by 4. Thus, the product of
five consecutive whole numbers is always divisible by 5-3.2.4=
=120 (ci. the solution of Problem 46 (a)).
(c¢) Let us make use of the identity

4+ 8n+5=n-+7)(n—4) +33

For this expression to be divisible by 11 it is necessary that
(n 4+ 7)(n-—4) should be divisible by 11. Since we have
(n+ 7)—(n—4)= 11, both factors n+ 7 and n —4 should be
simultaneously divisible or not divisible by 11. Therefore if the
number (n -+ 7) (n — 4) is divisible by 11 then it is also divisible
by 121 and, consequently, (n 4 7) (n — 4) -+ 33 cannot be divisible
by 121.

48. (a) It can readily be checked that

56786730=2-3:5+7+11.13.31:61

and hence it only remains to prove that the given expression is
divisible by each of the prime factors on the right-hand side. 1f
both m and n are odd numbers then the number m% — 1% is even;
consequently, mn(m® — n%) must necessarily be even (that is it
must be divisible by 2). Further, from the result of Problem 46
it follows that if k£ is equal to 3, 5, 7, 11 or 13 and if n is not di-
visible by & then the difference n*-! — 1 must necessarily be di-
visible by k. In particular, it follows that if both m and n are not
divisible by 3 then the numbers m8— 1= (m?3)2— 1 and n%— | =
=(n%%)2 —1 are divisible by 3, that is the division of m$® and
of n® by 3 leaves one and the same remainder equal to 1. Con-
sequently, if mn is not divisible by 3 then m® — n8® is divisible
by 3, whence it follows that in all the cases the product
mn (m8 — n8) is divisible by 3. In just the same way we can
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prove that the difference
m® — 180 = (m!%)* — (n'5)* = (m'%)® — (1) =
— (mG)IO _ (nS){O — (m5)12 - (n5)12

is divisible by 5 when neither m nor n is divisible by 5, is divisible
by 7 when neither m nor n is divisible by 7, is divisible by It
when neither m nor n is divisible by 11 and is divisible by 13 when
neither m nor n is divisible by 13. We have thus proved that
mn(m% — nf) is always divisible by 2-3-5-7-11-13.

It can similarly be shown that the expression mn(ms® — n%) is
divisible by 31 and by 61 (because for any integral n the expres-
sion n%' —n is divisible by 31 and the expression n®!' — n is di-
visible by 61; see Problem 340 below).

(b) Let us represent the given expression in the form

(m—2n)(m—n)(m -+ n)(m-+.2n)(m <+ 3n)

For n 5= 0 all the five factors of this product are pairwise diffe-
rent. At the same time, the number 33 cannot be factored as a
product of more than four different integers (the factorization into
four such factors can be performed in several ways, for instance,
33 =(—11)-3-1-(=1) or 33=11:(—=3)-1-(—1)).

In the case when n = 0 the given expression turns into m® and
cannot be equal to 33 for any integral m.

49, First of all we note that 323 = 17-19; hence we have to
establish the condition under which the number N indicated in the
problem is divisible both by 17 and by 19. Let us begin with the
case when n is an even number: n = 2k. It is clear that 20" — 3~
is divisible by 20 — 3=17 for all n; on the other hand, 16" — 17=
=162 — 12¢ s divisible by 162 — 12=(16 —1) (16 + 1)=15-17
and, consequently, for even n the number 16" — 1 is also divisible
by 17, that is in this case N=(20" — 3")4 (16" — 1) is divisible
by 17. Further, the number 20* — 1 is divisible by 20 — 1 =19 for
all n and the number 167 —3"=16% —32¢ {s divisible by
162 — 32 = (16 — 3) (16 4+ 3) == 19-13, that is it is also divisible
by 19; therefore the number N = (20" —1) + (16— 3*) is di-
visible by 19. Thus, the number N is divisible by 323 for all even
values of n. If the number n is odd, that is n = 2& - 1, then the
difference 20" — 3" is again divisible by 17. Since 16%* — 1 is di-
visible by 17, the division of 16% by 17 leaves a remainder equal
to 1, and consequently the division of the number 1624+ =
= 16%¢-.16 by 17 leaves a remainder equal to 1-16 = 16. There-
fore the number 16" — 1 = 162*+' — 1 is not divisible by 17 (its
division by 17 results in the remainder equal to 15). Hence, for
any odd value of n the number N is not divisible by 17 and there-
fore it cannot be divisible by 323.
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Thus, the number N is divisible by 323 if and only if n is even.

50. If the last digit of the number nis 0, 1, 2, 3, 4, 5, 6, 7, 8 or
9 then the last digit of n? is 0, 1, 4,9, 6,5, 6, 9, 4 or 1 respecti-
vely, and consequently the number n? + n ends with 0, 2, 6, 2, 0, 0,
2, 6, 2 or 0 respectively and the number n% + n -+ 1 ends with the
digit 1, 3, 7, 3, 1, 1, 3, 7, 3 or 1 respectively. Thus, the number
n?2 -+ n -+ 1 cannot have 0 or 5 as its last digit, that is it cannot
be divisible by 5 (and consequently it cannot be divisible by
1955 either).

51. Any whole number is either divisible by 5 or can be written
in one of the following four forms: 5k 41, 5% 4+ 2, 5k — 2 and
5k — 1. If a number is divisible by 5 then its hundredth power is
obviously divisible by 5% = 125. Further, by Newton’s binomial
formula, we obtain

(Bk == 1) = (5k)® & ... 4 102

(5k)2 == 100 - 5& + 1

where all the terms marked by the dots contain the factor 5% to
the power not less than 3, and consequently they are all divisible
by 125. Analogously,

(5= 90 = (BRY® % .., 4122

(5R) + 2% £ 100 - 5k + 2% -} 2100

The numbers — o2 (5k)’= 1259904 and 100.5k = 1254k

are divisible by 125 As to the number 219, it can be represented
in the form

(B —1)P0=50— . . |

B . 5—-50-5+1
whence we readily see that the division of this number by 125
leaves a remainder equal to 1.

Thus, the hundredth power of a number divisible by 5 must be
divisible by 125, and the division by 125 of the hundredth power
of a number not divisible by 5 leaves a remainder 1.

52. We have to prove that if N is relatively prime to 10 then
Nl — N = N(N'® — 1) is divisible by 1000, that is we must
prove that N0 —1 is divisible by 1000. First of all, it 1s quite
clear that if N is an odd number then N!0 — 1—(N5° 1y X
X (N?® 4 1) (N¥® — 1) is divisible by 8. Further, from the result
of the foregoing problem it follows that if N is not divisible by
5 then N9 — 1 is divisible by 125. Thus, we see that N —1 is
divisible by 8-125 = 1000 for N relatively prime to 10.

53. Let N be the sought-for number; then N2— N has three
noughts at the end, that is this difference is divisible by 16000.
Since N2— N = N(N — 1) and since N and N — | are relatively
prime numbers, this can only be possible when one of these num-
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bers is divisible by 8 while the other is divisible by 125 (neither
of these numbers itself is divisible by 1000 because N is a three-
digit number).

If N is a three-digit number divisible by 125 then N — 1 can be
divisible by 8 only when N = 625 (in that case N — 1 = 624),
which can easily be verified. It can also be easily shown that it
N — 1 is a three-digit number divisible by 125 then N is divisible
by 8 only when N — 1 = 375, that is in this case N = 376.

Now we note that since N#1 — 1 is exactly divisible by N — 1
for any integral k2= 2, the number N* — N = N(N#* 1 —1) is
divisible by N(N — 1)= N2 — N for any integral k. Therefore
if the last three digits of N2 — N are noughts then N* — N also
has three noughts at the end for any integral £ = 2, that is N*®
ends with the same three digits as N. It follows that the numbers
625 and 376 (and only these numbers) satisfy the conditions of
the problem.

54. Let us find the last two digits of the number N2, The num-
‘ber N0 is divisible by 4 because N is even. Further, the number N
is not divisible by 5 (if it were divisible by 5 then it would also
be divisible by 10), and consequently N can be represented in the
form 5k 41 or 52 &= 2 (cf. the solution of Problem 51). The di-
vision of the number
(5k = 170 = (5k® 4= 20 (5R)S + ... + 22

o (5R)° £ 20 - 5k + |

by 25 leaves a remainder of 1 while the division of the number

5k £ 2= (54)® £ 20 (5K)°- 24 ...
.+ 5 (B 218 20 5k - 210 - 90

by 25 leaves the same remainder as the division of the number
220 = (219)2 =(1024)2 = (1025 — 1)2, that is 1. The fact that the
remainder resulting from the division of the number N2 by 25 is
equal to 1 implies that the last two digits of this number can only
be 01; 26; 51 or 76. Besides, taking into account that N?° must be
divisible by 4, we conclude that the last two digits of this number
can only be 76. Thus the digit in the tens place of the number N2
is 7.

Now let us determine the last three digits of the number N2,
‘The number N2% is divisible by 8. Further, since N is relatively
prime to 5, the division of N'% by 125 leaves a remainder equal
to 1 (see the solution of Problem 51): N'® = 125k -} 1. Therefore
the division of the number N290= (125k 4~ 1)2=1252k2 4~ 250k -+ 1
by 125 also leaves a remainder 1. Consequently, the last three
digits of N20° can be 126; 251; 376; 501; 626; 751 or 876. However,
the number N2% is divisible by 8 and therefore it must end with
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the digits 376. Thus, the digit in the hundreds place of the num-
ber N2 is equal to 3.

Remark. It can easily be seen that not only N2 but also the number N9
must necessarily have the digits 376 at the end.

55. The sum 1 +2+3+ ... + n is equal to n(n41)/2; con-
sequently, we have to prove that if £ is odd then S, = 1% 4 2% |
+ 3% 4 ... 4 nk is divisible by n(n 4+ 1) /2.

First of all we should take into account that a* 4+ b* is divisible
by a + b for any odd k. Let us consider separately the following
two cases:

A. The number n is even. Then the sum S is divisible by n 41
because each of the sums

P E ok E ok k n\* n k
4t 24 (-1 3 +0—2% ..., (5) +(5+1)
is divisible by
14+n=2+ N=34+(n—2=...=24(2+1
The sum S, is also divisible by n/2 because the expressions
P 1 24 m—2f, F+e=3k... (5-1)+
n k n\N* g . e
+ (5—{— 1) , (7) , n° are all divisible by n/2.
~ B. The number n is odd. In this case the sum S, is divisible
by (n4-1)/2 because the expressions 1%4-nf 2°84-(n—1)%,
—1\* 3\ % k
F+n—2% ..., (A5) +(2F2) and (”‘2“) are all
divisible by (n+41)/2. The sum S, is also divisible by n
since the numbers 1% 4 (n — 1)%, 2 + (n — 2)%, 3* 4~ (n — 3)%, ...,
1\ k
(n 1) +(n+l) and n* are all divisible by a.

2 2
56. Let

N=ga, 10"+ a,- - 10" +a,5- 10"+ ... +a,- 1044

be the given number where an, @n_1, an-g, ..., a1, ao are its digits
which can assume the values 0, 1,2, ..., 9
Let us subtract from N the number
M=agy—a,+a—as+ ... +a,

equal to the algebraic sum of the digits of the number N taken
with the alternating signs “+” and “—". On grouping the terms
in the appropriate manner we obtain the expression

N—M=a,(10+1)+a(10° — 1) +a, (10°+ 1) +
+a (10— 1)+ ... +4a,(10" £ 1)
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which is exactly divisible by 11 since each of its addends is di-
visible by 11 (because from the well-known f{fact that to the
multiplication of numbers there corresponds the multiplication of
the remainders obtained when these numbers are divided by a
given number it readily follows that when

10% = (11 — 1)*

is divided by 11 the remainder is equal to —1 for odd % and to
41 for even k). Thus, the difference N — M is divisible by 11,
that is the numbers N and M are simultaneously divisible or not
divisible by 11;

57. The division of the number 15 by 7 leaves a remainder 1.
It follows that

152 =(7-24 1)(7-24+1)=7n,+ 1

and therefore the division of 152 by 7 also leaves a remainder
equal to 1. Similarly,

152=15%-156=(Tn;+ 1) 724+ 1)=Tny+ 1

whence it follows that the division of 15 by 7 also leaves 1 and
so on, that is, generally, the division of any power of the number
15 by 7 leaves a remainder equal to 1. Now, on subtracing the
sum1+2+4+3+44+4...+4 14 =105 from the given number and
grouping the terms in the appropriate manner we obtain the num-
ber

13(15— 1)+ 12(182— 1)+ 11 (188 — 1)+ ...

cee F2(152—=1) 4 1 (158 —1)
which is exactly divisible by 7. Since the difference between the
given number and the number 105 == 7-15 is divisible by 7, it
follows that the original number is also divisible by 7.

58. Let K be an r-digit number. Among the (n -4 2)-digit num-
bers whose first two digits are 1 and 0 (that is among the

numbers of the form 10a;az...a, (where 1, 0, @y, ..., a, are the
digits of the number and the bar designates the member itself)
there always exists at least one number divisible by K. Let
1061 ... b, be such a number. Then, by the condition of the pro-
blem, both numbers b1by... 5,10 and bibs... 5,01 are divisible
by K. Their difference is equal to 9 and it is also divisible by K.
The only divisors of 9 are the numbers 1, 3 and 9, whence follows
the assertion of the problem.

59. It is clear that d=333...33=3.111... 11=23n;

100 threes 100 ones
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therefore the sought-for number N =1111 .., 111 must be exactly

Rk ones
divisible by the numbers n and 3 (n is not divisible by 3 because
the sum of the digits of the number n is equal to 100 and
is not divisible by 3). If 2 is a number of the form k=
= 100g 4+ r where r<C100 (but r=0) then, obviously,
N=11...1100...00+4 11 ... 11=M+4 R where R=11... 11
N e’ N ——rt

100g ones r noughts r ones r ones

and M=11 ... 1100 ... 00 the number M being divisible by n

190g ones r noughts
(the d1v1sxb111ty of M by n becomes quite obvious if we consider

the process of long division of M by n). Thus, N is divisible by
n if and only if R = 0, that is if and only if r = 0 and, conse-
quently, if and only if £ is divisible by 100.

Now, if & = 100g then the sum of the digits of the number N
is equal to 100g; this sum is divisible by 3 (and, consequently, the
number N is also divisible by 3) if and only if g is divisible by 3.
Therefore the smallest number N ==111 ... t1 divisible by d con-

k ones
sists of 300 ones.

60. Since a is obviously an even number, it only remains to
prove that the product aA is divisible by 3. The last digits of the
numbers 2#+! = 2N and 2a (where a is the last digit of N)
coincide. Therefore, on multiplying consecutively the powers of 2
again by 2 (that is on increasing consecutively the exponents of
the powers of 2) we find that the last digits of the numbers 21=2;
22 = 4; 23 = 8; 2* = 16; 2% = 32; ... form the following sequence
of periodically alternating digits:

2; 4; 8, 6; 2;4; 8;,6; 2;4; 8; 6;
On the other hand if the division of 2* = N by 3 leaves a re-
mainder equal to 1 then the division of the number 2%+ = 2N
by 3 leaves a remainder of 2, and if N = 3/ 4 2 then the number
24+1=2N has the form 3-(2/)44==3- (2{41)+1 and therefore its
division by 3 leaves a remainder 1. Consequently, when the num-
bers belonging to the same sequence of the powers of two are di-
vided by 3 we obtain the following sequence of periodically al-
ternating remainders:

2:1;2;1;, 2,1;2,1;, 2;1;2;,1;

Thus, if the last digit of the number N is equal to 2 or 8 (that
is if @a = 2 or a = 8} then the division of N by 3 leaves a rema-
inder of 2, and if a = 4 then the remainder resulting from the
division of N by 3 is equal to 1. (The case when a = 6 is of no
interest because for a. = 6 the product a4 = 64 must necessarily
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be divisible by 6.) It follows that in all these three cases the num-
ber N — a = 104 is divisible by 3, and consequently the number A
is also divisible by 3. Hence, the product aA is divisible by 6 for
all k=1, for & equal to 1, 2 or 3 this conclusion is quite trivial
because in these cases A = 0 and the number aA = 0 is divisible
by any number.

61. We have to show that the number

N =27195% — 108878 + 10 1528

is exactly divisible by 26 460 == 22.33.5.72 The proof consists of
the following two stages.

1°. We have N == 271958 — (108878 — 10152%). The number
27 195 is equal to the product 3-5.72.37, and consequently the
number 27 195 is divisible by 5-72 On the other hand, the differ-
ence in the parentheses is divisible by

10887 — 10152=735=3.5.72

(because the difference of the 8th powers of two numbers is di-
visible by the difference of the bases of the powers). It follows
that N is divisible by 5-72.

2°. We have N = (271958 — 10887%)- 101528, The number
10 152 =28-33-47 is divisible by 23.3% and, on the other hand,
the difference in the parentheses is divisible by

27195 — 10887 =16 308 =22+ 33. 151

Hence, N is divisible by 22.33,

Since N is divisible both by 5-7% and by 22-33, we conclude that
N is divisible by the product of these numbers which is equal to
26 460.

62. It can easily be checked that

110 — 110 —
=1 —=DAP 4+ 18417+ 18 15 1 1834 1124 11+ 1

The second factor on the right-hand side is obviously divisible by
10 because it is equal fo a sum of 10 terms each of which ends
with 1.

Thus, 11'9—1 is equal to the product of 10 by a number di-
visible by 10, and consequently the difference 1119 — 1 is divisible
by 100.

63. We have 2222%% |- 55552222 — (22225555 | 45555) .} (5555%2%2 —
__42222) — (45555 —_ 42222)

The number 22225%5 - 4555 {5 divisible by 2222 4 4 = 2226 =
= 7-318 (because a sum of two odd powers is always divisible
by the difference of the bases of the powers), and consequently
this number is divisible by 7. The difference 5555%222 — 42222 ig
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also divisible by 7 since it is divisible by 5555 — 4 = 5551 =
= 7-793 (because the difference of any integral powers with
equal exponents is divisible by the difference of the bases). As
to the difference 4%5% — 42222 it can be rewritten as

42222 (4333! _ )= 42222 (64111] — )

whence it can readily be seen that this expression is divisible by
the difference 64 — 1 = 63 (because the difference of two integral
powers with equal exponents is divisible by the difference of the
bases of the powers). Consequently, 455 — 42222 is djvisible by 7.

64. We shall make use of the method of mathematical induction.

A number aaa formed of three identical digits a (the bar above
this expression is written in order to avoid the confusion with the
product a-a-a) is divisible by 3 (because the sum of the digits
of this number is equal to 3a and is therefore divisible by 3).
Further, let us suppose that the assertion of the problem has al-
ready been proved for every number whose decimal representa-
tion consists of 37 identical digits. We must prove that then this
assertion is true for any number consisting of 3#+! identical digits.
Such a number can be written in the form

a ...aaa...q a2 ...a=aqa. «+100...0100...01
;_ﬁ,__/ ;—V—a \—\,——J \_.,,__/ \-—v—’ \—v——/
3" times 3™ times 3" times 3" times 3" digits 3" digits

In accordance with the induction hypothesis, the first factor on
the right-hand side is divisible by 37; the second factor is also di-
visible by 3 (because the sum of the digits of this factor is equal
to 3). Hence, the whole product is divisible by 37+,

65. First of all we note that the number 10®— 1 = 999 999 is
divisihle by 7 (because 999 999 = 7.142 857). It readily follows
that the division of 10¥ by 7 (where N is an arbitrary whole num-
ber) leaves the same remainder as the division by 7 of the number
10" where r is the remainder resulting from the divisien of ¥ by 6.
Indeed, if N = 6k + r then the number

107 — 10" = 10%*" — 10" = 10" (10%* — 1) ==
=107+ (10° — 1) (10%* - 10%7 2 4 ... +10°+ 1)

is divisible by 7.

Further, the division of any integral power of 10 by 6 leaves
a remainder equal to 4; indeed, according to the tests for divisi-
bility by 2 and by 3, the difference 10" —4=999 ... 96 is always

(n—1) times
divisible by 2-3 = 6. Thus, the remainders resulting from the di-
vision by 6 of all the exponents of the powers in the addends of

5—60
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the above sum are equal to 4. Consequently, when each of these
10 addends is divided by 7 we obtain the same remainder as in
the case when 10* is divided by 7, and the division of the whole
sumbby 7 leaves the same remainder as the division by 7 of the
number

10* + 10* 4- 10* 4 10+ 10* 4 10* 4 10* + 10* + 10* + 10* =
=10°=100000==7 - 14285 4 5

Thus, the sought-for remainder is equal to 5.
66. (a) Every even power of 9 can be represented in the form

9 =8|"=281-.81...81

et et e et et

n times

and, consequently, its last digit is 1. Every odd power of 9 can
be written in the form 92#+! = 9.81% and therefore its last digit
is 9 (because such a power is a product of a number whose last

digit is 1 by the number 9). In particular, 9% is an odd power

of 9, and consequently the last digit of 9¢% is equal to 9.

Now we note that any integral power of 6 ends with the digit
6; indeed, we have 6! = 6, and if 6" ends with 6 then the last
digit of 6#+! = 6"-6 is also equal to 6. Further, the last digits of
16" and 67 coincide, and consequently any integral power of 16
has 6 as its last digit. Therefore any integral power of 2 with an
exponent muitiple of 4 ends with 6 (because 2% = 16"). But
3*—1 is divisible by 34 1 = 4, and consequently 23'-1 ends
with the digit 6 while the last digit of 2" =2.20*-1 is 2 (Dbe-
cause this expression is the product of a number whose last digit
is 6 by 2).

(b) It is required to find the remainder resulting from the di-
vision of 299 by 100 (it is clear that this remainder is formed of
the last two digits of the number 299), First of all, let us show
that the division of the number 2190 by 25 leaves a remainder 1.
Indeed, 21°+ 1 ==1024 + 1=1025 is divisible by 25, and con-
sequently 20 —1=(2"941)(2"—1) is divisible by 25 while
QU000 1 = (229)50 — 1 is divisible by 220 — 1. It follows that the
last two digits of the number 2190 can be 01 or 01 - 25 = 26 or
01 4 50 = 51 or 01 4 75 = 76. Since 2190 is obviously divisible
by 4, we see that these two digits can only be 76. Thus, 29 is
equal to the quotient resulting from the division by 2 of a number
whose last two digits are 76, that is 2%° can only have the digits
38 or 88 at the end (because 76/2 = 38 and 176/2 = 88). Hence,
since the number 2%° is divisible by 4 its last two digits must
be 88.



Now let us find the remainder resulting from the division of
the number 3% by 100. We remind the reader that the last digit
of every even power of 9 is 1 and that the last digit of every odd
power of 9 is 9 (see the solution of Problem 65 (a)). Using these
facts we can readily find the remainder resulting from the division
of the number 95 4 1 by 100. We have

P 1= 1) (¥—P+P2—9+1)=10-(9*—9P+92—9--1)

Each of the three positive summands in the algebraic sum in the
parentheses ends with 1 and each of the two negative summands
ends with 9. Hence, the number 94 + 92 4+ 1 ends with 3 and the
number 9%+ 9 ends with 8, and consequently the whole expres-
sion in the parentheses ends with 5. Thus, the remainder result-
ing from the division of the number 95+ 1 by 100 is equal to
10-5 = 50. It follows that the number 9 — 1 = (954-1) - (95—1)
is divisible by 100 and, since 31990 — 1 = 9500 _ | = (910)%0 | js
divisible by 9' — 1 (because a difference of two integral powers
is divisible by the difference of the bases of the powers), the num-
ber 319%° 1 is also divisible by 100. Therefore the number 3!9%
ends with the digits 01. Further, 3'% is divisible by 3, and conse-
quently if the integral number of hundreds' contained in 319 is
divided by 3 we must obtain 2 in the remainder (if the division
of this number of hundreds by 3 gave 1 or 0 in the remainder then
the number of hundreds plus 01 could not be divisible by 3). We
see that the last two digits of the number 3%% = 3100 3 must be
the same as those of the number 201/3 = 67.

(c) We have to find the remainder obtained when the number

1404 — (7 . 94" s divided by 100 because this remainder con-
sists of the last two digits of the number 144" Tqg this end we

shall separately determine the remainders resulting from the di-

vision of the numbers 704" and 204") by 100.

The number 7¢ — 1 = 2401 — 1 = 2400 is divisible by 100. It
follows that if n==4%& (i.e. if n is divisible by 4) then 77 —1 is
divisible by 100 (because 7% — 1 = (7%)* — (1)* is divisible by
7* — 1). Further, 144 = 2!4.714 js divisible by 4, and consequently
708") 1 is divisible by 100, whence it follows that the last

two digits of the number 7(4) are 01.

As was shown in the solution of Problem 65 (b), 220—1 is
divisible by 25; consequently, if n = 20k (i.e. if n is divisible by
20) then 27 — 1 is divisible by 25. Now let us find the remainder
resulting from the division of the number 14!* by 20. We ob-
viously have 14! = 214.714 Further, we have 2!* = 4-212, and
since 212 —1 =(2%°%—1 is divisible by 2*—1 =16 —1 = 15,
we see that 4(2!2—1) is divisible by 20; consequently when
214 —= 4.212 {5 divided by 20 we obtain 4 in the remainder. Besides,

5*
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we have 7" = 49-7'2, and since the division of 7'2 by 20 leaveas
a remainder of 1 (because 12 is divisible by 4 and therefore
712 — 1 is divisible by 100), we see that the remainders resulting
from the division of 49-7'2 by 20 and from the division of 49 by
20 coincide and are equal to 9. Thus, the division of 1414=21¢.714
by 20 leaves the same remainder as the division of the product
4.9 = 36 by 20, that is this remainder is equal to 16 because
1414 = 20K + 16. Now it readily follows that the division by 25
of the numbers 2(14"*) —216. 920k and 216 — 65536 leaves the same
remainders, which means that the last two digits of the number
2(4") can only be 11; 36; 61 or 86. Since the number 2(14%) is di-
visible by 4 we conclude that this number has the digits 36 at the
end.

Thus the last two digits of the number 7(4") are 01 and those
of the number 2(14!%) are 36. Consequently, their product

704 9(141) — 1404") ends with the digits 36.

67. (a) It is clear that both numbers 9% and 9 end with 9
(cf. the solution of Problem 66 (a)), that is their last digits coin-
cide. Further, by Newton’s binomial formula, we have

A=9"=(10—1 =
=10"—C(a, 1)+ 10°'+C(a,2) - 10° 2 — ... +C(a, 1) 10—1
and

_ 990.__ 99 __
B=9¥ =(10—1)¥ =
=10 —C(b, 1) 10°-14+C(h,2)- 10°~2— ... 4-C(b,1)-10—1

where a=9% and 5=9%. Thus, the last two digits of the num-
bers under consideration coincide with the last two digits of the
numbers

C(a 1)+»10—1=10a—1 and C(,1):10—1=106—1

respectively. Further, both numbers a=9% and b=9% end with
the digit 9 (see again the solution of Problem 66 (a)). Therefore
the last two digits of the numbers 10a and 106 are 90 and those
of the numbers A and B are 89.

(b) By analogy with the solution of Problem 67 (a), we can
find the last six digits of the two numbers in question (the solu-
tion of Problem 67 (a) is based on the equality 9 = 10— 1; in
the present problem the role of this equality is played by the re-
lation 72 == 50 — 1). It turns out that these digits coincide. How-
ever, this method of the solution leads to rather lengthy calcula-
tions (because here, instead of two last digits, we deal with six
last digits) and therefore it is preferable to use another method.
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We must show that the last six digits of the numbers A =7%

7
and B=7° coincide where a=7"" and b=77" Hence, we must
prove the difference

A—B=7"—7"=7"(7"""=1)

is divisible by 1000 000 = 26.5% (this means that we must prove
that the number
D=74—1

where d = a — b is divisible by 1 000 000 = 28-5%). Thus, the pro-
blem reduces to the defermination of the exponents of the power
of two and of the power of five by which the number D =74 — 1
is divisible where d is a natural number. We shall investigate se-
parately the divisibility of the number D by 2% (in this case we
have to prove that o = 6) and the divisibility of D by 58.

1°. Let € = 7¢— 1 where ¢ = 2°q (here g is odd). We shall
prove that in this case we have C =2%P where P is an odd num-
ber and the exponent a, (which is dependent on p solely and does
not depend on g) satisfies the recurrence relation

Qp=0p_ +1 (*)
forp > 1.

Since the number 7@ — 1 =72 —1=48 is divisible by 2* =
= 16 and is not divisible by 25 we see that «; = 4, and therefore
(*) obviously implies that

a,=p-+3 forall p=>1

Hence, if the greatest exponent of the power of two by which the
number ¢ is divisible is equal to p = 1 then the greatest expo-
nent ap, of the power of fwo by which the number C =7°—1 is
divisible is equal to p+ 3 (for p = 0 we have gy = 1 because
the number 7 —1=7 — 1 =26 is divisible by 2 and is not di-
visible by any higher power of 2).

We shall first prove that the number «, is independent of g.
This follows from the formula

70°) 1 =(7%)" —19=
=[77 — {7 T 4 [T 1T L 1)

where the sum in the curly brackets consisting of the odd num-
ber ¢ of odd summands is obviously odd. This implies that the

highest powers of 2 by which the numbers 7%9—1 and 7% —1
are divisible coincide. Therefore in the further argument we can

put g=1, that is we can replace the number C=7%7 —1 by the
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number C,=7% — 1.

Now it only remains to make use of the formula
C=17" 1=V —2=[?"—1][7"" +1]=C,-, - C’
The division of 7 by 4 leaves a remainder equal to —1, and there-
fore when 77 is divided by 4 we obtain —1 in the remainder jor
odd m and +41 for even m. Consequently, the division of 72"+ 1
(and even of 7"+ 1) by 4 leaves a remainder equal to 2 for any
(natural) n. This means that 72° — 1 and 7*" — 1 are divisible by
2 but are not divisible by 22. Hence, the left-hand member C, of
the equality C, = Cp—,-C’ is divisible by the number 2%, C,_; is
divisible by 2%-1 and C’ is divisible by 2 and not divisible by
a higher power of 2, which implies formula (*). (It-is clear that
for p =1 we have a special case because C' =7+ 1=7+
+ 1 = 8 is divisible not only by 2! but also by 23; the distinction
appears because this is the only case when the exponent 2° of the
power of 7 in the expression of C’ is an odd number.)

Thus, in order {o determine the exponent o in the formula
D=7"—1=2".Q (where Q is odd) we should only find by
what power of the number d=a—bp=7* —7"=7" (7% —1)
is divisible (that is by what power of two the number 7% —1
is divisible) where a1=7777, by=7" and ad,=a, —b,. As we
know, to this end it is necessary and suificient to determine the
power of two by which the exponent d,=a, — b =7%— 7%=
=7%(7% —1) is divisible where ay=7", by=7 and dy=a, —
— Dy =T7%—Th=T7%(7% — 1) (here by=1, a;=7" and d;=a, —
— by =77 —1). Since 7 is an odd number, the number d; =77 — 1
is divisible only by 2%==2'=2. It follows that the number
7% —1 is divisible by 2% = 2% thus, the number d, =7" (7% — 1),
is divisible by 2* and, consequently, the number 7% —1 is divi-
sible by 2*=2". Now, since d=7"(7"—1) is divisible by 2/,
the number 7% — 1 is divisible by 2%=2', and therefore we
conclude that d==7% (79— 1) is also divisible by 2, Hence,
D=2%—1 is divisible by 2* =2%.

2°, The divisibility of the number C = 7¢ — 1 (where it is ad-
visable to put ¢ = 5’s) by the powers of five can be investigated
in a completely analogous manner. In this case we should how-
ever stipulate that the number s (which is not divisible by 5) is
divisible by 22 (or by a higher power of 2) because if s is odd or
is divisible by 2 but not divisible by 4 we arrive at some other
conclusions. For s=4s;, that is for ¢=5"-4s, where s, is an in-
tegral number, the greatest exponent §, of the power of five by
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which the number C is divisible is dependent solely on the ex-
ponent r in the formula for ¢, that is the number B, is independent
©of s;; as before, there holds the recurrernce relation

B, =B -1+ 1 (**)

which is analogous to (*). Since the number 74 — 1 = (72)2— 1 =
= (724 1) (72 — 1) = 50-48 is divisible by 52 == 25, that is po = 2,
relation (**) implies that for all r == 0 we have

B=r+2

Hence, if the exponent ¢ in the expression C = 7¢ — 1 is divisible
by 4, and if the greatest exponent of the power of five by which ¢
is divisible is equal to r then the greatest exponent B, of the
power of five by which C is divisible is equal to r -4 2.

To prove the independence of B, of s; it suffices to make use of
the formula

,‘C =7c — 1= 757.43x _ 1 — (757"4)31 . 151 —
= [75f-4 —1] {[7(5r.4)]s1—1 + [7(57.4)]31—2 + o+ 7(57-4) + 1}

Since the division of 7¢ = (7?)? = (50 — 1)2 = 502 — 2.50 4~ 1 by
5 leaves a remainder equal to 1, the division of the number (74"
by 5 also leaves a remainder 1 for any n. Therefore the expression
in the curly brackets on the right-hand side of the last formula is
a sum of s, numbers the division of each of which by b leaves a
remainder equal to 1, whence it follows that this sum is not di-
visible by 5 because s; is not divisible by 5. Therefore the number

C="75"4 —1 is divisible by the same power of five by which the

number E, = 754 — 1 is divisible. This allows us to put s; = 1
in the further course of the argument, that is we can replace the
number C by the number E,.

Further, we have

E,=T7"4—1=(7"""4) — 5=
— () (o
+ (751'—1.4)2 + 75}‘—1.4 + 1} =Er-_1 . E’

First of all, this implies that E, is divisible by E._;, that is the
exponent of the power of five by which E, is divisible is not less
than the exponent of the power of five by which E,_; is divisible.
In other words, we have B, = Br—; since Bo = 2, it follows that
there hold the inequalities

2=ﬁo<ﬁl<l32< vee
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Thus, the number E,_;=7%""4—1 is divisible by 25 for all
r = 1, and consequently the remainder resulting from the division
of the number e,_;—e=7%""4 by 25 is equal to 1, and the di-
vision of any power e* of the number e by 25 also leaves a re-
mainder equal to 1. Since the expression E’ in the curly brackets
on the right-hand side of the formula for E, is equal to the sum
et + e 4 e? 4 e + 1, the division of E” by 25 leaves a remainder
equal to 5, that is E’ is divisible by 5! and is not divisible by 5%
What has been established and the formula E, = E,_;-E’ imply
relation (**).

Let us come back to the number A — B =7%D where D=
= 74— 1, As has been shown, the number d is divisible by 4 (it
is even divisible by 219 = 1024), and therefore it only remains to
determine the power of 5 by which the number d=7% —7" =
7% (7% — 1) is divisible where d; = a; — b, (see the end of Sec-
tion 1° of the solution of the present problem). Further, since d;
is also divisible by 4 (this number is even divisible by 27), the
problem reduces to the determination of the exponent of the power
of five by which the number d,=7%—7"=7"(7%—1) is di-
visible where the number dy=a, — by=7% — 7" =7 (7% —1) is
divisible by 4 (it is even divisible by 2%) and d3 = 7" — 1. As we
know, the number d; is divisible by 2 and is not divisible by 4,
that is dy = 2f where f is odd; therefore the number 7% — 1=
=49'—1=(50—1)—1is not divisible by 5 (its division by 5 leaves
a remainder of —2 or, which is the same, a remainder equal to 3).
On the other hand, the number 7% —1 and also the number
dy,=T7% (7% — 1) are divisible by 4, whence it follows that the
number 79 — 1 is divisible by 58 = 52 and is not divisible by any
higher power of five; therefore d; =7% (7% — 1) is divisible by 5%
and d=7% (79— 1) is divisible by 5f:=>5* while the expres-
sion D=7¢—1 and the number A — B=7%-D we are interested
in are divisible by 58«= 58,

This argument concludes the solution of the problem.

Remark. 1t is clear that, by a complete analogy with the solution of this prob-
lem, it can be shown that the numbers Api, and A, composed of n-+2 and n
digits 7 respectively (An+s and A, are similar to the numbers B and A consid-
ered in the present problem) have 2n — 2 identical digits at the end of their
decimal representations. We recommend the reader to try to estimate the num-
ber of identical digits at the end of the numbers A, and A, composed of n and
of m digits 7 respectively (here it is natural to begin with the case when the
difference n — m is not very large).

68. (a) When two numbers one of which ends with a digit a
while the other ends with a digit b are multiplied by each other the
last digit of their product coincides with that of the product ab
This proposition allows us to solve the given problem rather
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simply. Let us perform consecutively the raisings to the power
and consider only the last digits of the resulting numbers: the last
digit of 72 is 9, the last digit of 78 = 72-7 is 3, the last digit ot
7% = 7%.7 is | and the last digit of 77 = 7*-73 is 3.

Further, in just the same way we find that the last digit of (777
is again equal to 7 (indeed, (77)2 ends with the digit 9, (77)° ends
with the digit 7, (77)* ends with the digit | and (77)” ends with the
digit 7). It follows that the number ((77)")” has the same last digit
as the number 77, that is this last digit is equal to 3, and the last
digit of the number (((77)")’)" is again equal to 7 etc. Continuing
the argument in the same manner we conclude that after an odd
number of raisings to the 7th power we every time obtain a num-
ber with the last digit 3 and after an even number of raisings to
the 7th power we obtain a number with the last digit 7. Since the
number 1000 is even, the number we are interested in ends with
the digit 7.

Now let us consider two numbers whose last two digits form
two 2-digit numbers A and B respectively. It is evident that the
product of the given numbers has the same last fwo digits as the
product A-B. This allows us to determine the last two digits of
the number we are interested in. As before, we check that the last
two digits of 77 are 43 and that the last two digits of (77)" coin-
cide with those of 437, namely (77)" ends with 07. It follows that
if we consecutively raise the numbers 7, 77, (7°)7, ... to the 7th
power then after an odd number of these operations we every time
arrive at a number whose last two digits are 43 and after an
even number of the operations we arrive at a number ending with
the digits 07. Consequently, the last two digits of the sought-for
number are 07.

(b) As was shown in the solution of Problem 68 (a), the num-
ber 7* ends with the digit 1. It follows that the last digit of
7% = (7%*% is also equal to 1 and that 7%+ where { is one of the
numbers 0, 1, 2 or 3 has the same last digit as 7 (74+ = 74.7%),
Hence, the problem reduces to the determination of the remainder
resulting from the division by 4 of the exponent of the power to
which 7 should be raised in order to get the number mentioned in
the condition of the problem.

The exponent of the power to which the number 7 is raised in
this problem is itself a power of 7 with a very large exponent. We
have to determine the remainder which is obtained when the latter
power of seven is divided by 4. Since 7 =8 — 1, it follows that
the remainder resulting from the division of 72 =(8 — 1) - (8— 1)
by 4 is equal to 1, the division of 73 = 72- (8 — 1) by 4 leaves a
remainder equal to —1 or, which is the same, equal to 3, and,
generally, the division of any even power of 7 by 4 leaves a
remainder of 1 and the division of any odd power of 7 by 4 leaves
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a remainder equal to —1 or, which is the same, equal to -3.
Further, the exponent of the power of 7 we consider in this pro-
blem is an odd number because it is itseli a power of 7. Conse-
quently, the number mentioned in the condition of the problem is
of the form 7#*+3 and hence its last digit coincides with that of 73,
that is this digit is equal to 3.

Since 7% ends with the digits 01 we conclude that the last two
digits of 74+ coincide with those of 7‘. Consequently, the number
in question ends with the same two digits as the number 73, that
is these digits are 43.

69. Let us consider, in succession, the following numbers:

10. Z1=9

20, Z, =94 = (10 — 1)2 = 105 — C(Z, 1)« 10%7 4 | .,

4 CZ, 1) 10—1
where the terms designated by the dots are all divisible by 100.
Since C(Z,, 1)=9, the last two digits of the number Z; coincide
with those of the number 9-10 — 1 = §9.

3% Z3=9%=(10 — 1)2:=10% — C (Zy, 1)+ 10%7 1 4 |

. —C(Z2y 2)-1024+C(Zy, 1) 10—1
The number Z; has 89 at the end; consequently, the last two
digits of C(Z,, 1)= Zy are 89 and the last digit of C(Z,, 2)=

— 2 (Zi_ D _ 8? 5 . 88 (where the dots designate the un-
known dlglts) is 6. Consequently, the last three digits of the num-
ber Zs coincide with the last three digits of the number —600 4-

-+ 890 — 1 = 289.
. Z2,=9%=(10—1)2=105—C(Z;, 1)- 10514 ..,
.+ C(Z5 3)- 100 —C(Z3, 2) - 10?4+ C(Zs, 1) 10— 1

Since Z; ends with 289, the last three digits of C(Z;, 1) = Z; are
289. The number

Z3(Zy—1 ...289. .., 288
C(Zy, 2) = 3(13-2 - 1.2
ends with 16. The last digit of the number
Za(Zy—1)(Z3—2 ...289. ...288. ., 287
C(Zg, 3)= 3( 31.2).(33 ) — R

is equal to 4. Consequently, the last four digits of the number Z4
coincide with those of the number 4000 — 1600 4 2890 — 1 ==
= 5289.
5°% Zy=9%2=(10— 1) =104 —C(Z,, 1) - 10%-t + .,
—C(Z4,4)- 1004+ C(Z2,,3)- 10°—C(Z,,2)- 10°+4+C(Z,, 1) 10—F
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Since Z, ends with 5289, the last four digits of C(Z,, 1)= Z, are
5289. The number
C(Zy 2)= Zy(Zy—1)  ...5289. ... 5288

1.2 - 1.2

ends with 116.
The number
Zi(Ze—1)(Z4—2) _ ...5289. .., 5288- ... 5287

C(Z,y 3= 1-2.3 = 1.2.3

ends with 64, and, finally, the last digit of the number

Zi(Zy = 1) (Ze—=2) (Zs —3) __

Czyp 4= 1.2-3-4

...5289. .., 5288. ... 5287. ,.. 5286
1-2:3-4

is equal to 6. Hence, the last five digits of Zs coincide with the
five digits of the number

— 60000 - 64 000 — 11 600 4- 52890 — 1 =45 289

Further, the coincidence of the last four digits of the number Zs
-with the last four digits of the number Z, implies that the last five
digits of the number Zg=9%=(10 — 1)% coincide with the last
five digits of the number Z;=9%. In the same way we can show
that all the numbers belonging to the sequence

Z5, ZG = 925, Z7 = 925, [P Z1000 = gz\m’ 21001 == 9Zun

end with the same five digits, namely with 45289, The number
Zy001 is nothing other than the number N mentioned in the condi-
tion of the problem.

70. First of all let us find the remainders resulting from the
division of the numbers 5% and n% by 13 for several consecutive
values n=20, 1, 2, ... . It is more convenient to begin with the
numbers 5% we can write the following table of the remainders:

n 0 1 2 3 4
The number 5% 1 5 25 125 625

The remainder resulting from
the division of
5% py 13 1 6 —1 -5 1

(Here we write the remainder —1 instead of the remainder 12 and
the remainder —b5 instead of the remainder 8; this facilitates the
determination of all the other remainders: if the division of 5* by
13 leaves a remainder equal to —1, that is if 5 = 134 — 1 where
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k is an integer, then the division of 5! = 5.5 = (13k — 1)5 =
= 13(5k)— 5 by 13 leaves a remainder of —5. Similarly, if the
division of 5™ by 13 leaves a remainder equal to —5, that is if
5m = 131 — b, then the remainder resulting from the division of
5m+l — pm.5 = (131 — 5) -5=13(5l) — 25 = 13(6[—2)+ 1 by 13
is equal to 1.) There is no need to continue this table of the re-
mainders because, since 5* = 13¢ - 1, the division of 5%=5%.5=
= (13g + 1)5 by 13 leaves the same remainder as the division of
5 by 13, that is the remainder equal to 5; similarly, the division of
the number 5% = 5%.52 = (i13¢q 4- 1) -52 by 13 leaves the same re-
mainder as the division of the number 5 by 13 (that is the re-
mainder equal to —1), etc. Thus, in this sequence of the remainders
the numbers 1,5, —1 and —b5 alternate in succession.

We can similarly compile the table of the remainders obtained
when the numbers n% are divided by 13 wheren =0, 1, 2, ..., etc.
The division of the number

(1Bp+rP=013p+r)(13p+r) ... (13p+71)

5 f;ctors

by 13 leaves the same remainder as the division of the
number 5, and therefore we can limit ourselves to the values
n=20,1,2 3,..., 12 If the number n is equal to s or if its divi-
sion by 13 leaves a remainder equal to s and if the division of the
number n? by 13 leaves a remainder f{ then the division of the
numbers n% = n%.n2.n and ¢-f-s by 13 leaves one and the same
remainder. This facilitates the compiling of the required table for
the values of n equal to 4, 5, and 6. Finally, it should be noted
that if the division of the number n® by 13 leaves a remainder «
then the remainder resulting from the division of the number
(13—n)p=(13—n)(13—n) ... (13—n) by 13 coincides with the

5 fact
remainder resulting from tcl)lres: division of the number (—n)5 by 13,

this remainder being equal to —u or, equivalently, to 13 — u.
Now we can write down the corresponding table of the remain-
ders:

n 0 1 2 3 4 5
nb 0 1 32 | 243
n? 16 25
The remainder resulting from
the division of n? by 13 3 -1
The remainder resulting from | 0 1 6 | —4] -3 —1(—1)5=5
the division of n° by 13 (because
f-t-s=
=3.3-4)
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n 6 7t 81 9| 10| 11} 12{. ., .
n5

n? 36
The remainder resulting from

the division of n? by 13 -3
The remainder resulting from 2 —2|—5{3 | 4[—6[—1|. . .

the division of n® by 13 (because

{-t-8=
(—3)+(—3)-6)

Here, when writing the remainders corresponding to the values
of n equal to 7, 8, ..., 12, we take into account that the division
of the numbers n% and (13 —n)® by 13 leaves remainders equal
to u and —u respectively. Besides, for the values of n exceeding
12 the same remainders 0, 1, 6, —4, —3, 5, 2, —2, —5, 3, 4, —6
and —1 repeat periodically in the table.

We see that the first table has 4 numbers in the “period of the
remainders” while the second table has 13 numbers in the “period
of the remainders”; therefore the number 4-13 = 52 determines
the “length of the period of the remainders” in the “union™ of both
tables in the sense that when n is increased by 52 (or by any
number multiple of 52) the remainders resulting from the division
of the numbers 5" and n% by 13 do not change. It is clear that we
can limit ourselves to the consideration of only those columns of
the second table which correspond to the remainders 41 and +5
because in the first table only the remainders 1, 5, —1 and —5
alternate. Further, in the second table for the values of n ranging
from 0 to 51 the remainders 1 correspond to the values of n equal
to 1, 1+ 13 =14, 142-13 =27 and 1+ 3-13 = 40. Among
these four numbers 1, 4, 27 and 40 only the number 14 is of the
form 4x -2, and in the first table to the number n = 14 there
corresponids a remainder equal to —1. Thus, the number n = 14
satisfies the required condition because 5! 4 14° is divisible by 13.
Similarly, in the second table, for the same values of n ranging
from 0 to 51, the remainders —1 correspond to the values of n
equal to 12, 12413 =25, 124+ 2-13 =38 and 124313 = 5[;
among these four numbers 12, 25, 38 and 51 only 12 has the form
4y, the remainder corresponding to n = 12 in the first table being
equal to 1. Similarly, in the second table the remainders 5 cor-
respond to the values of n equal to 5, 54 13 =18, 5 4 2-13 = 31
and 5+ 3-13 == 44, and the remainders —5 correspond to the
values of n equal to 8 8+ 13=21, 84+2.13 =34 and 8+
+ 3.13 = 47; further, among the four numbers 5, 18, 31 and 44
only 31 is of the form 4z 4- 3 for which the division of 5%+3 = 5%
by 13 leaves a remainder equal to —5 while among the four num-
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bers 8, 21, 34 and 47 only 21 has the form 4w 4 1 for which the
division 5*@+! = 52l by 13 leaves a remainder equal to 5. Thus,
within the limits from # = 0 to n = 52 (that is for 0 << n << 52)
only the four natural numbers n = 12, 14, 21 and 31 satlsfy the
required condition. As to the whole set of the natural numbers
satisfying the condition of the problem, it consists of the following
four sequences:

n=>52m+ 12, n=502m+ 14 (that is n=26(2m) -+ 12
and n=26(02m+-1)—12),

=502m+ 21 and n=52m-} 31 (that is n=>52m 4 21)

where m =0, 1, 2, ... (the only exception is that in the formula
n = 52m -~ 21 we should put m > 0).

Now it becomes clear that the smallest number n satisfying the
conditions of the problem is n = 12.

71. It is clear that the last two digits of the numbers n?, n3, ...
where n is a nonnegative integer depend solely on the last two
digits of the number r, which follows from the ordinary arithmetic
rule for the multiplication of multiplace numbers written as a
column. On the other hand, the last two digits of 100 consecutive
nonnegative integers must necessarily run over the sequence 00,
01, 02, ..., 99 (although, in the general case, their order may
differ from the one in which we have written the sequence here).
Therefore the problem reduces to the determination of the last two
digits of the sum

Ng=0°+4 1949294 ... +99°

fora =4 and a = 8.
(a) If n = 10x 4 y is a two-digit number then

nt=(10x 4 y)=10%*+4- 103y + 6 - 102?22 + 4 - 10x° + y*

and the last two digits of the number n* depend solely on the last
two terms of this sum because each of the other ferms has two
noughts at the end. Consequently, it only remains to determine
the last two digits of the numbers equal to the sums

>3 4.10x2 and X2 x%t=102. 4
x ¥ x ¥ y

where x and y independently run over the values ranging from 0
to 9 (here we put 0° = 1, and therefore Z WO=0 414 ... +

= 10).
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Now we note for any fixed y the number
24105y =
=4.100+4+14+2+34+44+54+64+74+8+9)-°=18004°

ends with two noughts; therefore the number ). . 4- 10x4® also has

two noughts at the end, and hence it does nxot yaﬁect the last two
digits of the number N, Thus, we have to determine the last two
digits of the number

10, 4t =
Yy
=100 1"+ 2+ 3*+4*+ 5* + 6* + 7* 4 8* 4 9 = 108,
The last equality shows that it suflices to find the last digit of the
number equal to the sum S,.
To determine the last digit of S; let us consider the following

table in which the last digits of the numbers y, y* and y* are
written in succession:

y 01 23 456 7 829
v2 |01 4 9656 9 41
gt 101 6 1 65 6 1 6 1
It follows that the last digit of the number S, coincides with that

of the sum
O+1+64+1+4 ... +1=4(14+6)-+5=233

and consequently the last two digits of the number N, and also of
the number mentioried in the condition of the problem are 30.

(b) By complete analogy with the solution of Problem 71 (a),
we find that for a = 8 the last two digits of the sum N (and,
consequently, the last two digits of the number we are interested
in) coincide with the last two digits of the number 10 Sg where
Sg =08+ 184 ...+ 98 From the table of the last two digits of
the number y* written above and from the equality yi*=(y*)* it
follows that the number y** (where y is a digit) has the same last
digit as the number y*. Therefore in the case when a = 8 the last
two digits of the number in question are the same as in the case
when a = 4, that is these digits are 30.

Remark. 1t can easily be seen that the same result can be obtained for all
values of a multiple of 4, that is fora =4, 8,12, 16, ....

72. According to the formula for the sum of the members of a
geometric progression, we have

5O1000 _ | 5O000 __ |
N= 50—1 ~— 49




144  Solutions

The number 1/49 is changed into a repeating decimal whose pe-
riod consists of 42 digits and can simply be found by division:

:Ilg‘ =0.(020408163265306122448979591836734693877551)

(here the parentheses symbolize the period of the decimal). In the
abbreviated form we can write

1
-5 = 0.(P)

where the symbol P designates the above sequence of 42 digits
and (P) designates the period.

The nearest integer to 1000 multiple of 42 is equal to 1008 =
= 24.42. Hence,

101008 1
—1018. __—PP ... PP ...
49 49 N———

24 times

where the heavy face type dot between two neighbouring P’s
symbolizes the decimal point.
Thus, the fraction M = (10!9%® — 1) /49 can be written as

10198 — 1 a0 ] \ =pp ... P
M o 49 - 10 . E - -4_9— 24 times

and therefore it is equal to a whole number written with the aid
of 1008 digits which can be divided into 24 repeating groups of
the 42 digits denoted as P (by the way, M is in fact a 1007-digit
whole number because the sequence of digits denoted as P begins
with nought).

Now let us form the difference between the number N we are
interested in and the number M:

. 51000, 101000 __ { 101008 _ . 51000 _ 108 1000
N—M= 49 - 49 - 49 - 10

Since the difference N — M of two integral numbers is itself an
integral number and since 101% is relatively prime to 49, the
number 5190 — 108 must be divisible by 49. Consequently, x =
= (5100 — 108) /49 is an integral number and the difference
N —M = 10'90.x ends with 1000 noughts. Thus, the last 1000
digits of the number N coincide with those of the number M,
namely they form the sequence

pPP ... P
23 times

where p is a group of 34 digits which are the last 34 digits of the
number P,



Solufions 145

73. Let M = 104 + a denote the original number where a is
the last digit of M. Then the number N obtained from M as des-
cribed in the condition of the problem is obviously equal to
a-108-1 + A where 6n is the number of the digits forming the
number M.

Let us consider the expression

M—3N=(10A+a)— (310" a4 34) =
=7A—(3-10""'—1)a

According to the condition of the problem, the minuend M on the
left-hand side is divisible by 7; the number 74 is obviously di-
visible by 7; therefore if we prove that the number 3-108-1 — |
and, consequently, the number (3-10-! — 1)a, are divisible by 7,
this will imply that the number 3N and, consequently, the number
N, are also divisible by 7.

The division of the number 10 by 7 leaves a remainder 3 and
the division by 7 of 10? leaves the same remainder as the division
of the number 3-3 = 9, the latter remainder being equal to 2. Con-
sequently, the division of the number 10® = 102-10 by 7 leaves a
remainder equal to 2-3 = 6; the remainder resulting from the
division by 7 of the number 10% = 10%-10% coincides with the re-
mainder resulting from the division of the number 6-6 = 36 by 7,
this remainder being equal to 1. Hence, the number 105 = 103-10%
can be written in the form 7k 4- 1. Further, the remainders result-
ing from the division by 7 of the numbers 105 = 10%-10? and
6.2 == 12 coincide and are equal to 5; in other words, the number
105 = 10%-102 has the form 7! -+ 5; therefore

10071 = 10°% . 10° = (108)"~" . 10° =
=(Tk+ 1) (7k —I—pl) (TR DT +5)=7K-+5

n—1 times

It follows that the division of the number 108! by 7 leaves a
remainder of 5. Finally, the division of the numbers 31081 and
3-5=15 by 7 leaves one and the same remainder equal to I,
whence we conclude that the number 3-10%"~1 — 1 is exactly di-
visible by 7. The assertion stated in the problem has thus been
proved.

74. The number of noughts at the end of the decimal represen-
tation of a number is equal to the maximum exponent of the power
of 10 by which this number is divisible. The number 10 is equal
to the product 2-5. The exponent of the power of 2 contained in
the product of all whole numbers from 1 to 100 inclusive is
greater than that of the power of 5 contained in this product. Con-
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sequently, the exponent of the highest power of 10 by which the
product 1-2-3...100 is divisible (this exponent coincides with the
number of the noughts at the end of the decimal representation of
the product) is equal to the exponent of the power of 5 contained
in the product. Further, among the numbers from 1 to 100 there
are 20 numbers multiple of five, and four among these five num-
bers (25, 50, 75 and 100) are also multiples of 25, that is they
contain 5 to the second power. Consequently, the total number of
5’s contained in the product 1-2.3...100 is equal to 24; therefore
there are exactly 24 noughts at the end of the decimal represen-
tation of this product.

75. First solution of Problems 75 (a) and (b). Let us begin
with Problem 75 (a). Let us denote as ¢t-}1,{+2,...,¢t4n a
sequence of n arbitrary consecutive whole numbers. We can de-
termine the greatest exponent m of the power of every prime
number p entering in the product n! and the greatest exponent s
of the power of p entering in the product (¢ 41) ... (¢ 4+ n).

We shall denote by m,; the number of the members in the se-
quence 1, 2, ..., n which contain powers of p with exponents not
less than 1; similarly, by my we shall denote the number of the
members in this sequence which contain powers of p with expo-
nents not less than 2, etc. Then the exponent of the power of p
contained in n! is equal tom =m;+my+.

Similarly, let us denote the number of the members in the se-
quence ¢4 1, , t + n divisible by p as s, the number of the
members in the sequence divisible by p? as s, and so on; it is
obvious that the exponent s of the power of p contained in the
product (¢(+1)...(¢{+n) is equal to s=s1+s24... .

Further, the number of the members in the sequence ¢4 1,

, t + n which are divisible by p is not less than m,. Indeed,

among the numbers ¢+ 1, ..., ¢ 4 n there are the numbers ¢ + p,
t42p, ..., t+ mp, and in each of the intervals between ¢ 4 kp
and t+ (B-+1)p (k=0, 1, 2, ..., my— 1) there is at least one

number divisible by p. Hence, s; = m,; we similarly conclude that
S9 = my etc.; therefore s = m. It follows that each of the prime
factors of the number n! is contained in the number (¢ 1) ...
...(t 4+ n) and that the exponent of the power of each such prime
factor contained in the product (¢ 4 1) ... (¢ + n) is not less than
the exponent of the power of that prime number contained in n.l.
This means that the number (¢--1) ... (¢ 4 n) is divisible by nl.
(b) The product of the first a factors in n! coincides with al;

the product of the b factors following these a factors is divisible
by b! (see the solution of Problem 75 (a)); the product of the
next ¢ factors is divisible by ¢! and so on. Since a4+ b+ ¢+

.+ k < n, it follows that a! is exactly divisible by the pro-
duct albl .. Al
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Second solution of Problems 75 (a) and (b). Let us begin with
the solution of Problem 75 (b). As was shown, the exponent m
of the power of any prime number p contained in a! is equal to
m=m, + my -+ ... where m; is the number of the members in
the sequence 1, 2, ..., a which are multiple of p, the symbol m,
indicates the number of the members in the sequence which are
multiple of p?, etc. Further, the number of the members which are

multiple of p is equal to [—Z—], the number of the members

multiple of p? is equal to [—ZT] etc. where [Ta], [—;‘:T], ... are

the integral parts of the fractions %, —p‘%—. ... respectively (see
a

page 36). Thus, m=[—[;-]+[7]+ .... Now, let p be an ar-
bitrary prime number. Then the exponent of the power of p con-

tained in the numerator of the expression we are interested in is
n

equal to the sum [%]_I_[F] 4+ ... and the exponent of the
power of p contained in the denominator of this expression is
equal to

a a b b k k

R e R bl R bl e b Rt o R
Since n=a+b+...+ k we can use the result established in
Problem 201 (1) to obtain the inequality

)+ [ = (] )+
(1 )+

This means that the exponent of the power of p in the numerator
exceeds that of the power of p in the denominator. Therefore the
given fraction is a whole number.

Now let us solve Problem 75 (a). To this end we multiply the
product ({4 1) ... (¢4 n) and the expression n! by the product
t(t—1)...1 so that the former product turns into (¢ 4 n)!. Then
the result of the division of (¢ 4 1) ... ({ + n) by n! can be writ-
ten as the fraction of the form

(+n) . GFDEE—=D .0l (a+D @1 ... (t+n)

nlt(t—1) ... 1 n!tl nl

As was shown, such a fraction is in fact equal to an integral
number.

(c¢) The expression (n!)! is the product of the first n! whole
numbers. These n! numbers can be divided into (n — 1)! groups
each of which consists of n consecutive whole numbers, The pro-
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duct of the numbers forming each of these groups is divisible by
n!, which follows from the solution of Problem 75 (a).

(d) Let the numbers in question be denoted as a, a+ d,
a-+2d,...,a-+(n—1)d. We shall begin with proving that there
exists a whole number % such that the division of the product 4d
by n! leaves a remainder equal to 1. Indeed, let us consider the
n! — 1 numbers d, 2d, 3d, ..., (n! — 1)d. None of them is di-
visible by n! because 4 and n! are relatively prime. On the other
hand, there are not two products pd and ¢gd where p and ¢ are
whole numbers which are less than n! and where division by n!
leaves equal remainders because, if otherwise, the difference
pd — gd = (p-—¢q)d would be divisible by nl. Thus, the division
of these n! — | numbers by n! must leave n! — 1 different remain-
ders, whence it follows that there exists a number £ such that the
division of &d by n! leaves a remainder equal to 1.

Now let us denote the product ka as A. Then we can write

ka= A
Rlat+d)=A+4kd=(A+1)+r-nl
kla+2d)=A+2kd=(A+ 2) -+ 2r - n!

kRla+(n—1)d|=A4+n—Dkd=[A4+n—D]l4+n—1r- -n!
It follows that the division by n! of the product
Frala+d)(a+2d) ... [a+ (n—1)d]

leaves the same remainder as the division of the product
AA4+1D) (A4+2) ... [A+(rn—1)]. The product A(A+1)(A+2)...
... |A+4 (n— 1)} is divisible by n! (see Problem 75 (a)), and
the numbers &7 and n! are relatively prime because, if otherwise,
k would not be relatively prime to n! and k2d would not be rela-
tively prime to n! either.

76. The number of combinations of 1000 things, taken 500 at a
time, is equal to 1000!/(500!)2. Since 7 is a prime number, the
highest power of 7 by which 1000! is divisible has the exponent
equal to [1000/7] 4~ [1000/49] + [1000/343] = 142 +20 4- 2=164
(see the second solution of Problem 75 (b)). The greatest expo-
nent of the power 7 contained in 500! is equal to [500/7]+4-
-+ [500/49] 4 [500/343] = 71 + 10 + 1 = 82. Consequently, the
exponent of the highest power of 7 by which the denominator
(50012 is divisible is equal to 82-2 == 164. Thus, both the nume-
rator and the denominator contain 7 to the 164th power. On can-
celling by this highest power of 7 we arrive at a fraction whose
numerator no longer contains the factor 7, whence it follows that
the whole number (1000!)/(500!)? is not divisible by 7.
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77. (a) The number (n — 1)! is not divisible by n only in the
case when n is a prime number or when n = 4,

Indeed, if n is a composite number which can be represented
as a product of some two different factors a and b then both a
and b are less than n— 1 and, consequently, a and b are con-
tained in (n—1)!, whence it follows that (n—1)! is divisible
by ab = n. If n is a square of a prime number p exceeding two-
then n — 1 = p? — 1 > 2p, and therefore both p and 2p are con-
tained in (n— 1)!; consequently, (n-—1)! is divisible by p-2p =
== 2p? = 2n. Thus, the only numbers satisfying the condition of'
the problem are 2; 3; 4; 5; 7; 11; 13; 17; 19; 23; 29; 31; 37; 41, 43;
47, 53; 59; 61; 67; 71; 73; 79; 83; 89 and 97, that is these are the
number 4 and all prime numbers less than 100.

(b) The number (n-—1)! is not divisible by n? only in the fol-
lowing cases: n is a prime number or n is a duplicated prime
number or n = §orn=209.

Indeed, if n is not a prime number and is not a duplicated prime
number and is not a square of a prime number and is not equal
1o 8 and is not equal to 16 then rn can be represented in the
form n = ab where a and b are different numbers not smaller
than 3.

Analogously, if n is not equal to 16 then n can be written as
n=ab where a >3 and b = 5. Let us assume that n = ab,
b>a and a = 3. Then the numbers a, b, 2a, 2b and 3a are less
than n— 1, a, b and 2b being different from one another, and at
least one of the numbers 2a and 3a is different from the numbers.
a, b and 2b. Thus, in this case (n— 1)! contains as factors the
numbers @, b, 2b and 2a or a, b, 2b, and 3a (or perhaps all the
numbers a, b, 2b, 2a, and 3a). In all these cases (n — 1)! is divi-
sible by a?b? = n2.

Further, if n = p? where p is a prime number exceeding 4 then
n—1>4p, and (n-— 1)! contains the factors p, 2p, 3p and 4p;
consequently, (n — 1)! is divisible by p* = n? If n = 2p then the
number (n — 1)1 is not divisible by p? and hence it is not divisible
by n? either; if n = 8 or n = 9 then (n — 1)! is not divisible by
n? (7! is not divisible by 8% and 8! is not divisible by 9?).

In case n =16 the number (n— 1)! is divisible by n? (be-
cause 15! contains the factors 2, 4==22, 6=3-2, 8=23, 10=2-5,
12 =22.3 and 14 = 2.7, and consequently, 15! is divisible by
Q1+4+2+1434+142+1 211 — 16223)

Thus, the numbers satisfying the condition of Problem 77 (b)
are those satisfying the condition of Problem 77 (a) and, besides,
the numbers 6, 8, 9, 10, 14, 22, 26, 34, 38, 46, 58, 62, 74, 82, 86
and 94; in other words, these are all prime numbers less than 100,
all dupllcated prime numbers not exceeding 100 and the numbers
8 and 9.
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78. Let us suppose that n is a number divisible by all numbers m

less than or equal to 4/a. Let K be the least common multiple of
all such numbers m. The factorization of the number K obviously

contains all prime numbers less than 4/n, the exponent & of the
power of each of such prime numbers p satisfying the relations

p*<<+/n and p**' > 4/n. Let us suppose that the number of the

prime numbers less than 4/z is equal to /; we shall denote these
prime numbers as pi, pa, ..., pi. The least common multiple K of

all numbers less than 4/n is equal to the product pfipfz ... pit
where k, satisfies the inequalities pf < A/n < pftl, ky satisfies the
inequalities pf <C A/n < pkt! etc. On performing the term-by-
term multiplication of the [/ inequalities

'\/r_z<pf'+', '\/t—z<p§2“, cee s «\/ﬁ<pf’+'

‘we obtain

(Vr) < pf'“pf“l . p;el-H
But we have p/t"'p v pfl+'=pf‘p§2 cee pfl PPy p,<K2
‘because p{"pf2 pf’=K, and consequently p.p, ... p,<K.

‘Thus _
(vr) <K’
According to the hypothesis, the number n must be divisible by

K, and therefore we have K < n; consequently, (ﬁ)’ < n? whence
it follows that ! << 4. Since py, ..., p; are all prime numbers less
than 4/n, there must be p, =17 > 4/n (the fourth prime number is

equal to 7) and n << 49.

" On investigating all numbers smaller than 49 we readily find
that among them only the numbers 24, 12, 8, 6, 4 and 2 possess
the required property.

79. (a) Let

B+l kol
2

n—2, n—1, n, n+1, n42
denote five consecutive whole numbers. Then
n—2P4+(n—124+n"+ 4+ 1724+ {n+2P2=502+10=5(n* 4 2)

If the number 5(n? 4 2) were a perfect square, it would be di-
visible by 25 and, consequently, the number n? 4 2 would be di-
visible by 5. This is only possible when the last digit of the num-
ber n? is equal either to 8 or to 3, but it is known that there is no
whole number whose square has 8 or 3 as its last digit.

(b) Among three consecutive whole numbers there is one num-
ber that must be divisible by 3, one number whose division by 3
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leaves a remainder of 1 and one number whose division by 3
leaves a remainder equal to 2 or, which is the same, a remainder
equal to —1. To the multiplication of numbers there corresponds
the multiplication of the remainders resulting from the division of
these numbers by a given number; indeed, we have

(pk 1) (gk + s) = pgk® + pks + qkr +rs =k (pgk + ps +qr) +rs

Therefore, if the division of a number by 3 leaves a remainder of
1 then the remainder resulting from the division of any power of
this number by 3 is also equal to 1. In case the division of .a
number by 3 leaves a remainder equal to —1, the division of any
odd power of that number by 3 leaves a remainder of —1 and the
division by 3 of its any even power leaves a remainder of 1.

Thus, among three even powers of consecutive whole numbers
there is one divisible by 3 while the remainders resulting from the
division by 3 of the other two powers are equal to 1. Consequently,
the division of a sum of even powers of three consecutive whole
numbers leaves a remainder equal to 2 or, which is the same, a
remainder equal to —1. However, as was already shown, such a
remainder cannot result from the division by 3 of an even power
of any whole number.

Remark. 1t should be noted that in the above proof we do not use the fact
that the powers to which three consecutive numbers are raised have equal even
exponents. Therefore there holds the following more general assertion: a sum:
of even powers (which may have different exponents) of three consecutive whole
numbers cannot be equal to an even power of any whole number.

(c¢) As was shown in the solution of Problem 79 (b), a sum of
three even powers of consecutive whole numbers by 3 leaves a
remainder 2. It follows that the division by 3 of a sum of even
powers of nine consecutive whole numbers leaves a remainder
equal to 2 4+ 2 4+ 2 = 6, which simply means that the sum is di-
visible by 3. Now let us prove that a sum of powers of nine con-
secutive whole numbers with equal even exponents cannot be di-
visible by 32 = 9; the assertion of the problem is obviously an im-
mediate consequence of the last proposition.

Among nine consecutive whole numbers there is one number
which must be divisible by 9, one number whose division by 9
leaves a remainder equal to 1, one number whose division by 9
leaves a remainder equal to 2 and so on. It follows that if the
even exponent of the power to which the nine numbers are raised
is equal to 2k then the division of the sum under consideration and
of the sum

0+12k+22k+32k+42k+52k+62k+72k+82k
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leaves one and the same remainder. It is also clear that the di-
vision of the latter sum and of the expression
2(1% + 45 4 7%

by 9 leaves one and the same remainder because the numbers 32
and 62 are divisible by 9, the division of the numbers 12 and
82 = 64 by 9 leaves the same remainder equal to 1, the division
of the numbers 22 = 4 and 72 = 49 by 9 leaves a remainder equal
to 4 and the division of the numbers 42 = 16 and 52 = 25 by 9
leaves a remainder equal to 7.

Now we note that the division of the numbers 13 =1, 43 = 64
and 7% = 343 by 9 leaves the same remainder equal to 1, whence
it follows that if £ = 3! then the division of the sums 1% 4 4% -
~+ 78 = 1! 4 64’ + 343‘ and 1! + 1' 4 1 = 3 by 9 leaves the same
remainder (equal to 3). Hence, the former sum is not divisible
by 9. Similarly, it follows that if £# = 3/+ 1 then the division of
1% - 4% 7% = [!.1 4 64'-4 4 343*-7 by 9 leaves the same re-
mainder as the division of the sum 1-141-44- 1.7 = 12, that
is the expression 1* +4- 4% 4- 7% is not divisible by 9, and if & =
== 3/ + 2 then the division by 9 of the sum 1% 4 4*#  7¢=1!.1
-+ 64¢.42 1 343'.72 and of the sum 1-1 4 1.16 4+ 1-49 = 66 leaves
the same remainder, which means that in this case 1% 4 4% | 7%
is not divisible by 9 either.

80. (a) The sum of the digits of each of the numbers A and B

is equal to
14+2+34+4+5+647=28

whence it follows that the division of both numbers by 9 leaves
a remainder 1 (the division of every number by 9 leaves the same
remainder as the division by 9 of the sum of the digits of the
number). If we had A/B = n or, which is the same, A = nB
where n is a whole number different from 1 then the relation
B = 9N + 1 would imply A = nB = 9M + n, which means that
the division of n by 9 would leave a remainder of 1. But the
smallest number n possessing this property is equal to 10 whereas
we bave A/B<C10 because both A and B are 7-digit numbers.
This contradiction shows that A cannot be divisible by B.

(b) Let N, 2N and 3N denote the sought-for numbers. The di-
vision of a whole number by 9 leaves a remainder equal to the
one resulting from the division by 9 of the sum of its digits. The-
refore the division of the sum N 4 2N + 3N by 9 leaves the same
remainder as the division by 9 of the sum 1 4+2+3+4...4+9=
= 45, whence it follows that 6N and, consequently, 3N are divi-
sible by 9.

Since 3N is a three-digit number, the initial digit of the num-
ber N cannot exceed 3; therefore the last digit of the number N
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cannot be equal to 1 (because, if otherwise, the last digit of 2N
would be equal to 2, the last digit of 3N would be equal to 3 and
hence the initial digit of ¥ could not be smaller than 3). The last
digit of the number N cannot be equal to 5 either because, if other-
wise, the number 2N would end with nought. Now let us suppose
that the last digit of the number N is equal to 2; in this case the
last digits of the numbers 2N and 3N are equal to 4 and 6 res-
pectively. Therefore the first two digits of 3N can only assume the
values 1, 3, 5, 7, 8, and 9; since the sum of all digits of the num-
ber 3N is multiple of 9 the first two digits of 3N can only be equal
to 3 and 9 or to 5 and 7. On testing all the possible cases we find
one triple of numbers satisfying the condition of the problem for
the case when the last digit of N is equal to 2: 192; 384; 576. The
cases when the last digit of N is equal to 3, 4, 6, 7, 8 or 9 are in-
vestigated in like manner; it turns out that there are three more:
solutions of the problem: the triple 273; 546; 819, the triple 327;
654; 981 and the triple 219; 438; 657.

81. A perfect square can only have 0, 1, 4, 9, 6 or 5 as its last
digit. Further, the square of every even number is obviously di-
visible by 4 while the division of the square of an odd number by
4 must leave a remainder equal to 1 because (2k)%2 = 4k% and
(2k + 1)2 = 4 (k2 + k)4 1. Therefore there is no whole number
whose square has 11, 99, 66 and 55 as its last two digits because
the division of a number ending with the digits 11, 99, 66 or 55
by 4 leaves remainders equal to 3, 3, 2 and 3 respectively. Now let
us consider the remainders resulting from the division of the
squares of whole numbers by 16. Every whole number can be
written in one of the following five forms:

8k, 8k=+1, 8kx2, 8k+3 and 8k-}+4
Accordingly, the squares of these expressions are
16+ (4k2), 16(4k2 - k)+ 1, 16(4kR*=2k) 14,
16 (462 3k)+9 and 16(4k2+4k+ 1)

Thus, we see that either the square of a whole number is divisible:
by 16 or its division by 16 leaves a remainder equal to 1, 4 or 9.
As to the numbers whose last four digits are 4444, their division
by 16 leaves a remainder of 12, and consequently these numbers.
cannot be perfect squares.

Thus, if a perfect square ends with four identical digits, these:
digits can only be four noughts (for instance, 1002 == 10 000).

82. Let x, y and z denote the lengths of the sides and of the
diagonal of the rectangle respectively. Then, by Pythagoras’ theo-
rem, we have

x2+y2=22
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It is required to prove that the product xy is divisible by 12.
We shall first show that this product is divisible by 3 and then
that it is divisible by 4.

Since

(Bk+12=308R+26)+1 and (Bk+27=3@Ek+ 46+ 1)+ 1

we see that the division by 3 of the square of any number which
is not multiple of 3 leaves a remainder equal to 1. Consequently,
if neither x nor y were divisible by 3, the division of the sum
x2 4+ y? by 3 would leave a remainder equal to 2, and therefore
the sum x2 + y? could not be equal to a square of a whole number.
Hence, if x%2 4 y? is equal to the square of an integer z then at
least one of the numbers x and y is divisible by 3 and thus xy
is divisible by 3.

Further, it is clear that the numbers x and y cannot be simui-
taneously odd; for, if x =2m 41 and ¥« =2n + 1, then the ex-
pression

P+ P=4m*+Adm+ 1+ 4+ 4dn+ 1=4m>+m3n?+n)+2

cannot be equal to the square of a whole number because the
square of an odd number is itself odd and the square of an even
number must be divisible by 4. In case both x and y are even
numbers their product is of course divisible by 4. Let us suppose
that x is even and y is odd: x = 2m and y = 2n -}- 1. In this case
the number z is odd (because 22 = x% 4 42 is odd), that is z =
= 2p + 1. Then we have

@myP=02p+ 12— 2n + 1 =4p*+4p+ 1 —4n* —4n — 1

that is
m*=p(p+1)—n(n+1)

It follows that m? is even (because the products p(p 4+ 1) and
n(n 4 1) of two consecutive whole numbers must be even). Con-
sequently, the number m is even and the number x = 2m is di-
visible by 4. Thus, in this case as well the product xy is divisible
by 4.

83. By the formula for the roots of a quadratic equation, we
have
— b« 4/b? — dac

2a

X =

Consequently, for the roots of the equation to be rational numbers
it is necessary and sufficient that the expression 62 — 4ac should
be a perfect square. Let us put 6 =2n+1, a=2p 41 and
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¢ = 2¢g + 1; then we have
PP—dac=2n+ 12— 42p+ 1) (29 + 1) =4n’+ 4n —

—16pg—8p—8g—3=8(2FD —9pg—p—g—1)+5

Since the number b2 — 4ac is odd (because n(n 4 1) is a product
of two consecutive whole numbers and therefore it is an even
number, whence it follows that n(n 4 1)/2 is a whole number),
we see that if b — 4ac is a square of a whole number then this
whole number must be odd. Every odd number can be represented
in the form 4k 4= 1 and its square can be written in the form

(4k == 1)> = 16k == 8k + 1 = 8 (2£% == k) -+ 1

Consequently, the division of the expression (44 4 1)2 by 8 always
leaves a remainder equal to 1. Therefore, since the division of the
number b2 -—4ac by 8 leaves a remainder of 5, the expression
b? — 4ac cannot be a perfect square.
84. We have
1 1 1 3n24-6n 42
atataes n{n+ 1) (n+2)

The numerator of the fraction on the right-hand side is not di-
visible by 3 while its denominator is exactly divisible by 3 because
it is equal to the product of three consecutive whole numbers. Con-
sequently, the denominator always contains prime factors different
from 2 and 5, and therefore when this fraction is written in
decimal notation we obtain an infinite repeating decimal.

Among the two whole numbers n and n 4 1 there must be one
which is even. If n 4 1 is even then n is odd and, consequently,
3n? is odd, whence it follows that the entire numerator is an odd
number. If n is even then n 4 2 is also even (that is, it is di-
visible by 2) and, consequently, the denominator must be divisible
by 22 whereas the numerator is divisible by 2 and is not divisible
by 22 because for n = 2k we have

3n*+46n+2=12k24 12k + 2=2(6k2 4+ 6k + 1)

Hence, after the given fraction has been reduced to its lowest
terms its denominator is not relatively prime to 10 and therefore
in the decimal representation of the fraction we obtain a mixed
periodic decimal.

85. (a), (b) Let us reduce all the fractions in the sum

1 1
M=<5+ ... +

and in the sum

N 1 1

1
+n+l +n+2+ +n+m

1
n
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to common denominators. From all fractions in the sums let us
choose the ones whose denominators contain the highest powers
of two (there can be only one such fraction in each of the sums).
‘When these fractions are reduced to the common denominators
their numerators and denominators are multiplied by the corres-
ponding odd factors. When the other fractions in the sums are
reduced to the common denominators the factors by which their
numerators and denominators are multiplied must contain the
number 2. On adding together all the fractions in the sums M
and N we obtain fractions whose denominators are of course even
numbers, and each of their numerators is a sum of several even
numbers and one odd number, which follows from what was said
about the reduction of the fractions to the common denominators.
Consequently, the numerators of the resultant fractions are odd
numbers, and therefore these fractions cannot be equal to whole
numbers.

(¢) Among the fractions in the sum K let us choose the one
whose denominator contains the highest power of the number 3
(let the exponent of this power of 3 be £). Since the denominators
of all fractions are odd numbers, the sum K does not contain the
fraction 1/2-3%. Therefore when we reduce all these fractions in
the sum to the common denominator the factor by which the de-
nominator and the numerator of the fraction we have chosen are
multiplied is not divisible by 3 whereas for the other fractions
such factors are divisible by 3. Consequently, on adding together
all the fractions in the sum we arrive at a fraction whose deno-
minator is divisible by 3 and whose numerator is not divisible
by 3, whence it follows that K cannot be equal to a whole number.

86. (a) The fractions (@® 4+ 2a)/(a*+3a%+4- 1) and (a*+

2

302+ 1)/(a* + 20) =a + S5 (and also the fraction (a?+
-+ 1)/(a®+ 2a)) are simultaneously reducible or irreducible.
Further, the fractions (a?41)/(a’*+2a) and (a®+42a)/(a?+1)=
= a4 a/(a?+ 1) (and also the fraction a/(a?+ 1)) are simul-
taneously reducible or irreducible as well. Finally the fractions
a/(a2 + 1) and (a®+ 1)/a = a4+ 1/a (and the fraction 1/a) are
also simultaneously reducible or irreducible. Now, to complete the
solution of the problem it is sufficient to note that for any inte-
gral a the fraction 1/a cannot be reduced by a factor.

(b) If both the number a = 51 4 6 and the number b=8n +4 7
are divisible by an integer d =~ 1 then the difference p = b —a =
=3n + 1, the difiference pyj=a —p=2n 45 and also the dif-
ferences po=p—pi=n—4; ps=pi—p=n-+49 and p,=
= p3; — pg = 13 are also divisible by d. Thus, the (prime) num-
‘ber 13 must necessarily be divisible by d, whence it follows that d
can only assume one value 13. The fact that the case when the
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given fraction is reducible by 13 is possible can readily be demou-
strated by an example; for instance, if n =4 then the fraction
(5n 4 6) /(8n 4+ 7) = 26/39 can be reduced by 13.

87. It is clear that it is sufficient to prove the assertion of the
problem under the assumption that we start reading the digits
of the new number beginning with the second digit of the number
obtained in the initial reading. Indeed, on performing such “shifts”
by one digit an appropriate number of times we can pass, in suc-
cession, from any given initial digit to any other digit beginning
with which we read the corresponding 1953-digit number. If after
every such “shift” we pass from a number divisible by 27 to an-
other number which is also divisible by 27 then this divisibility
is retained for any number of the shifts: Let the initial digit of the
first 1953-digit number we have read be a; = a; let the 1952-digit
number formed of the other digits contained in that 1953-number
be denoted as B. Then the first number is equal to a-10'%2 - 3,
and the new 1953-digit number which we read beginning with the
second digit of the former 1953-digit number (this is initial digit
of the number B) is equal to B-10 4 a.

According to the condition of the problem, the number
a-10'%%2 - B is divisible by 27. The number 1092 — 1 is written
with the aid of 1952 nines; on dividing this number by 9 we ob-
tain a number consisting of 1952 ones, which, being divided by 3,
yields a remainder which is equal to the remainder resulting from
the division by 3 of the sum of the digits of that number. Since
this sum of the digits is equal to 1952, the remainder we speak
of is equal to 2. Consequently, the division of the number
10192 — 1 by 27 leaves a remainder equal to 2-9 = 18 and the
division of 10'%2 by 27 leaves a remainder equal to 19. Therefore,
on denoting as b the remainder resulting from the division of
the number B by 27, we conclude that the division of the numbers
a-10'%2 + B and 19a+ b by 27 leaves coinciding remainders.
Hence, the condition of the problem implies that the number
M = 19a + b is divisible by 27.

Now let us pass to the new number B:10 4 a. The remainders
resulting from the division of the numbers B-10+4+ a and N =
== 100 4- a by 27 are equal, and hence the problem reduces to the
proof of the fact that if M = 19a 4 b is divisible by 27 then
N = 10b 4+ a is also divisible by 27. But this is quite obvious
because 10M — N = 189a is divisible by 27 (since we have
189 = 27-7) and N = 10-M — 189a.

88. It is obvious that the last digit in the decimal notation of
every number of the form 5% (where n is a natural number) is
equal to 5, and therefore the decimal representation of the number
a == 5'9% also ends with the digit 5 (but not with 0). Now let us
suppose that the decimal representation of the number a contains
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noughts as well. Suppose that the first (counting from right to
left) of these noughts occupies the ith place. It is clear that the
decimal representation of the number 5'09.10~! ends with the
digits 5@9_;. . 0; consequently, the last i — 1 digits in the decimal
i—1 noughts

representation of the sum ga; = 51000 |- 51000. 1(i-1 coincide with
the i — 1 last digits of the number a (that is, all these i — 1 digits
are different from nought), and the ith digit (counting from right
to left) of the number g, is also equal to 5 (that is, it is also
different from 0). Thus, we have replaced the number a by the
rumber a; whose decimal representation contains a greater num-
ber of digits and whose ith digit (counting from right to left) is
different from 0. Next we perform the same operation on the num-
ber a;: if its decimal representation contains noughts and the
first of these noughts (counting from right to left) occupies the jth
place where, of course, j >> i, then we replace a; by the number
ay = a; + 51090.10/-1 which is also divisible by 5199, the lasi j
digits of a, being different from 0 (its jth digit is equal to 5; here
again the digits are counted from right to left).

If the continuation of this process results in a number ae
(where & can be equal to 0, 1, 2, ... and by ao is meant the num-
ber a = 5190 itself) whose decimal representation does not con-
tain noughts, the assertion of the problem turns out to be true.
However, since the number of the digits in the decimal represen-
tations of ay = a, a1, @s, ... permanently increases, the process
may last indefinitely. In this case we can stop the process when
we arrive at a number a; whose last 1000 digits are different from
0 because the number a; can be written as a, = 10'90.4 4+ B
where the decimal representation of the number B and the decimal
representation of the number a, have the same last 1000 digits;
consequently all the digits of B are different from 0 and the
decimal representation of the number A consists of all the digits
of the number q; preceding the 1000th digit (counting from right
to left) of a;, whence it follows that

B=ag, — 101%. 4

We see that the number B is divisible by 5!%° (because both a
and 101000, 4 — 21000, 51000, 4 are divisible by 5!900).

89. The numbers forming the sequence we are interested in are
all of the form 1 4~ 104+ 108 4 ... 4 10%* (k=1, 2, ...). Let us
also consider the numbers of the form 1 4 1024 104 108+ ..,
...+ 10%%. We can verify directly that

10%+ — 1= (10— 1) - (14 10* 4+ 10° 4 ... 4 10%)

10‘2k+2_1=(102_ 1)(1 + 10’2+ 104_1_ e+ 102&)

and
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Besides, we obviously have

10%+ 1 = (102k+2__ 1) (102k+2 + 1)
From these three equalities we derive the relation
10 —1=(10*— 1) (1 +10* + 1084 ... +10%) =

=(102— 1) (1 4 102+ 10*+ ... + 10%) (10%*** 1)
whence, since (10*—1)/(10>—1)= 10241 = 101, we obtain
A+100 41084 ... +10%). 101 =

=1 4102410+ ... 4+ 10%) (10%*** 1)

Since 101 is a prime number, we see that 1 4 1024 10* ...+
- 10% or 10%%+2 - 1 is divisible by 101. In case &£ > 1 the quo-
tient resulting from the division by 101 of 1+4-10%4 10*+
+ ...+ 10%* or of 10%+2 41 exceeds 1. On cancelling the last
relation by 101 we conclude that for £ > 1 the number 1 -~ 10* 4-
+10%+4-...410% can be written as a product of at least two
factors, which is what. we intended to prove. For £ = 1 we have
the number 10* 4 1 = 10001 which is also composite (10001 =
= 73-137).

Remark. In just the same way we can prove that all the numbers forming
the sequence

100 ... 0 100 ...01; 100...0 100 ... 0 100 ... 0O1; ...

[ [— N e N S —r
(2k+1) times (2&+1) times (2k+1) times (2k+1) times (2k+1) times
are composite,
90. Using the formula a®> — b2 = (a - b) (a — b) we can write
2 —1=0""+ 1) '~ )=
=@ '+ DE P+ )@ -1)= ...
o=@ D@D D L @+ DR+
(the last factor 2 —1 =1 has been dropped). Thus, the number
22" 1 =(22"4 1) — 2 is divisible by all the preceding numbers
of the sequence in question. It follows that if the numbers

92" 41 and 22k—|— 1 (where k£ << n) have a common factor then
the number 2 must also be divisible by that factor. However, the
number 2 cannot be a common factor of two numbers belonging
to the sequence since all these numbers are odd; consequently,
every two numbers belonging to the sequence are relatively prime.

91. The number 27 cannot of course be divisible by 3. If the
division of 27 by 3 leaves a remainder of 1 then 2* — 1 is divisible
by 3; if the division of 2" by 3 leaves a remainder of 2 then
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o0 1 is divisible by 3. Consequently, in all the cases one of
the two numbers 2* — 1 and 27 -+ 1 is divisible by 3, and hence
if both these numbers exceed 3, they cannot be simultaneously
prime numbers.

92. (a) Ii the remainder resulting from the division of a prime
number p > 3 by 3 were equal to 2 then 8p — t would be divisible
by 3. Therefore if 8p — 1 is a prime number then the division of p
by 3 must leave a remainder equal to 1; in this case 8 4 1 is
divisible by 3; if p is equal to 3 the number 8p + 1 = 25 is also
composite.

(b) If p is not divisible by 3, the division of p? by 3 leaves a
remainder of 1 (see the solution of Problem 79 (b)), and conse-
quently 8p? -1 is divisible by 3. Thus, we must have p = 3 and
8p2 4 | = 73. We see that in this case 8p?—1 =71 is also a
prime number.

93. The division of a prime number different from 2 and 3 by 6
leaves a remainder equal to 1 or 5 because if the remainder result-
ing from the division of that number by 6 were equal to 2 or 4,
this prime number would be even (which is impossible because
the prime number is supposed to be different from 2) and if the
remainder were equal to 3 the prime number would be divisible
by 3 (which is also impossible). Thus, any prime number exceed-
ing 3 can be written in the form 6n -+ 1 or 6n 4 5. The squares
of these expressions are equal to 36n2+ 12n 41 and 36n% 4
—+ 60n + 25 respectively, and in both cases the remainders re-
sulting from the division of these squares by 12 are equal to 1.

94, The three prime numbers in question are of the form 6n 4 1
or 6n -+ 5 (see the foregoing problem). Therefore at least two of
them have the same form. Consequently, the difference of these
two prime numbers which is equal to d or to 2d where d is tie
common difference of the progression is divisible by 6. Hence, d
is divisible by 3. Besides, since d is a difference of two odd num-
bers, it must be divisible by 2. Therefore d is divisible by 6. (Also
see the solution of Problem 95 (a).)

95. (a) Since all prime numbers different from 2 are odd, the
common difference of the progression is an even number. Further,
if the common difference of the progression were not divisible by
3 then the division by 3 of the three terms a;, a; 4 d and q; 4 24
of the progression would leave different remainders because among
them there are not two numbers whose difference is not divisible
by 3. Consequently, at least one of them would be divisible by 3,
which is impossible because, according to the condition of the
problem, all the terms of the progression are prime numbers (if
oy = 3 then a; 4 3d is also divisible by 3). Similarly, if d were
not divisible by 5, the division of all the numbers a;, a; 4 d,
a1+ 2d, a1 + 3d and a; + 4d by 5 would leave different remain-
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ders and, consequently, at least one of them would e divisible

But this inequality cannot hold for £ = 2, whence it follows that

all the terms of the arithmetic progression are prime numbers

implies that the common difference of the progression must be

divisible by 7. Thus, the common difference d of the sought-for

progression must be multiple of 2-3.5.7 = 210, that is d == 210%.
By the condition of the problem, we have

ajo==a; 4 9d = a, -} 1890k < 3000

But this inequality cannot hold for & = 2, whence it follows that
k = 1. Therefore a; << 3000 — 9d = 1110.

Further, we have 210=11:19+4 1, and consequently the
(m -+ 1)th term of the progression can be written in the form

Ampr=a;+ (11 - 194+ 1) - m=11-19m + (a; + m)

It follows that if the division of a; by 11 leaves a remainder of 2
then ajo is divisible by 11; if the remainder resulting from the
division of a; by 11 is equal to 3 then ay is divisible by 11, etc.
Thus, we can prove that the division of a; by 11 cannot leave a
remainder equal to 2, 3, 4, ... or 10. If the number a, is different
from 11 then it cannot be divisible by 11 (because a; is a prime
number). Hence, either a, is equal to 11 or the division of a; by
11 leaves a remainder equal to 1. Further, using the equality
210 = 1316 4 2 which implies

mp=a;+ 1316+ 2)m==13-16m + (a, + 2m)

we can show that the division of a; by 13 leaves a remainder
which can only be equal to 2, 4, 6, 8, 10 and 12. Now, taking into
account that the number a; is odd (because all the terms of the
progression are odd), we conclude that it is either equal to 11 or
can be written in one of the following forms:

2-11.131 4+ 23 =286/} 23, 286/ 45, 286! 67,
286/ 155, 286/ 177 and 286/ - 199

Since a; << 1110, it only remains to test the following values
of a;:

11; 23; 309; 595; 881; 45; 331; 615; 903; 67;
353; 637; 92b; 155; 441; 727, 1013; 177, 463;
749; 1035; 199; 485; 771; 1057

Among these values only the numbers
11; 23; 881; 331l; 67; 353; 727; 1013; 463 and 199
are prime.

6 — 60
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On testing the 10 progression corresponding to these prime
numbers we find that only one of them satisfies the conditions
of the problem, namely this is the arithmetic progression

199; 409; 619; 829; 1039; 1249; 1459; 1669; 1879; 2089

(b) This problem is solved by analogy with Problem 95 (a).
First of all, by analogy with the solution of Problem 95 (a), we
conclude that if a, is different from 11 then the common difference
of the progression must be proportional to 2-3-5-7-11 = 2310,
that is d = 2310%. It follows that

ay =a; + 23 100& > 20 000

Now it remains to consider the value a; = 11. In this case we
can only assert that d = 210k. Using the equality 210=13-16 + 2
we can write the following expression for the general term of the
progression:

Ao =114 (1316 + 2) kn =13 (16kn + 1) + 2 (kn — 1)

Further, for each of the numbers £ =1, 2, 3,4, 5, 7, 8, 9, 10 it
is possible to indicate a number n < 10 such that &n — 1 is di-
visible by 13, and consequently a.4; is divisible by 13 and is not
a prime number. The values of n corresponding to the enumerated
values of £ are equal to 1, 7, 9, 10, 8, 2, 5, 3, 4 respectively. In
the case when &= 6 we have d = 210.6 = 1260, and the term

a,=11-43 1260 =23791

is divisible by 17. Thus, if a; = 11 then & > 10, and consequently
d = 2100, whence we again obtain a,;o > 20 000.

Remark. In the solutions of Problems 95 (a) and (b) we used the term “pri-
me number” in the ordinary sense and assumed that the terms of the progres-
sion were positive. If this assumption is dropped and by a “prime number” is
meant any integer n which has no divisors different from -1 and +n then
there exist arithmetic progressions satisfying the conditons of Problem 95 (b)
(here is an example of such a progression: —11; 199; 409; 619; 829; 1039; 1249;
1459; 1669; 1879; 2089).

96. (a) If two numbers are not equal to each other and differ
by not more than 4, they cannot have common divisors exceed-
ing 4. Thus, two of the given five consecutive whole numbers can
have 2 or 3 or as their common divisor or can be relatively prime
to each other. Further, among five consecutive whole numbers
ihere are at least two odd numbers and among two consecutive
odd numbers at least one is not divisible by 3. Consequently,
among the given numbers there is at least one odd number not
divisible by 3 and this number must be relatively prime to the
other four numbers.

(b) The solution of this problem resembles the solution of
Problem 96 (a) but is much more complicated. If two numbers are
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not equal to each other and differ by not more than 15, they can-
not have common divisors greater than 15. Since two numbers
having no common prime divisors are relatively prime, we see
that in order to prove the theorem it is sufficient to show that
among 16 consecutive whole numbers there must be one having
no common divisors equal to 2, 3, 5, 7, and 13 with the other
15 numbers; this number is relatively prime to all the others.

We shall begin with deleting eight even numbers from the given
16 numbers because they do not satisfy the necessary require-
ments; the remaining numbers form a sequence of eight consecu-
tive odd numbers. Among eight consecutive odd numbers the 1st,
the 4th and the 7th or the 2nd, the 5th and the 8th or the 3rd and
the 6th must obviously be divisible by 3; further, the 1st and the
6th or the 2nd and the 7th or the 3rd and the 8th or only one of
these numbers are divisible by 5. Similarly, the Ist and the 8th
or only one of the eight consecutive odd numbers are divisible
by 7 whereas there is not more than one number divisible by 11
or 13. If among the eight consecutive odd numbers there are not
more than five numbers divisible by 3 or by 5 or by 7 then there
is a number among them which is not divisible by 3, by 5, by 7,
by 11 and by 13; this number must be relatively prime to the other
numbers. Now we shall consider all the cases when there are not
less than 6 numbers divisible by 3 or by 5 or by 7.

Suppose that there are three numbers among the eight consecu-
tive odd numbers which are divisible by 3; then two of the remain-
ing numbers can be divisible by 5 only if one of the extreme num-
bers (that is the smallest or the greatest of the numbers) is di-
visible by 3 while the other is divisible by 5. On deleting these five
numbers we arrive at a sequence consisting of the 2nd, the 5th
and the 6th numbers or of the 7th, the 4th and the 3rd numbers.
Let us begin with the first case. The 2nd, the 5th and the 6th odd
numbers occupy the 4th, the 10th and the 12th or the 3rd, the 9th
and the 11th places in the original sequence of all 16 consecutive
whole numbers. None of these numbers can have a common di-
visor equal to 13 with the other 15 numbers because each of these
15 numbers differs from that number by less than 13. Conse-
quently, if these three numbers are divisible neither by 3 nor by 5
then one of them (namely, the one which is divisible neither by 7
nor by 11) is relatively prime to all the other numbers. The proof
is carried out in just the same way in the case when aiter the
numbers divisible by 3 or by 5 have been deleted there remain
the 3rd, the 4th and the 7th numbers.

If among the eight numbers under consideration there are three
numbers divisible by 3 then there are not two numbers among the
remaining five numbers which are divisible by 7. In case there are
only two numbers, the 3rd and the 6th ones, divisible by 3 then

6*
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there can be two numbers among the remaining numbers, namely
the 1st and the 8th, divisible by 7, and two numbers, the 2nd and
the 7th, divisible by 5. On deleting these six numbers we obtain
a pair consisting of the 4th and the 5th of the eight odd numbers
which are not divisible by 3, by 5 and by 7. These two numbers
are relatively prime to each of the 15 remaining numbers of the
given sequence because each of the remaining numbers differs
from these two numbers by less than 11 and cannot therefore have
a common divisor equal to 11 or 13 with those two numbers.

Thus, we have completed the proof of the assertion that among
any 16 consecutive whole numbers there is always one number
relatively prime to the others.

Remark. In a similar but simpler way it can be proved that among 8 or
among 10 or among any number less than 16 of consecutive whole numbers
there is always one number relatively prime to the others. For 17 consecutive
numbers this assertion no longer holds: for instance, among the 17 consecutive
numbers from 1184 to 1200 there is no number relatively prime to all the oth-
ers. For any other number % exceeding 16 it is probably possible to inidicate &
consecutive whole numbers among which there is no number relatively prime
to the others; as far as we know, no proof of this general assertion has yet been
elaborated.

97. The sought-for number is equal to the product A,-B, where
A, consists of 666 digits 9 and B, of 666 digits 2. The number A,
is less by 1 than the number 10%¢ whose decimal representation
consists of one digit 1 and 666 noughts; the product of the number
B, by A is equal to the product of B, by 10%¢ (the latter product
consists of 666 twos and 666 noughts) minus the number Bj. It

easily be seen that this difference has the form 22 ... 2177 ... 78.
665 times 665 times

98. The number 777 777 is exactly divisible by 1001 and the
quotient resulting from the division is equal to 777. Therefore the
division of the number 777 ... 700 000 by 1001 gives the quotient

LI p—
996 times

777000777000 ... 77700000

the group 777000 is repeated 166 times

Besides, since the quotient resulting from the division of the
number 77 777 by 1001 is equal to 77 and the remainder is equal
to 700, the division of A by 1001 gives the quotient

777000777000 ... 77700077

the group 777000 is repeated 166 times

and the remainder 700.

99. Since the number 222222 is not a perfect square the de-
cimal representation of the sought-for number has the form
222222 asag ... an wWhere ay, as, ..., a, are some unknown digits.




Solutions 165

Let us first suppose that the number n of the digits of the
sought-for number is even: n = 2k. On extracting the square root
of the sought-for number according to ordinary rules we obtain

/222222 a;ag . . . agy_ a0 = 471 405
16
87 | 622
7 l 609
T041 | 1322
1 } 941
9424 ' 381 asag

4 37696
942805 X X2X3Q@0a11A 12
5 47140 25

{the fifth digit of the result is equal to 0 since the digit x; can
obviously be equal only to 4 or 5 and, consequently, it must be
less than 9; by the same reason, in case the sixth digit is the last
one, it must be equal to 5).

The remainder is equal to zero if ag =14, a0 =20, a; =2,
Ay =205, xy =4, xo =17 and x; = 1, whence we readily find that
as=6+1=7 and a; = (74 9)— 10 = 6. Thus, the smallest
number consisting of an even number of digits and satisfying
the condition of the problem is equal to 222 222 674 025 = 471 4052

The case when the number n is odd (n = 2k 4 1) is considered
in an analogous manner:

/22222 207050 . . . Goplopy; = 149071 ...
1

24122
4 ’ 96
289 | 2622
9 ' 26 01
29807 21 2a;a5aq9
7 208949
298141 | xixaxsx4a1001
1 29814 1

298142 X5X6X7XgX9X 10212013
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Since the number consisting of the two digits x; and x, is not
less than 33 = 119 — 86 and not greater than 43 = 129 — 86, the
sixth digit of the root is equal to 1, and the extraction of the root
does not stop and must be continued. Consequently, the smallest
number consisting of an odd number of digits and satisfying the
condition of the problem has not less than thirteen digits, that is
it exceeds the number 222 222 674 025.

Thus, the sought-for number is equal to 222 222 674 025.

100. The equality m? = n? 4 1954 implies that the numbers m?2
and n? are simultaneously even or odd. Consequently, so are the
numbers m and n. Therefore the number 1954 = m2 — n2 =
= (m 4 n) (m — n) must necessarily be divisible by 4 (because
both numbers m + n and m — n are even) whereas 1954 is not
divisible by 4. Hence, the numbers m and n satisfying the condi-
tion of the problem do not exist.

101. The sought-for six-digit number which begins with the
digits 523 and is exactly divisible by 7-8-9 = 504 can be repre-
sented in the form 523 000 - X where X is a three-digit number.
The division of 523 000 by 504 shows that 523 000 = 504-1037 +-
+ 352, that is the division of 523 000 by 504 leaves a remainder
equal to 352. Since the sum of the number 523 000 and the three-
digit number X must be divisible by 504, the number X can be
equal either to

504 — 352 =152

2.504 — 352 =656

or to

(because 3-504 — 352 is a four-digit number). Thus, there are twor
numbers satisfying the condition of the problem: 523 152 and
523 656.

102. Let N be the sought-for number. By the condition of the
problem, we have

N=131k+ 112=132] 4 98

where & and [ are positive integers. Besides, since N is a four-
digit number, there hold the inequalities

N —98 10 000 — 98

I==m < S0

Further, we have
13124+ 112=1321 + 98 whence 13l1(k—D)=1—14

It follows that if #—1 is different  from zero then the absolute
value of [ — 14 exceeds 130, which is impossible when ! << 75.
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“Thus, there must be £ — [ = 0, that is £ = [, whence we readily
.obtain
1—14=0, k=Il=14
and
N=131-144112=(132. 14 4 98) = 1946

103. (a) The 2n-digit number indicated in the condition of the
problem can be transformed in the following way:

4+ 1021 9. 10202 4 4. 10203 4 9 (102~ 1025 4 ..,
cer F 10 45107 45107 =4-10"""4+9. 10" 2+
+4.10"% 9. 10"1—0"_9Ll 4510 +5.10" =
=410 4+9.10" 2 4+5.10"°—10"+5- 10" +5. 10" =
:=%(8- 1077 418 10™ 2 410+ 10™7° — 2. 10" + 10" + 10" )=

n —1 —1
—L(9.10" " 9. 1ot —g. o) LU= D107 0 10°

This expression is equal to the sum of the terms of an arithmetic
progression whose common difference is 1, the first term is 107!
and the last term is 10® — 1 (the number of the terms of the pro-
gression is equal to 107 — 107! = 9.10%1), that is this expres-
sion is equal to the sum of all n-digit numbers.

{b) The number of those of the numbers in question whose
initial digit'is a (a can be equal to 1, 2, 3, 4 or 5) is equal to
6:6-3 = 108 (since the second and the third digits can be equal
1o any of the six digits 0, 1, 2, 3, 4 and 5 while the fourth digit
.can be equal to any of the three digits 0, 2 and 4 because we
consider only even numbers). It follows that the total sum of all
thousands the integral number of which is contained in all the
numbers in question is equal to (1 +2 4+ 34 4 4-5)-108.1000=
= 1620 000.

Analogously, the collection of those numbers whose second digit
.assumes a fixed value is equal to 5-6-3 = 90 because the initial
digit can be equal to one of the five digits 1, 2, 3, 4 and 5. It fol-
‘lows that the total sum of hundreds the integral number of which
is contained in all the numbers in question (minus the sum of the
integral number of thousands) is equal to (1 +2+4+3+4+4+45)X
X 90-100 = 135 000.

In just the same manner we find that the total sum of tens the
integral number of which is contained in the numbers in question
is equal to (14+2+3+4-+45)-90.10 = 13500 and, finally, the
total sum of ones is equal to (2 +4)-5-6-6-1 = 1080.
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Thus, the sought-for sum is
1620 000 4+ 135 000 4 13500 + 1080 = 1769 580

104. Let us first consider the integers from 0 to 99 999 999; we
shall complete those of the integers which consists of less than
eight digits with a number of noughts on the left to make them
contain eight digits each. Then we shall have 100 000 000 eight-
digit numbers for whose representation we obviously need
800 000 000 digits. It is evident that each of the 10 digits will be
used the same number of times because they all are quite equiva-
lent since 0 may occupy the initial place like any other digit. Con-
sequently, every digit will be used 80 000 000 times.

Now let us find the number of the extra noughts, that is the
number of the noughts written on the left of the numbers consist-
ing of less than eight digits. There are only nine [-digit numbers
(here we do not take into account the number 0), 99 —9 = 90
two-digit numbers, 999 — 99 = 900 three-digit numbers etc. Since
to every 1-digit number we added seven noughts on the left, to
every two-digit number we added six noughts etc., the total num-
ber of the extra noughts (we do not take into account the digits
of the first number which is written as 00 000 000 in this notation)
is equal to

7:9-4+6-90+5-900-4-90004 3900004 2900000 -+
+1-9000000=11111103

Now let us write 1 on the left of the first number 00 000 000;
then we obtain all whole numbers from 1 to 100 000 000. We see
that for the decimal representation of these numbers we need
80 000 000 twos, threes etc. up to nines, 80 000 001 ones (one extra
digit 1 was written on the leit of 00000000) and 80 000 000 —
— 11111 103 = 68 888 897 noughts.

105. There are exactly nine one-digit numbers, 99 — 9 = 90
two-digit numbers, 999 — 99 = 900 three-digit numbers and, ge-
nerally, 9-1071 n-digit numbers.

The one-digit numbers occupy nine places in the sequence under
consideration, the digits of the two-digit numbers occupy 90.2 =
= 180 places, the digits of the three-digit numbers occupy
900-3 = 2700 places, the digits of the four-digit numbers occupy
9000-4 = 36 000 places and the digits of the five-digit numbers
occupy 90 000-5 = 450 000 places, whence it is seen that the digit
we are interested in belongs to a five-digit number.

The digits belonging to the numbers consisting of not more
than four digits occupy the places with indices from 1 to
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9 4 180 4 2700 - 36 000 = 38 889 inclusive. To determine the
number of the five-digit numbers which lie in the interval from the
38 889th place to the 206 788th place in the sequence in question
we must divide the difference 206 788 — 38 889 = 167 899 by 5,
V\;]hich results in a quotient of 33579 and in a remainder of 4,
that is

206788 — 38889 =5-33579+ 4

Thus, the sought-for digit belongs to the 33 580th five-digit
number, that is to the number 43 579, because the first five-digit
number is 10 000. In this number the digit we are interested in is
the fourth one (counting from left to right), and consequently it
is equal to 7.

106. Let us suppose that 0.1234... is a periodic decimal whose
period consists of n digits, the number of the digits preceding the
period being equal to k. Let us consider the number N = 107
where m is an integer not smaller than n + &; in the decimal no-
tation this number is written as 1 with m noughts following it.
When forming the decimal under consideration we consecutively
write all the whole numbers; consequently the number N is also
placed somewhere after the decimal point. Now, since we have
supposed that the decimal 0.1234... is periodic and since there
are m = n 4 k noughts standing side by side somewhere in the
decimal 0.1234..., we conclude that the period of the decimal
consists of noughts only, which is obviously impossible. Thus the
decimal 0.1234 ... cannot be periodic.

107. As is well known, the division of an arbitrary positive in«
teger N by 9 leaves a remainder equal to the sum of the digits ot
the integer (this follows from the fact that the digit a, occupying
the (k2 4 1)th decimal place in the decimal representation of the
number N symbolizes the term ar-10% in the expansion of N in
powers of ten; as to the number a.-10* = az-(99...9+ 1)=
= 99...9a, + a, its division by 9 leaves the same remainder
as ag). It follows that if the remainder r resulting from the divi-
sion of the number N by 9 is different from zero then after a suf-
ficient number of the replacements of the numbers by the sums of
their digits have been performed we eventually arrive at the one-
digit number r and if N is divisible by 9 we arrive at the number 9.
Thus, among the 1000000000 one-digit numbers resulting from
the operations we have performed the ones correspond to the num-
bers 1; 10; 19; 28; ...; 1000000000 whose division by 9 leaves
a remainder of 1 and the twos correspond to the numbers 2; 11;
20; 29; ...; 999999 992 whose division by 9 leaves a remainder
of 2. It is evident that the number of the numbers in the former
group exceeds by unity that in the latter group, and therefore the
number of ones exceeds by unity the number of twos.
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108. (a) The answer to the question is negative. For, if the
decimal representation of a number N = n? ends with nought, it
must necessarily have an even number of noughts at the end, and’
the number N, obtained from N by deleting these noughts must.
also be a perfect square. Therefore it is sufficient to prove that a
number whose decimal representation consists only of the digits-
6 and 0 and which ends with the digit 6 cannot be a perfect
square. Indeed, such a number has either 06 or 66 as its last two-
digits, that is it is divisible by 2 and is not divisible by 4; hence,
it cannot be a perfect square.

(b) The answer to the question is negative. For, if the decimal
representation of a number N = n? ends with the digit 5, then n
must also end with the same digit, that is n = 10n; + 5 and
n?=(10n, + 5)2=100n} 4 100n; + 25=100n,(n, 4+ 1)+ 25. Con-
sequently, the last two digits of the number N = 100N, 4 25 are
25, and we have Ny = n;(n, -+ 1). It is clear that the last digit of
the expression n,(n; + 1) coincides with the last digit of the pro-
duct of the last digits of the numbers n; and n; 4 1; this digit
can only be equal to 0, 2 or 6 because the products 0-1; 4-5; 5-6
and 9.0 end with the digit 0, the products 1-2; 3-4; 6-7 and 8-9
end with the digit 2 and the products 2-3 and 7-8 with the digit 6..
Thus, the last digit of the number N, and the third digit (counting’
from right to left) of the number N must necessarily be equal to 6
because neither the combination of digits 025 nor the combina-
tion 225 can stand at the end of the number N (the decimal re-
presentation of N does not contain the digit 0, and the digit 2
enters into it only once). Since we have N = 1000V, + 625, the
number N is divisible by 5% = 125 because both 1000V, and 625
are divisible by 125; therefore, since N is a perfect square, the
number N must also be divisible by 5* = 625. However, since N
is divisible by 5% the number 1000N, = N — 625 is also divisible:
by 5* and consequently N, must be divisible by 5. Now, since the
number N, is divisible by 5, its last digit can only be 0 or 5; this
means that the decimal representation of the number N has 0625
or 5625 as its last four digits, which is impossible because the
decimal representation of N contains only one digit 5 and does.
not contain 0 at all.

109. To prove the assertion of the problem it is sufficient to-
show that the 444 445-digit number A which is obtained when we
consecutively write 88 889 five-digit numbers a;, as, a3, ..., dss sse
is divisible by a whole number different from 2. It can easily be
shown that A is divisible by 11111. Indeed, the number

A = a,00a;3. .. (gs ss703s 8330ss 839 (here the bar indicates that A is
the number written with the aid of the digits forming the numbers
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Ay, Qs Qg ... Qggssy. Oggsss. (sg o) Can obviously be written as

A= 0ags 880+ Asgsss* 10° + aggesr 1010+ ... 4-a; - 10440 =
=(a;+ar+ ... + agsess + ss s30) T @ssaes (10° — 1) -
+ Ggs 557 (1010 — 1)+ ... - a (10%*0—1) (%)

Now, since ai, ag, ..., Gsgsse are all whole numbers from 11 111
to 99 999 inclusive, the sum of these numbers is equal to

AT 411124111134 ... 499999 =

— L% . 83839=11111-5-88889
-and hence it is divisible by 11 111. All the other addends on the
right-hand side of formula (*) are also divisible by 11 11 be-
cause, for any integral &, the diiference (10%)* — 1* betwean the
powers kth of 10° and 1 is divisible by the difference of the bases
105 —1=99999 = 9-11 111 and hence it is divisible by 11 111.
‘Therefore A is divisible by 11 111.

110. Let the sought-for number be X = ajaias...as where
ay, 4y, ..., Gy are the digits of the number and the bar designates
the number itself. According to the condition of the problem, a, is
equal to the number of noughts among the digits of the number
X, a; is equal to the number of ones, a, is equal to the number of
twos etc. Therefore the sum of all digits of X is equal to

atatat+ ... Fas=a:0+a-14+a-24+ ... +0a9-9
whence we obtain
ay = ay -+ 203 -+ 3a, + 4a; - bag + 6a; -+ Tas + 8ay (*)

By the conditions of the problem, ao = 0 because, if otherwise,
X would not be a 10-digit number (by the way, the condition
ay 7= 0 is readily implied by (*)). If ag =1 then we must have
0o = a; =1 and a, = 8 (because the total number of the digits
must be equal to 10), and all the other digits must be equal to 0,
which is impossible. If ay = 2 then we must have aqy = a; = 2
and a; = 6, and all the other digits must be equal to 0 or we must
have a9 = 2, a3 = 1, and a; = 7, and all the other digits must be
equal to 0, which is impossible either. Now, let ay=1i > 2.
Equality (*) can be rewritten in the form

a0=l.=a2+2a3+ [P +(i—l)a,+ coe —}'8(19 (**)

(if { = 3 then the terms 2a; and (i — 1)a; coincide; if i = 9 then
{i — 1)a; and 8ay coincide). Here a; is the number of the digits
of X equal to i; therefore a;==0 because a¢=1i; on the other
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hand, equality (**) cannot hold for a; > 1, and hence a; = 1.
Therefore (**) can be rewritten thus:

l=ay+2a;+ ... +(—Dai +iag+ ... +8a (***)

From (***)it readily follows that a; = 1 and that all the digits
of the number X different from a,, a1, a; and a; are equal to 0.
Since a; = 1, there is a digit equal to 2 among the digits of the
number X, and it is evident that only the digit a; can be equal
to 2. Thus, in the decimal representation of X only the digits
ay=1 a, =2, apo=1 and a; =1 are diflerent from 0, that is
there are { noughts, 2 ones, 1 digit equal to two and one digit
equal to { among the digits of the number X, whence in follows
that, since X is a 10-digit number, i=10—2 —1—1=6.

Thus, X = 6210001 000 (it can easily be verified that this
number does in fact satisfy all {he conditions of the problem).

111. Since A = 999 999999 = 1 000 000 000 — 1, the product
AX can be expressed as AX=10X — X=uxx5...x, 000 000 000 —
— X1X2...X, Where X = xyx3...x, is an arbitrary natural num-
ber (written with the aid of the digits x;, xs ..., xz; the bars
designate the numbers consisting of the corresponding digits). It
is required that the number AX should have only ones in its
decimal representation, that is

X1Xg .. X, 000000000 — xyx5 ... xp=11... 1111

whence

X1 Xo ... X, 000000000 — 11 ... 11l =x1x5 ... Xz,

Since all the digits of the minuend in the last relation are known
we can write the numbers in a column to perform the subtraction
and to determine, in succession, all the digits of the number X

beginning with the last one:
8 digits

(7)(8) ... 8)(8)(9)
000 000 000
— ... 1., 1110 111 1itoon1t
...067...777 888 888 889

9 digits

Here we have written in the parentheses the digits of the number
X which are determined consecutively. This process should be
continued until we arrive at a group of ones which mutually
cancel when we form the difference; indeed, the decimal represen-
tations of the number X in the minuend and in the subtrahend
can be made to coincide only when the number X obtained in the



Solutions 173

difference begins with a group of noughts (which, of course, are
not taken.into account).
Finally, we arrive at the following value of the number X = X,:

Xo=11...122..,,233...3...77...788...89

RS N | VNSRRI 3 S R
9 digits 9 digits 9 digits 9 digits 9 digits

The decimal representation of this number consists of
949+...4+9+ 841 =172 digits.
7 summands

The number X, we have obtained is obviously the smallest of
all the numbers possessing the required property and there are
also other numbers possessing the same property. The matter is
that we have stopped the process of subtraction when a group of
nine digits 0 has appeared at the beginning of the number X ob-
tained as the difference (we have simply discarded these noughts
because they have appeared at the beginning of the decimal re-
presentation of the number X). However, we can also continue the
subtraction process after these nine noughts have appeared; to
this end we simply write these noughts after the digits 1 in the
minuend. It is clear that on continuing the subtraction we shall
again obtain the digits forming the number X, which will stand
on the left of the nine noughts; the decimal representation of X
will then take the form

X1=Y000 v O)_(o

9 diglts

where X, symbolizes the number X, in the decimal notation. Ge-
nerally, our argument shows that all the numbers X satisfying
the condition of the problem are of the form

X=X,=2X,00...0X,00...0X,00...0X,...X,00...0%,

| N mmnn
9 digits 9 digits 9 diglts 9 digits

where the number n of the groups consisting of nine consecutive
noughts can be quite arbitrary, that is n=0, 1, 2, ... . The
number X, consists of 72(n -+ 1)+ 9n = 81n + 72 digits.

112. Let A = aqan-1...aa, be an n-digit number. We can of
course suppose that a; = 0 because the noughts at the end of the
decimal representation of the number A can be simply dis-
carded since this does not change the sum of the digits of the
number AN for any N. Now let us consider a number N=10"—1=
=999 ... 9 where m/n. It is evident that the sum of the

m nines
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digits of the number

AN=10"A—A=a,0,_,...2,000...0—ama,_ ... a;=
m noughts
=a,y_1 ... (@;—1)999 ... 9(9—a,) (9—a,_y) ... (9—ay) (10—ay)
m-—n nines

coincides with the sum of the digits of the number N which is
equal to 9m.

113. First of all we note that the assertion stated in the problem
can also be considered true for m = 0 (in this case the stipulation
that n == 2 becomes unnecessary and we can take the value n =1
as well) on condition that we put 0° =1 (since a® =1 for all a).
For instance, let n = 1; on denoting all the even digits (including
the digit 0) as a,, o, ... and the odd digits as pi, Bs, ... we can
write

4ol ... =004204424+6"+8=141+14141=5

and
OB+ ... =194+ 30450 L7 LP=1+14+14+14+1=5

Now let us pass to the next value of n: let n = 2; by a4, as, .
and By, Pg, ... we shall again denote all even and all odd digits
respectively and by Ay, A,, ... and By, By, ... we shall denote all
the numbers which can be formed of not more than two digits for
which the sum of the digits is even or odd respectively. It is

evident that every number A; has the form arot; = 102, + &, or

the form Bep: = 10B: + B: (the bars designate the numbers con-
sisting of the corresponding digits) and every number B; has the

form akB: = 10ax + P or Bray = 108x -+ o Denoting the sums of

all numbers A; and of all numbers B; as > A; and ZB, respec-
tively and the sums of all numbers ar and of all numbers B, as

Do, and ), B, respectively we can write
2 Ay = (100, + o)) + X (108, + B;) =
=10C s+ 28 + X+ X 8)

and, analogously,

ZBj=Z(10ak+ﬁz)+2(105k+at)=
=10 ap+ 2B) + (X8 + 2 ay)

The last two relations show that ), A, = > B;.
In just the same manner we can prove the required assertion
for the general case of an arbitrary n using the method of mathe-
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matical induction. To this end we suppose that the assertion has
already been proved for a certain natural number n (and for all
m <C n) and then prove that it remains true for the next natural
number n 4 1 (and for an arbitrary exponent m << n +- 1). Let us
agree to denote all nonnegative numbers consisting of not more
than n digits for which the sums of the digits are even or odd as
ai, @y ... and by, by, ... respectively; further, by analogy with
the above, we shall denote all the numbers consisting of not more
than n + 1 digits for which the sums of the digits are even or odd
as Ay, Ay, ... and By, B,, ... respectively. For the even and the

odd digits we shall again use the notation oy, o, ... and By, B2, ...
respectively. By the induction hypothesis, we have
Sab= bh=s,, for all p<n (*)
k &

Further, let us denote as
Sn,p=§az+§bz (**)

the sum of the pth powers of all numbers whose decimal represen-
tations involve not more than n digits.

Now we note that every number A; has the form aroy = 10a; 4+
+ o or bep: = 10bs + Pi; similarly, every number B; has the
form mz 10a, 4+ p; or broy = 106y + o Using the notation
analogous to the above we find that

¥ AP =Y (100 +a)" + X (106, + )" where m<n+1

For the expression (10ar 4 o)™ we can write, using Newton’s
binomial formula, the relation

(10ag + )" = 10" - &' +C (m, 1) - 10" "0 "'y +
+C(m, 2)- 10" a8 el + ... +C(m, m—1)- 10aal " + o

The expression (10b.+f:)™ can be written in the same manner.
Therefore, using (*) we obtain

2 (100, + )" =10" Y af +C(m, 1)- 10" X af ™" Yoy +
+C(m, 2)- 10" 2 af 2>l ...
oo FCm, m—1) 10D ap 2 a0l Dol =
=10" 2 af 4 C(m, 1) - 10" "sp, mey D os +
4+ C(m, 2)- 10" sy mes DoGf 4 ...
eer FC(m, m—1)10s,,  aP Do
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and, similarly,
2 (106, +B)" = 10" 2 bF + C(m, 1)- 10" T bp~"' 3B, +
+C(m, 2)- 10" 2 X 672X B + ..
oo HC(m,m—1)- 10 X6, DB+ X BT =
= 10" X b5 4+ C(m, 1)+ 10" 'sp, m=1 22 By +
L C(m, 2) - 10™ 5y mey DB+ ...
coiFC(m, m—1)- 1084, 2B + 2. B
Thus,
2 AT =Y (10a; + a)™ + X (106, + B)" =
=10"S, L C(m, 1)+ 10" s meiSy, 1 +
+C(m, 2)- 10" %, m2S1 a4 ...
voro +C(m, m—1)-10s,, (S, me1+ St m

Now, using (*), (**) and Newton’s binomial formula and per-
forming analogous transformations we arrive at exactly the same
expression for the sum

2. B =2 (10a, + B)" + 2. (106, + )™

which completes the proof of the assertion.
For the exponents m = n the identity indicated in the condition
of the problem does not hold. For instance, if we take n = m =1

then
2oap=20;=0+2-+4+6+8=20
2B =2PB=1+3+5+7+9=295

114. Let us “truncate” the given triangular table in the follow-
ing way: we discard the first two horizontal rows and in every
following row we leave the first four numbers. Further, let us
symbolize every even number by the letter e and every odd nums-
ber by the letter 0. Then we arrive at a table of the form

o e o ¢

whereas

o e 0
e e
e

o © ®© O
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We see that the fifth row of the new table coincides with the
first one. Further, each of the first four numbers in every horizon-
tal row of the given number triangle is even or odd depending
solely on whether the first four numbers of the preceding row are
even or odd. Consequently, in the new table the rows must repeat
periodically with a period of four rows. Since each of the first four
rows of the new table contains an even number it follows that all
the other rows contain even numbers as well.

115. Let us prove that the sum of the numbers in every horizon-
tal row of the given table is divisible by 1958/2 = 979, the sum
of the numbers in every row beginning with the second one even
being divisible by 1958. This auxiliary proposition implies the as-
sertion stated in the problem because the lowermost “row” con-
tains only one number and the “sum of the numbers” in this row
coincides with that number.

It is clear that the sum S, of the numbers in the uppermost row
(which is equal to the sum of the first 1958 natural numbers form-
ing an arithmetic progression whose common difference is equal
to 1) is equal to 1/2 (1958-1959), that is S; is divisible by 1958/2.
Further, the sum S, of the numbers in the second row can ob-
viously be written as S, =04+ 1)4+(14+2)4+(243)+... 4
-+ (1956 + 1957) - (1957 4 1958) = 28; — (0 + 1958) since each
of the terms of the sum §; is involved in the expression of S
exactly twice with the exception of the “extreme” terms 0 and 1958
each of which is involved in the expression of Sy only once. Now,
since both 2S; and 0 4 1958 = 1958 are divisible by 1958 so is the
sum 32.

Let us pass to the third row of the table. It is evident that the
sum Sz of all numbers contained in this row can be written as

Sy=(1+3)+(3+5)+ ... -+(3913 + 3915) = 28, — (1 - 3915)

Indeed, every number belonging to the second row is involved
exactly twice in the expression of S; except the “extreme” num-
bers 1 and 3915 each of which is involved in the sum S; exactly
once. These numbers 1 and 3915 belonging to the second row can
be written as 1 =041 and 3915 = 1957 + 1958; therefore the
sum

14 3915=(0+4 1) + (1957 -}- 1958) =

= (04 1958) 4 (1 4 1957) =2 . 1958
is divisible by 1958, whence it follows that the sum S; is also di-
visible by 1958.

This argument can be continued. The sum S, of all numbers
belonging to the fourth row is equal to
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where 4 = 1 + 3 and 7828 = 3913 4 3915 are the “extreme” num-
bers of the third row, and the rule according to which the given
table is formed readily implies that the sum

447828 =(1 4 3) + (3913 + 3915) = (0 + 1) +
+ (14 2) + (1956 4 1957) + (1957 + 1958) = (0 + 1958) +
+ (1 4 1957) - (1 + 1957) -+ (2 + 1956) = 4 - 1958

is divisible by 1958 whence it follows that the sum S; is divisible
by 1958. In exactly the same way we prove that the sum of the
numbers contained in every other row is also divisible by 1958
(the formal proof can be carried out using the method of ma-
thematical induction), which completes the proof of the assertion
stated in the problem.

i16. If a pole reads xyz|x;y12y (where x, y, ... are digits and
the hars designate the numbers consisting of the corresponding
digits) then xy121 = 999 — xyz and, consequently, 2 =9 —z,
y1=9—yand x,=9-—x. (If x=9 or x =y =9 then the di-
gits xy = 0 or x; = y, = 0 are not written on the pole.) It follows
immediately that if x = y = 2z (this means that we also have
x, =y = 2y = 9 —x) then the conditions of the problem hold;
in this case we have 10 poles satisfying the condition of the pro-
blem (they correspond to the distances of 0 = 000; 111; 222; ...
and 999 km from the poles to station A). In the case when the

number xyz is written with the aid of two different digits these
digits must be such that their sum is equal to 9; then the number
xihzr =9 —x, 9—y, 9— z is written with the aid of the same
digits. There obviously are five pairs of such digits: (0; 9), (1; 8),
(2, 7), (3; 6) and (4; 5). Further, for two given digits a and b
there are six numbers whose decimal representations consist of
these digits: three of them contain two digits a and one digit &
(the latter digit can occupy any of the three places) and, si-
milarly, the other three contain one digit a and two digits . Thus
we see that there are 5.6 = 30 more poles satisfying the condi-
tion of the problem imposed on the distances from the poles to
station A. Hence, the total number of the poles satisfying the
required conditions is equal to 10 4 30 = 40.

117. First solution. The time interval from the beginning of the
first show to the end of the seventh show is less than 13 hours
because the first show begins not earlier than at 12 hours and the
seventh show ends earlier than at one hour in the morning; the
interval from the beginning of the second performance to the end
of the sixth show is greater than 9 hours since the second per-
formance begins before 14 hours and the sixth performance ends
not earlier than at 23 hours. Consequently, since 13 hours/7 << 1




Solutions 179

hour 52 minutes and 9 hours/5 = 1 hour 48 minutes, the interval
from the beginning of a show to the beginning of the next show is
shorter than 1 hour 52 minutes and is longer than 1 hour 48 mi-
nutes. Usually the duration of a show is expressed by a number
of minutes multiple to 5. Let us assume in this first solution that
this is the case. Then it follows that the duration of every per-
formance is 1 hour 50 minutes.

Further, since the first performance ends before 14 hours it
begins either at 12 hours 00 minutes or at 12 hours 05 minutes;
accordingly, the second performance begins at 13 hours 50 minutes
or at 13 hours 55 minutes and so on.

0 N Al

Fig. 11

If we do not introduce the requirement that the number of mi-
nutes every show lasts should be multiple of five then there are
more than two solutions of the problem. This case is considered

below.

Second solution. Let 12 + y be the time of the beginning of the
first show and let x be the duration of every show (here it is
meant that x and y are expressed in hours). Then

the Ist show begins at 12 4 y hours (between 12 hours and 13 hours)
the 2nd show begins at 12 4 y 4 x hours (between 13 hours and 14 hours)
the 7th show begins at 12 4 y 4 6x hours (between 23 hours and 24 hours)

the 8th show begins at 12 4 y 4 7x hours (between 24 hours and 1 hour
in the morning)
whence it follows that

12124y < 13, that is 0y <1
BKLI24x+y<14, thatis 1<x+y<2
WL124+6x+y <24, that is 1I<<bx+y <12
24124 7Tx+y <25, thatis 12<7x+y <13
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On discarding those of the inequalities which follow from the
other inequalities we arrive at the system of inequalities

0<y<l; 1I<x4y<2 HULbx+y; Tx+y<I13

which can be easily solved graphically as is shown in Fig. 11."Any
point belonging to the quadrilateral PQQ,P, shaded in the figure
represents a solution of the problem.

118. Since the trains approach the crossing at n hours and at n
hours 38 minutes, the hour hand of a timepiece (see Fig. 12)

Fig. 12

occupies the position from 0 minutes to 5 minutes and from 38 mi-
nutes to 43 minutes when the lifting gate stops the road traffic
for five minutes and the trains pass the crossing twice during
every hour. Let us mark on the dial of the timepiece all the posi-
tions of the minute hand corresponding to the instants when the
buses pass the crossing: to this end we mark the time #y minutes
when the first bus passes the crossing and then lay off along the
circumference of the dial ih the clockwise direction the arcs cor-
responding to time intervals of T minutes to obtain the consecus-
tive marks indicating the instants ¢, - 7, fo 4 27, etc. The magni-
tudes of #; and Ty should be chosen so that none of these marks
falls inside the intervals from 0 minutes to 5 minutes and from
38 minutes to 43 minutes which are shaded in Fig. 12.

First of all it should be noted that if the time table for the
buses is worked out in the required manner then among the marks
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on the dial obtained as described above there can be not more than
12 different marks *. Indeed, let R and R, be two marks on the
dial lying at the shortest distance from each other and let
ROR, = o° be the angle corresponding to them (here O is the
centre of the dial). The angle a° corresponds to a time interval of
t minutes and the marks R and R, indicate some instants ¢, + iT
and fy 4 jT where { and j are integers (for definiteness, let j > ).
Then the interval between the instants when the ith and the jtie
buses approach the crossing is equal to %2 hours plus or minus v
minutes where & is an integral number; for definiteness, let us
assume that the interval between the buses is equal to & hours
plus T minutes so that the arc WRR, is laid off along the circum-
ference of the dial in the clockwise direction as shown in Fig. 12
(in the case when this interval is equal to % hours minus v minutes.
the arc WRR, is laid off in the opposite direction but the argument
remains almost the same). In this case the [j4-(j—i)]th bus
(that is the (2j — i)th bus) follows the jth bus after & hours and <
minutes and to the moment this bus approaches the crossing there
corresponds a mark R, such that URR; = URR! = «°. Similarly,
to the [(2j— i)+ 1 4-(j — i) ]th bus (that is to the (3j — 2i)th
bus) there corresponds a mark R; such that URyR; = a etc. On:
the other hand, the [{ —(j — i)]th bus (that is the (2{ — j)th bus)
approaches the crossing k2 hours and v minutes earlier than the
ith bus, that is the mark R_; corresponding to the [{ —(j —{)]th
bus is placed so that R_; and R; lie on different sides of mark R
and WR_jR = URR; = «° and so on. In this way we obtain a
network of marks such that the shortest distance between them
corresponds to an arc of «° or, which is the same, to a time in-
terval of v minutes. It is clear that if v << 5 (this corresponds fo
an angle a° << 30° since to an interval of 5 minutes on the dial
there corresponds a central angle of 30°) then at least one of these
marks falls inside an interval corresponding to one of the arcs
wAB and wCD shaded in Fig. 12, which means that the lifting
gate stops the road traffic when the corresponding bus approaches
the -crossing. Therefore there must be v =5 minutes (that is
a’® = 30°), and hence the total number of the marks cannot ex-
ceed 360°/30° = 12.

Thus, the timetable for the buses corresponds to &2 (& << 12)
marks R, R, Rs, ... on the dial. From what has been said it fol-

* It is clear that, generally, there can even be an infinite number of marks
on the dial: it can be proved that this is the case when the interval T is in-
commensurable with an interval of 1 hour corresponding to the turn of the hour
hand through an angle of 360° in this case the marks are placed on the dial
“densely” in the sense that for any point M on the dial and for an arbitrarily
small arc of magnitude & there are marks which lie at an arc distance not ex-
ceeding € from the point M.
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lows that VRR| = UR\Ry = URYR3 = ..., which means that
RR\Rz...Rry is a regular k-gon inscribed in the circumference
of the dial (we shall denote this k-gon as M,). Hence, we should
determine all the values of & (£ << 12) for which regular k-gons
My can be inscribed in the circumference of the dial so that none
of the vertices of M, falls inside the arcs wAB and wCD shaded
in Fig. 12. It is evident that for £ =1 (this means that the buses
follow one another with an interval of one hour) and for
£ =2 (in this case the interval between the buses is half an
hour, and it is required to indicate two marks R and R, on the
dial not falling inside the arcs wAB and wCD and lying on the
opposite sides of a diameter of the dial) it is possible to work out
the timetable in the required manner. The condition T << 30 mi-
nutes means that it is required to find the solutions of the pro-
blem corresponding to the values of £ exceeding 2. It is also
evident that for &= 12 (that is a®° = 30° and v = 5 minutes)
this is impossible. For, in this case, there are no marks within
the arc wAB only if its end points A and B coincide with some
marks R and R;; then the 9th mark corresponds to the instant
(0 4+ 8-5) minutes = 40 minutes and therefore it falls inside the
arc CD. Similarly, the values £ =10, k=9 and £ =7 (that is

the values v = 60/10 = 6 minutes, vt =60/9 = 6—23- minutes and
1=060/7 = 8 % minutes ) should also be discarded. For in-

stance, if T = 6 minutes and if R does not fall inside the arc
wAB then the mark R which is the nearest to the point A must be
within the interval from 5 minutes to 6 minutes and then the mark
corresponding to the 7th bus lies within the interval from 5 4-
4 6-6 = 41 minutes to 6 4 6-6 = 42 minutes which is entirely
contained in the arc wCD. (Let the reader check that if the mark

R falls inside the interval from 5 minutes to 6 -;— minutes or in-

side the interval from 5 minutes to 8; minutes then the 6th or

the 5th bus, respectively, approaches the crossing at instants to
which correspond marks falling inside the arc « CD.) Finally, the
values k=11, k=8 k=6, k=05, k=4 and £ =3 are ad-
missible and they correspond to the values r=60/11=5—l§1—mi-

nutes, 60/5 = 12 minutes, 60/4 = 15 minutes and 60/3 = 20 mi-
nutes respectively. For instance, if # = 11 then the buses may

approach the crossing, say, at the instants 5 minutes, 1015_1 minu-

10
tes, 15ﬁ-

tes, 37—% minutes, 43111 minutes, 48'17T minutes, 54—11—1- minu-

. 4 . 9 . 3 .
minutes, 21T1— minutes, 267 minutes, 32-ﬁ minu-
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tes, and 59%— minutes, and if £ =5 then the buses may ap-

proach the crossing at the instants 8 minutes, 8 4 12 = 20 minu-
tes, 32 minutes, 44 minutes and 56 minutes.

Thus, under the condition T <C 30 minutes the timetable for the
buses can be worked out for T = 20 minutes, T = 15 minutes,

T = 12 minutes, T =7 minutes and T———S% minuies and for
these values of T only.

119. Let the number N be written as N == abc where q, b and ¢
are the digits of N and the bar designates the number N itself. It
is clear that for the numbers N = 100, N = 200, ..., N == 900
we have N/(a 4+ b 4 ¢) = 100. Further, if the number N does not
end with two noughts then 64+ ¢ >0 and a+b+c=a-t1,
and since the digit a of the number N stands in the hundreds.
place, we have N << (a -+ 1)-100 and

N <(a+1)-100
a+b+c a+1

Thus, the greatest value of the ratio we consider is equal to:
100; this greatest value is attained only for the numbers multiple
of 100.

Remark. 1t can similarly be proved that the greatest value of the ratio of
a k-dig't number N = axap—y...a, to the sum ar+ar_1+ ...+ a; of its di-
gits is equal to 10*~! and that this greatest value is attained only for the num-
bers whose last £ — 1 digits are noughts.

=100

120. The given number consists of 192 digits; the number ob-
tained from the given number by deleting its 100 digits consists
of 92 digits.

(a) The first digits of the number we are interested in must
have the greatest possible values. We can delete 100 digits from
the given 192-digit number so that the remaining digits form a
number beginning with 5 nines; these 5 nines can be taken from
the numbers 9, 19, 29, 39 and 49 by deleting the corresponding
84+ 194194 194 19 = 84 digits. We cannot make the next
digits equal to nine because in that case to “arrive” at the nearest
digit nine contained in the number 59 we should delete 19 more
digits; this means that we should delete 84 4- 19 = 103 > 100 di-
gits.

Among the remaining numbers the nearest (counting from left
to right) digit 8 is contained in the number 58; in order to make
this digit stand immediately after the 5 nines we should delete
17 more digits, which we are not allowed to do because 84 + 17=
=101 > 100. Therefore the best way to achieve our aim is to de-
lete 15 more digits preceding the digit 7 in the number 57. Then
the total number of the deleted digits will be 84 4 15 = 99, an#
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we are allowed to delete only one more digit. It is evident that we
should delete the digit 5 contained in the number 58, and thus the
required number is

9999978596061 ... 100

(b) We can make the number obtained after 86 digits have been
deleted begin with 5 noughts: these noughts are contained in the
numbers 10, 20, 30, 40 and 50, the number of the deleted digits
being equal to 10+ 19+ 194 19 4 19 = 86. We cannot make
the next (the sixth) digit be equal to 0 because that nought is
contained in the number 60 and to arrive at this nought we must
altogether delete more than 100 digits. However, we can delete
oniy one digit 5, after which we obtain the digit 1 following the 5
noughts which we have already obtained in the resultant number.
The next digit cannot be made equal 1. However, on deleting one
more digit 5 we can make the next digit of the resultant number
be equal to 2. This argument can be continued and we see that on
deleting 86 4+ 1+ 1414 1 = 90 digits we arrive at a number
beginning with the combination 000001234 which is followed by
the digits 55565758596061 ... . It is evident that the digit fol-
lowing the first nine digits 000001234 of the sought-for number
can be equal to five but cannot be less than 5; for this digit to be
equal to b no additional digits should be deleted. Finally, after the
operations we have performed we can arrive at 0 by deleting the
10 digits preceding this digit 0, which we are allowed to do.
Therefore the number we are interested in is

00000123450616263 ... 100

This number has five noughts at the beginning; on discarding
these noughts we obtain the required 87-digit number.

121. (a) The first digits of the three sought-for numbers must
have the least possible values; consequently in the decimal nota-
tion these numbers have the form

14aq, 9Bb and 3Cc

where the symbol xyz designates the number written with the aid
of the digits x, y and z.

Let us prove the following three facts: (1) A << B << C;

(2) a << b<<c and (3) each of the digits a, b and ¢ is greater
than each of the digits 4, B and C.
_ (1) i, for instance, we had A > B then we should have
Aa > Bb _and 1Aa-2Bb —2Aa-1Bb = (100 + Aa) - (200 4 Bb) —
— (200 + 4a) - (100 +- Bb) = 100(Aa — Bb) >0 and, consequently,
we should have 1Bb6-24a-3Cc << 1Aa-2Bb-3Cc, which is impos-
sible.
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(2) 1f, for instance, we had a >> b, then we should have
14a-2Bb— 1Ab-2Ba=(10- 1A 4 a)(10 2B + b) —

—(10-1TA+5)(10-2B+a)=(10-2B—10:14)(a—6) > 0

whence it should follow that 146-2Ba-3Cc << 14a-2Bb-3Cc.

(3) If there were C > a, that is C =a + x where x > 0 (by
virtue of (1) and (2), the digit C is the greatest among A, B and
C while the digit a is the smallest of the digits a, b and ¢) then
we should have

1Aq - 3Cc — TAc - 3ac = 1Aa - (3ac + 10x) — (14a + x) (3ac) =
=x(10-TAa—3ac) > 0
whence it would follow that TAC-2Bb-3ac < 14a-2Bb-3Ce.
From (1), (2) and (3) it follows that
A<B<C<a<b<ece
and hence the sought-for product is of the form
147 - 258 - 369
(b) The sought-for product must have the form
94a-8Bb - TCc
By analogy with the solution of Problem 121 (a), we can prove
that (1) A<<B <<C, (2) a<<b<<c and (3) each of the digits

a, b and ¢ is less than each of the digits A, B and C.
From (1), (2) and (3) it follows that

a<b<c<A<B<LC
Consequently, the sought-for product has the form
941 - 852 - 763

122. By the condition of the problem, we have m 4 (m 4 1)
+ ...+ (m 4 k)= 1000. According to the formula for the sum of
the terms of an arithmetic progression, we have

2t E (k4 1) = 1000
that is
2m+ k) (k4 1)=2000
Since the number
em+k)—(k+1D)=2m—1
is odd, one of the factors in the above equality is even and the
other is odd. Besides, we obviously have 2m + & > k£ 4+ 1. We see
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that the problem has the following solutions:
2m+ k=2000, k+1=1, m=1000, k=0
2m + k=400, k-+1=5, m =198, k=4

2m -+ k=80, R+ 1=25, m=28, k=24
and
2m k=125, k-+4+1=16, m=>55 k=15

123. (a) Let the number N be different from any power of 2.
Then we have the equality

N=28@Q+1)

where 2% is the highest power of 2 by which N is divisible (the

number & can be equal to zero) and 2/ 4 1 is the greatest odd
divisor of the number N. Further, we have

Q=4 =14+ 1)+ .. F Q=A@ =1+ 2)=
k. k_

=(21+1)(2 12+2 l+2l)=2k(21+1)=N

If several of the first of these (2/4- 1) consecutive integers are
negative (that'is if > 2%), then they and the corresponding
first several positive numbers mutually cancel, and N can again
be represented as a sum of a number (smaller than 2/ 4 1) ot
positive integers.

Now let us suppose that a number of the form 2* can be re-
presented as a sum of m consecutive positive integers n, n 4 1,...
oot m—2 n4+m—1.

Then

2tl=2[n4+ M+ D+ ... +rt+tm—2)+n+m—1)]=
=mrt+ntm—1)=m@@n+m—1)

The difference (2n 4+ m—1)—m =2n—1 being odd, one of

the numbers m and 2n 4+ m — 1 is odd (and both numbers are

different from 1 because m > 1 and n > 0). Consequently the

last equality cannot hold since 2*+! has no odd divisors difterent

from 1.
(b) We have

@+ 1)+ @+ + @45+ ... +@m—1)=
=BFATE=D m—r)=(m+n) (m—n)

Therefore if N is a number which can be represented as a sum of
consecutive odd numbers it must be composite (because it can be
represented as a product of two factors m 4+ n and m — n). On
the other hand, every odd composite number N can be written in
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the form of a product of two odd factors a and b (¢ = b), and
consequently we have N =ab=(m+ n)(m—n) where m =
= (a-b6)/2 and n = (a — b)/2; this means that N is equal to
the sum of the odd numbers froma—b6+1to a6 —1.

Further, the factors m 4+ n and m—n in the formula N =
=(m +- n) (m — n) are simultaneously even or odd; if the num-
ber N is even, these factors must obviously be even, and in this
case N is divisible by 4 (and both m -+ n and m — n are divisible
by 2). Consequently if an even number N is not divisible by 4 it
cannot be represented as a sum of consecutive odd numbers. In
case N is of the form N = 4n (that is N is divisible by 4), the
number N can be represented as the sum of the two consecutive
odd numbers 2n — 1 and 2n + 1.

(c) It is clear that

(' —n+ D+ @ —n+3)+ .. F @I =1)+
+ @+ D+ @ =)t r— 1) =

k-1 __ k—1 —_
_ n+1)-2|-(n =l ok
(all the summands in this sum are odd since n*-! and n are si-
multaneously even or odd).

124. Let us denote four consecutive numbers as n, n 41, n 4+ 2
and n 4 3. The sum of their product plus unity can be written in
the form
nin+r+2)nr+3)+ 1=+ [+ DA+ +1=

=n?+3n) (W +3n+2)+ 1= +3n+ 2 +3n)+ 1=

=(n*+3n4 1)
and consequently this sum is the square of the whole number
(24 3n+41).

125. Let us prove that these numbers assume not more than four
difierent values. Suppose that, on the contrary, there are five num-
bers a), a;, as, as and as among the given 4n numbers which are
pairwise different. Let us suppose that a; < as << a3 << a4 < 0.

We shall start with considering the numbers a;, as, a; and a,.
By the hypothesis, they can be arranged as a geometric progres-
sion. Therefore the product of two of them (which are the ex-
tremes of the proportion) is equal to the product of the other two
numbers (the means of the proportion). But this is only possible
when

Q104 == Qo3

(the equality aja3 = asa; is impossible because a; << ay and
as << a4; it is evident that the equality aja; = asas cannot hold
either).
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Now let us consider the numbers a;, as, a3 and as. In just the
same manner we can prove that ajas = aa,. Consequently,
a,ay = a,0s whence it follows that a, = as, which contradicts the
hypothesis.

We have thus proved that each of the 4n numbers assumes one
.of not more than four different values. Therefore not less than n
numbers among the 4n given numbers assume one of these values.

126. Let us take nine weights weighing n2, (n41)2, (n42)%, ...
wees (4 8)% respectively and divide them inlo the following
three groups:

Ist group: n?, (n45)} (n47)>%
n - (n+52 4 (n47)=3n%+ 24n 4+ 74;
2nd group: (n+ 1%, (n+3? (n+ 8%
(n+ 12+ (n 43P -+ (n 4 8 =3n*+ 24n + 74;
3rd group: (n+27, (n-+4)? (n+6)%
(n+ 2 -- (n 4 4)* + (n + 6)° = 3n® +- 24n - 56

We see that the total weight of the first group and the total

‘weight of the second group are equal and that the third group is
lighter by 18 than each of the former groups. Next we take nine
weights weighing (n+4+9)2, (n+4 10)2%, (n+11)?% ..., (n+ 17)2
and divide them in a similar manner into three groups so that the
first and the third groups are of the same weight while the second
group is lighter by 18 than each of the former groups. Finally, let
us take nine weights weighing (n 4 18)2, (n + 19)2, (n 4 20)2, ...
..., (n 4 26)2 respectively and divide them into three groups so
that the second and the third groups are of one weight while the
first group is lighter by 18 than each of them. Next, on combining
the first groups, the second groups and the third groups which we
have formed we see that any 27 weights weighing n?%, (n -+ 1)2,
(n+2)2 ..., (n- 26)% respectively can be divided into three
groups of equal weight for anyn=20,1,2,3,... .
"~ 127. First of all we note that the conditions of the problem
imply that all the weights simultaneously weigh an even or an
odd number of grams. Indeed, since any 12 of the weights can he
divided into two groups of the same weight, it follows that the
total weight of any group of 12 weights is expressed by an even
number. Besides, the weight of a group of 12 weights remains
even when any of them is replaced by the remaining 13th weight,
which is only possible when the weight of each of the 12 weights
and the weight of the remaining 13th weight are simultaneously
-even or odd, whence follows what was said above.

Now let us consider a new set of weights weighing the number
of grams the former weights weigh minus the number of grams
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the lightest of them weighs (or minus the sum of the weights of
the lightest of them in case there are several such weights). It is
evident that the new set of weights also satisfies the conditions of
the problem, and consequently, the numbers of grams they weigh
are simultaneously even or odd. Among the new weights there
are some whose “weight” is equal to zero, and hence the weights
in the new set must be even. Now let us pass to a third set of
weights which weighs the number of grams the second weights
weigh divided by 2. The third set of weights also satisfies the con-
ditions of the problem.

Next let us suppose that not all of the original weights weigh
an equal number of grams. Then not all the weights in the second
set are equal to zero. Therefore we can continue the process of the
consecutive division of the number of grams all the weights weigh
by two and arrive eventually at a set of weights some of which
weigh an even number of grams (for instance, they can be of
“zero weight”) while the other weigh an odd number of grams.
However, as has been shown, there exists no such set of weights
satisfying the condition of the problem. The contradiction we have
arrived at proves the assertion of the problem.

Remark. In the condition of the problem it is required that the weights should
be expressed by infegral numbers. However, it can easily be seen that if they
are expressed by ratfional numbers instead of integers the result remains the same.
Indeed, on multiplying all the weights by the common denominator of the ra-
tional numbers we reduce the probjem to the case of integral weights. Moreover,
in case the weights are expressed by irrational numbers we can also prove that
they are equal to one another using the fact that it is possible to find rational
numbers which are arbitrarily close to the given irrational numbers (let the rea-
der carry out the proof for this general case; by the way, the rigorous proof
is rather intricate).

128. First of all we note that if two four-tuples ax, bz, ce, de
and ai, by, ¢i, d; obtained for some natural numbers & and [ (k=%/)
in the described manner coincide then either all the numbers
ar = a;, by = b, ¢cx = ¢, and d, = d, are equal to zero or they
all are positive. Indeed, if at least one of the numbers a, b, ¢ and
d is equal to zero then at least at the fourth “step” we arrive at
a four-tuple consisting of zeros which then repeats indefinitely,
and there are not 2 four-tuples among the preceding four-tuples
which coincide. For, if there is exactly one number equal to zero,
say a == 0, then the first 4 four-tuples are of the form

0, 6,c¢,d;, O0,bc,cd, 0; 0, bc%d, 0,0, 0,0,0,0

and there are not 2 four-tuples among them which coincide be-
cause zeros contained in them occupy different places. It is also
clear that if more than one number among a, b, ¢, d is equal to
zero then we also arrive at a four-tuple of zeros not later than at
the 4th step,. and it can again be easily checked that the preceding
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four-tuples not all of whose members are zeros must necessarily
be pairwise different.

What has been said exhausts the investigation of the case when
abed = 0. Now let us suppose that abed = 0. It is obvious that
in this case all the numbers contained in all four-tuples are dif-
ferent from zero. Further, if among the numbers a, b, ¢, d there
is only one negative number, say the first one, then denoting the
positive numbers by the symbol “4-” and the negative numbers

by the symbol “—” we can describe the alternation of the signs
in the first five four-tuples with the aid of the following scheme:
—4++; —++— —F—+H ———— ++++

Thus, here the 5th four-tuple consists only of positive numbers,
and there are not two four-tuples among the preceding ones which
coincide because the alternation of the signs in these four-tuples
is different. This scheme also shows that if among the numbers
a, b, ¢, d there are two negative numbers standing side by side
(for instance, this is the case for the 2nd of the above four-tuples
because the numbers in the four-tuples are considered as being
arranged in a “cyclic” order and therefore the Ist and the 4th
numbers should be regarded as “standing side by side”) or if
there are two negative numbers not adjoining each other (see the
3rd four-tuple) or four negative numbers (for instance, see the
4th four-tuple) then we again arrive at a four-tuple consisting
only of positive numbers not later than at the 4th step (and the
preceding four-tuples are all different). The case of a four-tuple
containing three negative numbers and one positive number is
considered in a similar way: such a four-tuple is transformed into
the 2nd of the above four-tuples immediately after the first step:

d—m— — et — —F— s ——— =+ttt
Thus, in our further argument we can assume that all the num-
bers a, b, ¢, d are positive. Let us put abed = p; we obviously

have

aybic1dy = (ab) (be) (cd) (da) = (abcd)? = p?
and, similarly, asbsceds = (a1b,¢1d1)%2 = p*; asbscsds = p®; general-
ty we can write apbpcpd, = (p)2k where 6 =0, 1, 2, ... (here aq, by,
co, do designate the original numbers a, b, ¢, d respectively).

Therefore if the four-tuples a®, b*%, c*, d* and a; b, ¢, di (where
{ > k) coincide then

P2’2 = apbpcrdy = a;bicd; = P2l
and hence p2’-2k =1, thatis p=1
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Now let us suppose that abed = 1 (it is clear that it is suffi-
cient to investigate this case only). Then, since ¢d = 1/ab, one
of the two numbers ab and cd is not less than 1 and the other is
not greater than 1. For definiteness, let us suppose that ab=0a>1
and cd == 1/o << 1. Similarly, among the numbers b¢ and da =
= 1/bc one is not less and the other is not greater than 1. For
definiteness, let us suppose that bce =B =1 and da=1/p< |
and that o = B (all the other possible cases do not essentially
differ from the one under consideration). In this case we obtain in
succession the following number four-tuples:

1 1 i a 1 1
a, br ¢, d; a, ﬁ) —, 7 GB, E- v R 32, 7 s ) (12
o p o’ af 8 a B

Here the greatest number in the 2nd four-tuple is equal to «, the
greatest number in the 3rd four-tuple is equal to af (ap = a),
the greatest number in the 4th four-tuple is equal to a? (a? = ap)
etc. (it should be noted that the only difference between the 4th
four-tuple and the 2nd four-tuple is that in the former the role
of o and B is played by the numbers o? and B? respectively).

Thus, we see that the greatest number belonging to a four-tuple
does not decrease when the operation of forming new four-tuples
is performed repeatedly. 1f oo > 1 and B > 1 then this greatest
number even permanently increases, and therefore in this case
there are not two four-tuples each of which is different from the
1st one that coincide with each other. Moreover, if at least one of
the two numbers o and B is different from 1, then in this case as
well there are not two-four-tuples different from the 1st one which
coincide. Indeed, if « > 1 and p = 1 then the 2nd four-tuple and
the following four-tuples have the form

1
a 1, —, 1 o =, —, a 1,32—, l, o

Thus, in this case the greatest number belonging to a four-tuple
increases after two operations have been performed and therefore
the resultant four-tuple cannot coincide with any of the preceding
four-tuples, and the numbers contained in the first two four-tuples
are also different. Consequently, if the 2th and the /th four-tuples
coincide (where I > k > 1) then o = B == 1; in this case all the
four-tuples coincide with one another beginning with the 2nd one
(these four-tuples consist of ones only).

Up till now we have not considered the 1st four-tuple a, b, ¢, d
in our argument; it is also necessary to find whether this four-
tuple can coincide with one of the following four-tuples. It turns
out that such a coincidence is impossible because, as has been
shown, all the four-tuples, beginning with the 2nd one, contain
pairs of numbers whose products are equal to 1, and therefore if
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the four-tuple a, b, ¢, d coincides with one of the following four-
tuples and, say, bc=p>1 and ab=a = p > 1 then, since

cd=% <1 and da= % < 1, we must assume that ac=bd=1.

This assumption leads to the following values of the numbers
belonging to the first four-tuple:

NN R,

(why?), which again allows us to compare the greatest numbers

o and 4/af belonging to the st and to the 2nd four-tuple respec-
tively. These greatest numbers coincide only when B = a, that is
only when the Ist four-tuple coincides with the 2nd four-tuple cor-
responding to the case B = 1 and when this 1st four-tuple under-
goes the further transformation analogous to that of the 2nd four-
tuple. The case p =1 is investigated analogously.

This consideration concludes the proof of the theorem.

Remark. The solution of the problem also allows us to estimate the number
of operations which are necessary for all resulting four-tuples of number to be-
come coincident with one another (in the case when not all four-tuples are
different). As we see, in the case when abcd = 0 all the four-tuples coincide be-
ginning with the 4th one, in the case when the numbers a, b, ¢, d are positive
and satisfy the conditions ab = bc = ¢d = da = 1 all four-tuples coincide be-
ginning with 2nd one (and if these equalities are not fulfilled there are not
two four-tuples coinciding with each other) as in the case when the numbers
are not necessarily positive four more steps may be needed in order to trans-
form all the numbers into positive ones.

129. Since the square of each of the numbers a; (where i =
=1,2 ..., N=2%) is equal to 1, the first three number sequen-
ces have the following form:

ai, Qy; vesy ay_1 ay
aiay; Q2035 seny ay_1ay; aya,
2 _— . 2 —_— . - 2 —_ . 2 —_—
a,aja,=aa; a,ala,=a,a,; ...;qy_a¥a, =a,_a; a.aia,=a,a,

Thus, every number belonging to the 3rd sequence is equal to the
product of the corresponding number belonging to the first se-
quence by another member of that sequence whose serial index
exceeds the index of the former by 2 (the numbers in the sequence
ay, ay, ..., ay are regarded as being ordered in a cyclic way, that
is the number ay is followed by the number a; aiter which the
number a, follows again "and so on). Similarly, after two more
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steps we arrive at a sequence which is obtained from the 3rd one
in the same way as the 3rd sequence is obtained from the 1st one,
that is we obtain the sequence

(a1a3) (a3a5) = @105, (a004) (@aae) = aottg;  ...;  (anay) (aaq) = anay

Every number belonging to the last sequence is obtained from
the corresponding number belonging to the Ist sequence (ordered
in the cyclic manner) by multiplying it by the number whose
serial index exceeds that of the former by 4. After 4 more steps
we arrive at a sequence which is obtained from the 5th one in just
the same manner as the 5th sequence is obtained from the 1st one,
that is we obtain the sequence

(a105) (@z00) = a1a9;  (a206) (AeQ10) = Aol10; . ..;  (anas) (a4as) = ayag

whose every member is obtained from the corresponding number
of the original sequence by multiplying it by the number whose
serial index exceeds that of the former by 8.

Generally, after 27 steps we arrive at a sequence of the form

ala2p+1; a2a2p+2; ey QuGop

whose every member is obtained by multiplying the corresponding
number belonging to the original sequence by the number whose
index exceeds by 2° that of the former. It follows that after 2%
steps we arrive at a sequence obtained from the original sequence
(regarded as being ordered in the cyclic manner) by means of the
pairwise multiplication of the numbers belonging to that sequence
whose indices differ by 2% = N, that is we obtain the sequence

—_ 2 =1 [ g— . — 2 —
aa=a=1;, aa,=ad=1; ...; guy=a;,=1

consisting of ones only.

130. First of all let us show that when we pass from the ori-
ginal number sequence ai, @, ..., a» to the “derived” sequence
of, ab, ..., a;, the differences between the numbers are “smooth-
ed” in the sense that under this transformation from one sequence
to the other the difference between the greatest and the smallest
numbers does not increase. Indeed, since half the sum of two
numbers (that is their arithmetic mean) is always not greater
than the greatest of them (it is equal to the greatest number only
in the case when these numbers coincide), the greatest of the num-
bers af, as, ..., an which is equal to half the sum of some two
numbers belonging to the original sequence does not exceed the
greatest of these two numbers and therefore it does not exceed
the greatest of all n numbers a;.. Hence, when we pass from the
sequence a; to the sequence aj the greatest number can only de-
crease. Moreover, this argument shows that the greatest of the

7 —60
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numbers aj can be equal to the greatest of the numbers a; only
in the case when the greatest number A among the numbers a;
is repeated in the sequence a; several times and when in this se-
quence (which is considered as being ordered in a cyclic manner
so that the number a, is again followed by a;) there are two
neighbouring numbers equal to A. Further, it can easily be seen
that if the longest chain of numbers equal to A contained in the
sequence g; is of length & (where & << n), then the sequence af
contains a chain of #— 1 numbers equal to A which follow one

another. For instance, if ai =aye=...= aiyr = A (while
a; << A and Qitr+ << A) then a£+1=a§+2= e = af+k_1 = A
(while ai < A and aj;r < A). Therefore after £ — 1 steps we ar-
rive at the numbers al*-9, ..., a%*~Y among which there are not

two numbers equal to A that stand side by side, and at the next
(the kth) step the greatest of-the numbers under consideration
decreases. Consequently, if not ail the numbers a; are equal to
one another then after the (n — 1)th repetition of the procedure
described in the condition of the problem the greatest of the num-
bers under consideration must decrease. In just the same way it
can be proved that the smallest among the numbers under consi-
deration can never decrease, and if not all the numbers are equal
to one another then after the (n — 1)th repetition of the procedure
the smallest number must increase.

If the numbers ay, @, ..., @, and all the following numbers ob-
tained from them in succession are integers then their “smooth-
ing”, that i{s the decreasing of the difference between the greatest
and the smallest of them, must eventually lead to the case when
this difference becomes equal to zero, which means that all the
numbers become equal to one another. Indeed, the original dif-
ference A —a=maxaq; — mingq; is equal to a positive integer p;

L 13
when A =maxa; decreases or when a==minq;increases this dif-

£ i
ference decreases by not less than unity, and consequently, after
not more than p such steps it must become equal to zero. Thus,
the assertion of the problem will be proved it we show that in
the case when the original numbers a,, as, ..., a, are not all equal
to one another we can never arrive at a sequence of equal numbers.
Now let us study in which way equal numbers b, = a{™,

b,=a{™, ..., b,=al™ can be obtained from the numbers

— plm—1) = glm-1 — gim—1
c,=a™b, ¢,=qaf veey C,=alm"D

among which not all are equal.
It is clear that to this end it is necessary that the numbers with
odd indices belonging to the sequence ¢, ¢s, €3, ... should coincide
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with one another and the numbers with even indices should coin-
cide with one another, that is it is necessary that the equalities

cr=c3=¢3= ... =c¢ and co=cy=c¢= ... =C (¥}

should be fulfilled. However, since the numbers ¢, cq, ¢s, ... are
ordered in a cyclic manner, that is the number ¢,4; should be con-
sidered to be coincident with ¢, equalities (*) (where C == ¢)
cannot hold when n = 2/ 4 1 is an odd number (that is when the
number n + 1 =2/ 4 2 is even). Therefore it only remains to sup-
pose that the number n is even: n = 2[. Now let us make one
more (backward step), that is let us consider the numbers

d =a"™9, d, =a{"?, ..., d, =a{"? preceding the numbers
¢y, Co ..., Cn. We obviously have
di+d ds+d dog—1 - d
Clz%, 03=—'32 4,..-, CQl_lz*——‘Z, [2 2t (**)
and
do+d di+d dy1+ d _
C2=-—2-§—3, c4=4T5""’ Cw:ié__l. (*#%)

Equalities (*) and (**) imply that di +dy 4 ds + ...+ du=2Ic
and equalities (*) and (***) imply that d\4 do+ ds+ .. . - dor=
= 2IC 5= 2{c. We have thus arrived at a contradiction, which com-
pletes the proof.

131. First of all let us find for what numbers x, y and z the
coincidence of the triples (xn, y», 2.) and (x, y, 2) is possible.
Since all the triples, beginning with (x;, y1, 1), must be nonnega-
tive the numbers x, y and 2 must themselves be nonnegative.
Further, let us assume that x >y = 2 and x; = y: = 2z; for all
i=1,2 3, ... . Since we obviously have x; = x;; — 2, for all
i = 1 (where by xo and 2z, are meant the numbers x and z respec-
tively), there must be x=xi=x2>>x3; ..., and if at least one
of the numbers z; (i =0, 1, 2, ...) is positive then x4, << x; < x
(and also x; << x for all j > i). Therefore if x,=x, then z;=0
for i=0,1, ..., n—1. Thus, we must have z= 0 and z; = 0,
whence it follows that either y = x (and then 2y =x—y = 0)
or y= 2= 0 (and then 2; = y — z = 0). Hence, we see that for
the triple (x, y, 2) to coincide with some triple (%, y., 2.} it is
necessary that (for.x = 1) the original triple should have the
form (1, 1, 0) or (1, 0, 0). The second case can be immediately
discarded because from the triple (1, 0, 0) we pass to the triple
(1, 1, 0) distinct from the original triple. Therefore if x = 1 and
the triple (x, y, 2) coincides with (x., ys, 2s), then (x, y, 2) coin-
cides with the triple (1, 1, 0) (and the triples (xa, yn, 2:) are of
the same structure for all n).

132. (a) It should be noted that a difference of two numbers is
even or odd depending solely on whether the minuend and the

7*
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subtrahend are even or odd. Let us agree to symbolize an even
number by the letter ¢ and an odd number by the letter 0. Using
this notation we can indicate (symbolically) the following six es-
sentially different combinations of the original numbers A4, B, C,
D:1°—e e e e 2°—e, e, e 0,3 —e, e, 0,0 4°—e, o, e, 0;
5°—e, 0, 0, 0, 6°—0, 0, 0, 0; all the other combinations can be
obtained from these six combinations with the aid of cyclic permu-
tations of the numbers (that is by permutations which do not
change the order of the numbers; here the 1st number is consider-
ed as following the 4th one). Let us show that in all the cases we
need not more than four steps to pass to a four-tuple of even
numbers. Indeed, combination 1° itself consists of four even num-
bers; from combination 6° we pass to combination 1° aiter one
step; from combination 4° we pass to combination 6° after one
step and, consequently, to obtain combination 1° from 4° we need
two steps; from combination 3° we pass to combination 4° on
making one step and therefore we need three steps to arrive at
combination 1°; finally, from combinations 2° and 5° we arrive at
combination 3° on making one step (in the case of combination 5°
we arrive at a combination obtained from 3° with the aid of a
cyclic permutation) and hence four steps are needed to obtain
combination 1°. Thus, in all the cases it is sufficient to perform
four operations to arrive at a four-tuple of even numbers.

Now let us continue the process of forming new four-tuples. As
before, we easily show that on making four more steps we:arrive
at numbers divisible by 4 and that on making again four ad-
ditional steps we obtain numbers divisible by 8 and so on. Thus,
on continuing this process suificiently long we can arrive at a
four-tuple of numbers divisible by any preassigned power of two
with an arbitrarily large exponent. On the other hand, since the
absolute values of the numbers do not increase, this means that
eventually we must arrive at a four-tuple consisting of zeros only
(if all the numbers A, B, C, D are less than 27 then it is clear
that we must arrive to a four-tuple of zeros on making 4n steps
or, perhaps, a smaller number of steps).

Remark. We can similarly show that if there are 8 or 16 ... or any other
number of the form m = 2% (different from 4) of positive integers then, perfor-
ming operations analogous to the above, we arrive after a finite number of steps
at m numbers equal to zero. If m is not equal to a power of two, the situation

can be different; for instance, starting with the triple of numbers 1, 1, 0 we can
never arrive at the triple 0, 0, O: :

, 0

[

1
, 1,1
, 0, 1
1, ©

’

—
-

{cf. the solution of Problem 131).
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(b) Tt is clear that if the numbers A = a,/ao, B = b;/by, C =
= ¢)/cy and D = d,/d, are rational fractions then, on multiplying
them by a factor £ (for instance, by the common denominator
aobocodo of all the fractions) we obtain integers A’ = kA, B’ = kB,
C’ = kC and D’ = kD, and hence from the fact that the asser-
tion of Problem 132 (a) is true for the numbers A’, B’, C’ and D’
it follows that it is also true for
the numbers A, B, C and D.

In case A, B, C, and D are irra-
tional numbers the assertion of
Problem 131 (a) may be false. To Y M(25,4)
prove what has been said it suf-
fices to indicate at least one four-
tuple of numbers, A, B, C, D for y=r2ez+!
which it is false. Let us put A =
=1, B=x, C=x2 and D=x® where
x is a positive number which can
be chosen arbitrarily. Then we ob-
viously have

Al=]x_ll’ 3
2 '
Bl=lx—XI=x|x—1|, L ! P
Ci=|#—|=xx—1]|, vrg e
Di=|x¥—1|=

=x4+x+Dix—1]

that is the numbers A4,, B;, C; and Fig. 13
D, are proportional to 1, x, x?
and x2 4 x -+ 1 respectively. Therefore if we manage to choose x
so that the equality
24+x+1=x° *)

is fulfilled then the numbers A4,, B, C, and D, will be proportional
to 4, B, C and D and the process of forming new consecutive
fou -tuples of numbers will last indefinitely. As is seen from
Fig. 13 where the graphs of the functions

y=x2+x+1=(x+%)2+%

and y = x® are shown (the former graph is.a (quadratic) para-
bola and the latter is a cubic parabola), the corresponding curves
intersect at a point M(xo, yo). Hence, x = xo is a (positive) root
of equation (*). We have thus shown that the numbers A =1,
B =1xp, C=x2 and D=x}=x24x,-+ 1 (which are obviously
irrational) are such that the assertion of Problem 132 (a) is false
for them.
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133. (a) it can easily be seen that the following array of the
first 100 whole numbers satisfies the condition of the problem:

10 9 8 7 6 5 4 3 2 1 20 19 18 17 16 15 14 13 12 11
30 29 28 27 26 25 24 23 22 21 40 39 38 37 36 35 34 33 32 3t
50 49 48 47 46 45 44 43 42 41 60 59 58 57 56 55 54 53 52 b5l
70 69 68 67 66 65 64 63 62 61 80 79 78 77 76 75 74 73 72 71
Y0 89 88 87 86 85 84 83 82 81 100 99 98 97 96 95 94 93 92 9L

(b) Let a{ be the first (the leftmost) of the numbers written

as a sequence consisting of the 101 numbers from 1 to 101; let.
al® be the first among the other numbers in the sequence which

exceeds a{; let af’ be the first of the numbers following a{? which.
exceeds af’ and so on. In this way we obtain the increasing num-
ber sequence al), af’, af, ..., aM. If there are more than 10 num-

bers in this sequence (that is 1f i1 = 10) then we obtain a solu-
tion of the problem. In case iy < 10 we delete all the numbers.
a, o, o, ..., o) and choose a new increasing number se-
quence a?, a@, o, ..., a® from the remaining 101 —i; num-
bers by performing just the same operation. On continuing this.
process we select from the given 101 numbers a set of increasing
sequences. If at least one of these sequences contains more than
10 numbers we obtain a solution of the problem. Hence it only
remains to consider the case when none of the sequences we have
selected contains more than 10 numbers.

Since the total number of the given integers is equal to 101, im
the general case the total number & of the increasing number se-
quences we have selected cannot be less than 11. In the case un-
der consideration we can assert that from the given 101 numbers.
it is possible to choose 11 numbers arranged in a decreasing
order. These numbers are chosen beginning with the end of the
sequence in the following manner. Let the last number of that se-
quence be equal to the last number a(i’i) of the last of the above

increasing sequences. Next we choose from the last but one se-
quence a number which is the closest to a{¥ from the left. This

number exceeds af because, if otherwise, then in the process of

constructing the last but one sequence we should write the number
aﬁ.’: after that number whereas in reality the number a(i’;) belongs:

to another sequence. In just the same way we then take a number
belonging to the third (counting from the end) sequence which
lies op the left of the number belonging to the last but one se-
quence and is the closest to it, etc. In this way we construct a
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number sequence which increases if we read the numbers from
right to left, that is we obtain a decreasing sequence (counting,
as usual, from right to left); the number of the terms of this se-
quence is equal to the number % of the increasing sequences se-
lected before, and hence this number is not less than 11.

Remark. We can prove completely similarly that, given (n—1)2 positive in-
tegers, it is possible to arrange them so that in the resultant sequence there
are not n numbers forming an increasing subsequence or a decreasing subse-
quence and that for any arrangement of &> (n—1)2? positive integers there

must be n consecutive numbers among them forming an increasing subseguence
or a decreasing subsequence.

134. (a) First solution. Let us consider the greatest odd divi-
sors of the chosen 101 numbers which are equal to the quotients
resulting from the division of each of the numbers by the highest
power of two contained in its factorization. Since there are only
100 different odd numbers not exceeding 200, among these greatest
odd divisors of the 101 numbers there must be two which coincide.
This means that among the 101 numbers there are two which differ
from each other only in the exponents of the powers of the factor
2 contained in them. It is obvious that the greatest of these two
numbers is divisible by the other.

Second solution. The assertion of the problem can also be proved
with the aid of the method of mathematical induction. Let us
show that if we choose three numbers from the four numbers 1, 2,
3 and 4 then among these three numbers there are two such that
one of them is divisible by the other. To this end we can simply
consider all the possible cases which can occur here. (By the way,
we can even start with two numbers 1 and 2: if we “choose™ two
numbers from them then one of the numbers is divisible by the
other.) Next we shall prove that if it is impossible to choose
n -+ 1 numbers from the 2n numbers from 1 to 2n so that none
of the chosen numbers is divisible by any other of them then it
is impossible to choose n -+ 2 numbers from the first 2(n + 1)
positive integers so that none of the chosen numbers is divisible
by any other of them.

Indeed, let us consider some n 4 2 numbers chosen from the
first 2(n 4+ 1) positive integers. If this set of n 4 2 numbers does
not contain the numbers 2n 4+ 1 and 2n + 2 or if it contains only
one of these numbers then there are n 4 1 numbers among them
not exceeding 2n, and, according to the hypothesis, one of these
numbers must necessarily be divisible by some other of them. If
the set of these n 4 2 numbers contains both numbers 2n 41
and 2n 4 2 and also contains the number n 4 1 then the numbers
41 and 21 + 2 form a pair of numbers one of which is divisible
by the other. Finally, if the set of these n 4+ 2 numbers contains
the numbers 2n + 1 and 2n 4 2 but does not contain the number



200 Solutions

n -4 1, we exclude the numbers 2n +4 1 and 21 4 2 and add the
number n + 1 to obtain n 4 1 numbers not exceeding 2n among
which, according to the hypothesis, there is one number divisible
by some other. Ii that number differs from n 4 1 we obtain a pair
of numbers belonging to the n 4 2 numbers we have chosen such
that one of them is divisible by the other. If that number is equal
to n+4 1 then 2n + 2 is also divisible by one of the chosen num-
bers.

(b) To choose the required numbers we can take the following
numbers: the odd numbers from 101 to 199 (50 numbers), the pro-
ducts of all odd numbers from 51 to 99 by 2 (25 numbers), the
products of all odd numbers from 27 to 49 by 4 (12 numbers), the
products of all odd numbers from 13 to 25 by 8 (7 numbers), the
products of all odd numbers from 7 to 11 by 16 (3 numbers) and
three more numbers 3-32, 5-32 and 1-64.

(c) Let us suppose that we have chosen 100 whole numbers
not exceeding 200 none of which is divisible by any other. Let us
prove that none of the numbers from 1 to 15 is contained among
these 100 numbers.

As in the first solution of Problem 134 (a), let us consider all
the greatest odd divisors of the chosen numbers. It is obvious that
these divisors form the set of all odd numbers not exceeding 200
(see the solution of Problem 134 (a)). In particular, these odd
divisors include the numbers 1, 3, 9, 27 and 81. Since among the
numbers corresponding to these odd divisors there are not two
numbers which are divisible by each other, the number containing
the odd factor 27 must be divisible by a power of 2 whose ex-
ponent is not less than 1, the number containing the odd factor 9
must be divisible by a power of 2 whose exponent is not less
than 2, the number containing the factor 3 must be divisible by a
power of 2 with exponent not less than 3 and the number contain-
ing the factor 1 must be divisible by a power of 2 with exponent
not less than 4. This means that the numbers 1, 2=1-2, 3, 4 =
=1.22, 6 =232, 8=1:2% 9 and 12 = 3-2%2 are not contained
among the 200 given numbers.

In just the same way we can consider those of the given num-
bers whose greatest odd divisors are 5, 15 and 45 and prove that
the given numbers do not contain the numbers 5, 10 = 5.2 and
15; similarly, the investigation of those of the given numbers
whose greatest odd divisors are 7 and 21 shows that there is no
number equal to 7 among the 200 numbers. Further, the investi-
gation of those of the given numbers whose greatest odd divisors.
are 11 and 33 shows that the given numbers do not contain the
number 11, and the investigation of those of the given numbers.
whose greatest odd divisors are 13 and 39 shows that the given
numbers do not contain the number 13.



Solutions 201

Remark. By analogy with the solutions of Problems 134 (a), (b) and (c),
'we can show that it is impossible to choose n 41 numbers from 2a (or less)
first positive integers so that among them there are not two numbers divisible
by each other and that, at the same time, it is possible to choose n (or less)
such numbers. Besides, if 3% <C 2n <C 3%#+! then among the 2n first positive in-
tegers there are not n numbers such that af least one of them is less than 2°¢
so that among these n numbers there are not two numbers divisible by each
other, and, at the same time, it is possible to choose n such numbers the smal-
lest of which is equal to 2* (for instance, among the 200 first positive integers it
is possible to choose 100 numbers the smallest of which is equal to 16 so that
none of these numbers is divisible by another).

135. (a) Let us consider the remainders with the smallest abso-
lute values which are obtained when the given numbers are divid-
ed by 100 (here it is meant that if the division of a number a by
100 leaves a positive remainder exceeding 50 then we consider
the corresponding negative remainder —r, that is we represent
the number g in the form a = 100¢g — r where 0 << r << 50). Since
there are exactly 51 nonnegative integers not exceeding 50 (na-
mely, 0, 1, 2, ..., 50) while the number of the remainders we are
considering is equal to 52, there are two among these remainders
whose absolute values coincide. In case these two remainders are
of one sign the difference of the corresponding numbers is divi-
sible by 100; in case the remainders have opposite signs the sum
of these numbers is divisible by 100.

(b) Let ay, as, as, ..., @100 be the given numbers (they can be
arranged in an arbitrary order). Let us consider the sums

S =a, 82=a1+a2, 83=a1+a2—{-a3,...

v So=a;t+ata+ ... +amw

Since the number of these sums is equal to 100, it follows that if
none of them is divisible by 100 then there are at least two among
these sums whose division by 100 leaves equal remainders (be-
ccause there can only be 99 nonzero different remainders resulting
ifrom the division by 100). Let us take these two sums whose di-
vision by 100 leaves equal remainders and subtract the smallest
of them from the other; this results in a sum of the form apyy 4
+ asye + ...+ an which is divisible by 100.

Remark. 1t is clear that the method of the solution of this problem can be in
just the same way used to prove that among any n integers (where n is an
arbitrary natural number) there are always several numbers whose sum is di-
visible by n.

(c¢) In the case when all the numbers in question are equal
(and, consequently, they are all equal to 2) the assertion stated
in the problem is quite evident because the sum of any 50 of these
numbers is equal to 100. If, for instance a, = a, then let us con-
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sider the following sums (cf. the solution of Problem 135 (b)):

s;=a;, S=4a S3=a;+ ay,

ss=a +atas ..., Siw=a+a-+ ... +ag

As before, we conclude fhat one of these sums is divisible by
100 or there are two sums among them such that their division
by 100 leaves equal remainders; in the latter case the difference
s;— s; of these two sums determines a subset of the given set of
numbers the sum of whose members is divisible by 100. (It should
be noted that since a; = as and a;, a; << 100, the remainders re-
sulting from the division of the “sums” s; = a; and s2 = a; by
100 cannot coincide.) Further, if a sum of some of the given num-
bers is divisible by 100 (this sum does not include all the numbers
because at least one number, for instance, the number a;o is not
contained in it) then, since this sum is positive and is less than
200, it must be equal to 100.

(d) First of all we note that among any four integral numbers
there are always two numbers whose sum is divisible by 2 and
that among any ten integral numbers there are always five num-
bers whose sum is divisible by 5. These auxiliary assertions are
similar to the one we have to prove but are of course simpler
(besides, they will be used in the proof of the assertion stated in
the problem). By the way, all the indicated estimates (including
the result of the present problem) can be made more precise: it
can be shown that among any three numbers there are two num-
bers whose sum is divisible by 2 and that among any nine num-
bers there are five numbers whose sum is divisible by 5; further,
among any 199 numbers there are 100 numbers whose sum is
divisible by 100 (see the remark at the end of the solution of the
problem).

Thus, we shall prove in succession the following three facts.

1°. Given 3 numbers a;, a; and as, there are 2 numbers among
them whose sum is divisible by 2. This proposition is quite obvious
because as these two numbers we can take the numbers which are
simultaneously even or odd; it is clear that there are always two
such numbers among the given three numbers.

It is clear that this simple argument is in fact based on the
possibility of replacing the numbers a;, a; and a; by the corres-
ponding remainders ry, rs and rs resulting from the division of the
given numbers by 2: if the sum of two of these remainders is di-
visible by 2 then the sum of the corresponding numbers them-
selves is also divisible by 2. As to the numbers ry, r2 and r;, they
can only assume the values 0 and 1, and therefore it is clear that
ﬁmozng them there are always two values whose sum is divisible

y 2.
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2°, Now let us consider 9 numbers a, as, ..., ag, we asser
‘that there are 5 numbers among them whose sum is divisible by b.
‘To prove the assertion we again replace the numbers aq; them-
selves (where i =1, 2, ..., 9) by the corresponding remainders r;
resulting from the division of these numbers by 5. Each of the
numbers r; can only assume one of the five values 0, 1, 2, 3 and 4
(it is more convenient to consider these smaller numbers than the
original numbers a;). Besides, if we add to all the 9 numbers r;
one and the same arbitrary number ¢ or subtract ¢ from the 9
numbers r;, the remainder resulting from the division of the sum
of any 5 of the numbers by 5 does not change, and in our further
argument we shall use the indicated property. (Let us agree that
after the operation of “shifting” the remainders by -f-¢ or by —¢
‘we again replace the resultant numbersr; =r; &=¢ by the remain-
.ders obtained when the numbers r; are divided by 5 and then
change the notation and, as before, designate the new remainders
by the letters r;.) What has been said allows us to assume that
among the 9 numbers r; (each of which can assume one of the
values 0, 1, 2, 3 and 4) the number 0 occurs more seldom than
‘the other values because of a number £ > 0 occurred more often
among the numbers r; we could simply subtract & from all these
numbers. It is also clear that the number ¢ of zeros must lie
within the limits from 2 to 9: 2 << £ << 9 (we have f > 1 because
among the nine remainders at least one occurs twice). It should
also be noted that in the case when ¢ == 5 the assertion is evident
and no proof is needed because for £t == 5 we have b numbers di-
visible by 5 whose sum is of course divisible by 5.

The further course of the argument is simple but rather lengthy.

If £ = 2 then none of the nine remainders r; is repeated more
than twice; in other words, there are 4 remainders among the
nine numbers r; each of which is repeated twice and only one
remainder which occurs only once. Therefore using the same me-
thod of “shifting” the remainders by one and the same number
¢ we can make this “single” remainder be equal to the number 4.
‘Then the new remainders can be denoted and arranged as
r, ro, fa, ..., re, so that their values are equal to the numbers 0, 0,
1, 1, 2, 2, 3, 3, 4 respectively, and, for instance, in this case the
sum ry 4+ rg+ rs =4 rs 4 r5 4 rg + r7 is divisible by 5 (it is simply
equal to 5). If £ = 3 or £ = 4 then let us assume that r; = ry =
= r3 = 0 and that all the numbers rs, rs, ..., ro are different from
zero; here the number r4 can be equal to 0 or can be greater than 0
(this is of no importance). Further, in the collection of 5 numbers
rs, e, 7, rs and rg (which are different from 0) there are always
several (more than one!) numbers such that their sum is divisible
by 5 (this can be proved by analogy with the solution of Problem
135 (b); cf. the remark at the end of the solution). Finally, to the
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collection of the remainders obtained in this way (lleir sum is
divisible by 5) we can add the necessary number of zeros belong-
ing to the set of the numbers ry, ry and r; (it is however possible
that no additional numbers are needed) to obtain a collection of
five numbers whose sum is divisible by 5.

3°. Now we can show that any collection of arbitrary 199 in-
tegral numbers ay, ay, . .., G199 always contains 100 numbers whose
sum is divisible by 100. It is evident that among these 199 num-
bers there are always 99 pairs of numbers sirmultaneously even or-
odd; these pairs can be chosen from the 199 numbers in succes-
sion; after 98 pairs have been chosen there remain 3 numbers
among which, by virtue of item 1° of the solution of the present
problem, there are 2 numbers which can be chosen in the required
manner. Let us index the 198 numbers we have chosen so that o
and ay, a3 and ay, ..., a7 and a95 are pairs of simultaneously
even or odd numbers. Further, let us replace every pair of num-
bers ag-; and ay (where i=1, 2, ..., 99) by half their sum
bi =(aqi—1 + a2) /2. It is evident that if from the 99 (integral)
numbers b; it is possible to choose 50 numbers whose sum is di-
visible by 50 then the sum of the numbers. a; corresponding to
these 50 numbers b; which we have chosen (the latter sum is twice
as great as the former) is divisible by 100. Hence, for our aims it
is sufficient to show that any collection of 99 integral numbers
contains 50 numbers whose sum is divisible by 50. To this end, by
analogy with the above, let us choose 49 pairs of numbers from the
99 numbers b; so that the numbers forming each of the pair are
simultaneously even or odd. Let us index these pairs as b, and
by, bs and by, ..., by and bgs and then replace every pair of nums-
bers bge—; and bge (where £ =1, 2, ..., 49) by one number ¢,
equal to half the sum of bge—; and bge: ¢r = (b2e~1 + b22) /2. Then
if a sum of some 25 numbers c; is divisible by 25 then the sum of
the 50 numbers b; corresponding to them is divisible by 50. Fur-
ther application of this method is impossible because 25 is an
odd number; therefore in our further argument we shall
choose not pairs but five-fuples of numbers from the set of
the numbers cs.

As is already known, any 9 numbers contain 5 numbers whose
sum is divisible by 5. Therefore among the 49 numbers ¢, there
are 5 numbers (we shall denote them as ¢, ¢s, c3, ¢4 and ¢5) whose
sum is divisible by 5. From the remaining 49 — 5 = 44 numbers
we can choose 5 more numbers whose sum is divisible by 5 and
then continue this process. On choosing in this way 8 five-tuples
of numbers such that the sum of the numbers forming each five-
tuple is divisible by 5, we arrive at the remaining collection of
49 — 8.5 = 9 numbers from which, according to item 2° of the
present solution, it is possible to choose the last (the ninth) of
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the required five-tuples. Next we replace each of the five-tuples
consisting of the numbers ¢si-s, €513, Csi-2, Cs1—1 and cs by their
arithmetic mean d; = (¢si—4 + C51~3 4 . .. -+ ¢s51) /5. It is clear that
if we find 5 numbers d, whose sum is divisible by 5 then the sum
of the numbers c, corresponding to them (the latter sum is 5
times as great as the former) will be divisible by 25, and it is our
aim to prove the possibility of the choice of such numbers ¢z To
complete the proof we note that, according to item 2° of the pre-
sent solution, among the 9 numbers dy, dy, ds, ds, ds, de, dq, ds and
dg there must be five numbers whose sum is divisible by 5.

Remark. Items 1°, 2°, 3° of the solution and the statement of Problem 135
(d) admit of the following generalization. It can be proved that among any
2n — 1 integers (where n is an arbitrary natural number) there are n numbers
whose sum is divisible by n. The proof of this general fact is, however, much
more complicated than the derivation of its special cases corresponding to'n =
=2, n=>5 and n = 100.

136. Since the sum of the numbers in question is equal to 1 and
the greatest of them is equal to 1/2k, the total number of the given
numbers is not less than 2k We shall prove the assertion stated
in the problem by contradiction; to this end let us suppose that
in any group of k numbers belonging to the given sequence the
smallest number does not exceed half the greatest number and
then show that this assumption leads to a contradiction. Under
this assumption, for the group ai, as, ..., ar of £ numbers (where
a; = 1/2k is the greatest number and a. is the smallest number)
we can write the inequality ax <C a,/2. Similarly, for the group
iy Qpi1y ov., Oor—) We have Qop—1 =< /2 << a1/2%, for the group
Qok—1, Gor, ..., Qar—g (this group of numbers exists only when
3k — 2 = n) we have agr—s << @2e1/2 << /23 etc. On adding to-
gether all these inequalities we conclude that

S=a+a+tam +amot ... Satyatgat ... <
<(1+g+o+..Ja=2

(the first two sums on the left involve only finite numbers of terms
while the third sum 14 1/24+ 1722+ ... is understood as an
infinite geomelric progression). Since the given sequence a;, as,
as, ... is nonincreasing we have

gt apritan Fapgat+ .0 S <20
a3t apiot+ g tan + .0 <S< 2

(**)
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Finally, on adding together inequality (*) and all inequalities
(**) we obtain
al+a2—!—a3—|— .o +an<2a1—l—2a1—|— N —!—2[11 =2ka1=

k summands

1
whereas, by the condition of the problem, there must be a;, + a; +
-+ ...+ a, = 1. We have thus arrived at a contradiction, which
proves the required assertion.

137. Let us move along the given circle of crosses and noughts
beginning with a nought until we come to that very nought again
(for definiteness, let the motion along the circle be in clockwise
direction). Then the number of all the passages from a nought to
a nought or to a cross is equal to the total number of the noughts,
that is to ¢. Among these passages there are a number of pas-
sages from a nought to the next nought: the number of these
passages coincides with the number of pairs of noughts standing
side by side, that is it coincides with the number b. 1t follows that
the number of the passages from a nought to a cross is equal to
g—b.

Similarly, when moving along the circle we can find the number
of the passages from a cross to a nought: this' number is equal
o p—a.

Further, the number of the passages from a nought to a cross
is equal to that of the passages from a cross to a nought because
we stop moving along the given circle of crosses and noughts
when we arrive at the initial nought. Therefore g —b=p—a
whence

a—b=p—gq

138. 1t is obvious that if we have i, == & for one of the given
numbers then the product under consideration is equal to zero
(that is this product is even). Further, if we take the sequence
i1=2, i2=-‘1, i3=4, i4=3, Cey igm_1:2m, fom = 2m — 1
(which is a permutation of the numbers 1, 2, 3,4, ..., 2m — 1, 2m)
then the product

— (=D Lo (=D) L rs o (=1) e I= (1) 1" = ()"

is odd. Therefore it only remains to prove that for any odd num-
ber n = 2m + 1 the product in question is always even.
First proof. The total number of even numbers in the sequence
2, ..., n=2m-+1 is equal to m (m < nf2=_2m- 1)/2)
(these even numbers are 2, 4, , 2m). Therefore the number of
the even numbers in the sequence i1, g, ..., in With odd indices
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is not greater than m (because the total number of the even num-
bers is equal to m) and the number of the odd numbers with even
indices is not greater than m either (because there are only m
even indices). Therefore the collection of all indices of the first
and of the second type does not exhaust all n = 2m 4 1 indices.
Consequently, there is an index [ such that either both i; and !
are even or both i; and [ are odd. Now, since the difference
it — ! is even in both cases, the product of all factors £ — i, where
k= 1,2,...,2m - 1 must be even.
Second proof. The sum of the factors we are considering is

(I—i)+ Q=) +B =)+ ... +(n—in)=
=(1+2+3+ ... +0)— (142434 ... +n)=0

Therefore all these factors cannot be odd for an odd n (because
a sum of an odd number of odd summands is always odd). Con-.
sequently, among these factors there is at least one even number
and hence the product of the factors is even.

139. It is clear since each of the products xixs, Xexs, ..., XnXi
is equal to -1 or —1, the sum of all these products can only be
equal to zero when the number n == 2m of the summands in that
sum is even and when some m of the summands are equal to 1
while the other m summands are equal to —1. Since there are
exactly m products among xixs, X9Xs, X3Xs, ..., Xn—1Xn, XnX; that
are equal to —1, there are m changes of sign in the number se-
quence xi, X, X, . . . , Xn—1, Xn, X1. It follows that the number m must
be even (that is m == 2k) and hence n is divisible by 4 (n = 4k)
because the first and the last members of this sequence coincide,
and consequently the number of the changes of sign cannot be
odd.

140. We shall divide the numbers in question into two groups:
let the first group include all the numbers whose decimal represen-
tations contain even numbers of ones and let the other group in-
clude all the numbers whose decimal representations contain odd
numbers of ones. Let A and B be two different 10-digit numbers
belonging to one of the groups. Let us suppose that the decimal
representations of A and B contain one and the same number n
of ones (here 1 << n <9 because if n =0 or n = 10, the num-
bers A and B cannot be different). If the ith digit in the decimal
representation of A is equal to 1 while the ith digit of B is equal
to 2, then some other digit of A (say the jth one) must be equal
to 2 while the jth digit in the representation of B is equal to 1
because the decimal representations of both numbers contain the
same number of ones. In this case the ith and the jth digits of the
decimal representation of the sum A 4 B are equal to 3, that is
this representation must contain not less than two threes. Now
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let us suppose that the decimal representation of the number 4
contains n ones while that of B contains m ones (m == n); for
definiteness, let n > m. Then since the numbers n and m are si-
multaneously even or odd (because A and B belong to one of the
two groups), we must have n—m = 2, whence it follows that
there are at least two numbers & and [ such that the kth and the
lth digits in the decimal representation of A are equal to 1 and
the kth and the I/th digits in the representation of B are equal to
2. Therefore it again follows that the kth and the /th digits in the
decimal representation of the sum A 4 B are equal o 3, that is
the digit 3 occurs not less than twice in the decimal representa-
tion of the number A 4 B.

141. Let us write down the given five 100-digit numbers as a
column and consider all the possible pairs of digits standing in
each decimal place. The number of pairs of digits which can bhe
formed of 5 digits is obviously equal to 10; therefore the total
number of the pairs of digits is equal to 10-100 = 1000. In each
of the columns of digits there must be contained both different
digits 1 and 2; if in a column there is one digit 1 and four digits 2
{or, conversely, one digit 2 and four digits 1) then the number
of the pairs of identical digits is equal to 6, and if a column of
digits contains two digits 1 and three digits 2 (or, conversely,
two digits 2 and three digits 1) then the number of the pairs of
identical digits is equal to 4. Thus, the total number of all pairs
of identical digits (in all 100 decimal places) can vary within
the limits from 4- 100 = 400 to 6-100 = 600.

On the other hand, if A =aas ... a0 and B = b\bs ... big
(the bars designate the numbers consisting of the corresponding
digits) are two of the given five numbers then, as we know, among
the pairs of digits a;, b1; as, bg; ...; @ie0, bioo there are exactly r
pairs of identical digits. Since the number of pairs which can be
formed of 5 digits is equal to 10, we thus find 10r pairs of
identical digits. Hence, we arrive at the inequalities

400 << 10r << 600

whence it follows that 40 << r << 60.

Remark. 1t is evident that if we are given five n-digit numbers then the num-
ber r defined in the same way as above must lie within the limits from 2n/5 to
3n/5: the inequalities 2n/5 << r << 3n/5 can be proved by using the same argu-
ment. Let the reader investigate analogous estimates for the number r in the
case when the number of the given integers differs from 8.

142. 1t is obviously sufficient to show that by means of the ope-
rations described in the condition of the problem we can change
any sign belonging to the first set without changing any other
sign. Indeed, if this is true then it is possible to change consecu-
tively all those signs of the first set which are different from the
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signs of the second set occupying the same places to transform the
first set into the second. To prove this auxiliary assertion we first
of all note that it is possible to change simultaneously two ar-
bitrary signs of the first set, say the ith sign o; and the jth sign o;.
To this end it is sufficient to add to these two signs any 10 signs
Ok Ok ++., Ok, Of the first set to form the two groups o;, o,
Oy .y Opy and oy, O, Ok, ..., Op, Of 11 signs each and to
change consecutively the signs o;, o0&, 0, ..., 0, and then to
change the signs o;, 0z, 0%, ..., 0k,. Now, let o, be an arbitrary
sign belonging to the first set; let us add 10 more signs oy,
qu, .vey 0Og. of the first set to the sign o, to form the group o,
.., 04, oOf 11 signs. Next we change all these 11 signs and
then apply the above technique to change simultaneously the signs
o, and o4, then the signs o, and o4, ... and, finally, the signs
o4, and og, After these operations all the signs of the first set
remain unchanged except the single sign o, which is changed to
the opposite. We have thus proved the auxiliary assertion whence
follows the assertion of the problem.
143. Let us suppose that the chess-player plays a; games of
chess on Monday, a; games during Monday and Tuesday, as
games during the first three days etc., and, finally, a;; games dur-

ing 77 days.
Now let wus consider the following number sequence:
ap, ag s ... am ar -+ 20; ay -+ 205 as + 20; ... ; az; - 20. This

sequence contains 2-77 = 154 numbers each of which does not
exceed 132 + 20 = 152 (the number a;; is not greater than
11-12 = 132 because a period of 77 days consists of exactly
11 weeks). Consequently, at least two of these 154 numbers are
equal to each other (cf. what was said on page 9). However,
there are not two numbers equal to each other among the numbers
o, as, 0, ..., @77 because the chess-player plays not less than one
game of chess every day. By the same reason, there are not two
numbers equal to each other among the numbers a; 4 20, a; + 20,
as -+ 20, ..., a7 + 20. Thus, for some £ and ! there must hold the
equality
ap=a;+ 20

which means that a, —a, = 20 whence if follows that during
k — 1 days from the (I + 1)th day to the kth day inclusive the
chess-player plays exactly 20 games.

144. First solution. Let us consider the remainders resulting
from the division by N of the numbers forming the sequence

I; L 1 ... 11 L. 1
N’

N ones
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Since this sequence contains N numbers and the number of dif-
ferent nonzero remainders resulting from the division by N cannot
be more than N — 1, it follows that if none of the given numbers.
is divisible by N (if otherwise, the assertion of the problem would
be proved), there are two among these numbers, say

K=1t...1 and L=1111 ... 1({> &)
——’

k ones ! ones

whose division by N leaves one and the same remainder. In this
case the difference
L—K=11...100...0

SRS\ —
I—k ones k noughts
is divisible by N.
If N is relatively prime to 10 then the divisibility of the number
L—K=11...1.10° by N implies that the number 11 ... 1 is
N —’
[~k ones i~k ones
also divisible by N.
Second solution. Let us write the fraction 1/N as a periodic
decimal:

%=0 sbiby ... bp(yas ... a;) (where aia, ... aq; is the period)

According to the rule for changing a fraction to a periodic de-
cimal, we have

__1__ biby ... bpaay ...a;—bb, ... bk
N 999...900 ... 0

N, o e et o e
! nines k noughts

It follows that the number A4 =999 ...900...0 is divisible

! nines & noughts

by N. Further, we have A = 94, where 4;=11 ... 100 ... 0. Now

. ! ones k noughts
let us consider the number

B=11...100...011...100...0...11...100...0
Ny e N e e e e ! e N e
! digits k& digits [ digits & digits I digits & digits
which is obtained when we write the number A4, nine times re-
peatedly. It is obvious that B equals the product of the number A,
by the number
100...0100...0...100... 01
(I+k) ({+k) (I+k)
digits digits digits
8 times
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According to the test for divisibility by 9, the last number is di-
visible by 9. Consequently, the number B written with the aid of
-ones and noughts only is divisible by 94, == A and hence it is
divisible by N as well.

In case N is relatively prime to 10 the fraction 1/N is written
as a (pure) periodic decimal of the form. 1/N =0.(a1az ... a;)
where ajas ... a; is the period. Then the number B is written with
the aid of ones only.

Remark. It is clear that if the decimal representation of the number A con-
sists of p ones and that of B consists of pg ones then B is divisible by A. The-
refore under the assumption that N and 10 are relatively prime we can even
assert that there is an infinifude of numbers satisfying the condition of the
problem; by the way, in the general case this also remains true.

145. Let ay and ayy, = av + d be two consecutive terms of an
arithmetic progression. Then the distance between the correspond-
ing points Ay and Ay, representing the numbers ay and ayy( on
the number line is equal to the common difference d of the pro-
gression. Let d > 0; if d is not an integral number we shall
denote by a = {d} = d —[d] > 0 the fractional part of the num-
ber d (ci. page 37) and if d is an integer we shall put a equal
to 1 (in all the cases the number o is equal to the difference
between d and the greatest of the integral numbers less than d).
Our aim is to construct a system of line segments of length 1 each
on the number line which do not overlap and possess the property
that at least one of the points An falls inside one of the line seg-
ment belonging to this system. In other words, we must prove
that it is possible to exclude the case when all the points Ay are
located in the intervals between these line segments. Suppose that
this unfavourable case takes place. Then each of the line segments
AnAwyy of length d consists of an integral number of line seg-
ments belonging to the given system (the total length of these
segments is of course expressed by an integer) and of a number
of intervals between the line segments (including two parts of
such intervals). It is clear that the total length of all these inter-
vals between the line segments (including the two parts of two
intervals) cannot be less than o. Therefore if we manage to con-
struct a system of line segments of length 1 which do not overlap
and possess the property that for sufficiently large numbers N the
number o is always greater than the sum of the lengths of the in-
tervals (and of their parts) between the line segments of the
system, then this system will satisfy the requirement indicated in
the conditions of the problem.

What has been said allows us to make the following construc-
tion. Let us choose line segments of unit length on the positive
number axis beginning with the segment (1, 2) so that the in«
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tervals between the neighbouring segments form, say, a geometric
progression with common ratio 1/2d. This means that after the
segment (1, 2) we chcose the segment (3, 4), then the segment
(4%, 5%), then the segment (5%, 6%), then the segment
(6—273—, 7—;—) etc. (see Fig. 14). In this construction every line
segment is twice as short as the preceding one. Then the sum of

f——t—a—-+ .| o £ F——t+—3——" +H
B =2 -1 0 12 3 4 5 6
Fig. 14

the lengths of all the intervals between the segments is equal to

the sum 14+1/24+1/44+1/84...=2 and the sum R; of the
lengths of all the segments beginning with the ({4 1)th one is
equal to 1/2t 4- 1/241 J- 1/242 - | = 1/2i-1, The latter sum can

be made arbitrarily small for a sufficiently large i Therefore for
any number o = {d} (or a = 1) corresponding to the arithmetic
progression in question with positive common difference d there
is always an index iy such that a > 1/2%~!, that is a > R;. There-
fore, if N is so large that all the intervals up to the igth inclusive
lie to the left of the point Ay (this can always be achieved be-
cause for d > 0 the sequence A, Ay, A3, ..., An, ... is not bounded
and its terms increase indefinitely) then the line segment AyAyi1
of length d can only contain the intervals beginning with the
(io + 1)th one whose lengths are 1/2%, 1/26+1 1/26+2 | Now
since the sum R;, of the lengths of all these intervals is less
than o, both points Ay and Ayyy cannot simultaneously belong to
all these intervals, that is at least one of them must necessarily
fall inside a segment belonging to the system.

Up till now we have supposed that d > 0; to prove the asser-
tion of the problem for the arithmetic progressions with negative
common differences d it is sufficient to extend the system of the
line segments we have constructed to the negative part of the
number line. For instance, the system of line segments on the ne-
gative number axis can be taken symmetric about the origin O
to the one we have constructed for the positive number axis.

146. First of all, it is evident that none of the given fractions
is equal to an integral number. Indeed, if, for instance, a fraction
of the form k(m 4+ n)/m (where k is equal to one of the numbers
1, 2,83, ..., m—1) were an integral number then the numbers
m-~+ n and m would have common divisors (because k is less
than m and cannot be divisible by m); then the number n =
= (m -+ n)— m would not be relatively prime to m either.
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Further, there are not two fractions among the given iractions
that are equal to each other. For, if there were

k(m-+n) — I (m+ n)

m n
(where k is equal to one of the numbers 1, 2, ..., m—1, and [ is
equal to one of the numbers 1, 2, ..., n— 1) then we would have
k l

£ =L thatis m=%n
whence it would again follow that m and n cannot be relatively
prime (because [ is less than n and cannot be divisible by n).

Now let us consider a positive integer A less than m 4 n. The
fractions

m-+tn 2 (m 4 n) k(m+n)

m m ' m

are less than A when k(m -+ n)<<Am, that is when k<
<< Am/(m 4+ n); the number of such fractions is obviously equal
to the integral part [Am/(m + n)]* of the number Am/(m 4 n).
Similarly, the fractions

m+n 2(m -+ n) {m+ n)

n ’ n “ovey n

are less than A when [ << An/(m + n); the number of such frac
tions is equal to the integral part [An/(m+n)] of the number
An/(m+n). Both numbers Am/(m+n) and An/(m-+n) are not
integral because the numbers m, n, and m -+ n are pairwise rela-
tively prime. The sum of these two numbers is equal to A:

Am An
m-+n + m+n_A

Further, if a sum of two numbers o and B which are not in-
tegral is equal to an integral number A then

[a] +[Bl=A4—1

This readily follows from what is shown in Fig. 15. Thus,

[mA-’:n]+[mflt-tn]=A—l

whence we conclude that there are exactly A — 1 fractions among
the given fractions which lie within the interval (0, A) on the
number line.

* On the notalion see page 36.
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What has been proved readily implies the assertion stated in the
problem. Indeed, let us first put A = 1; it follows that there are
no fractions we are interested in among the given fractions which
lie within the interval (0, 1). Further, let A = 2; since among the
given fractions there is one fraction lying within the interval
(0, 2) it follows that the interval (1, 2) also contains one of the
fractions. Next we put A = 3; since the interval (0, 3) contains
{wo of the fractions, that is one fraction more than the interval
(0, 2) contains, it follows that there is one iraction we are in-
terested in among the given fractions which is contained in the
interval (2, 3). Continuing the same argument we complete the
proof of the required proposition.

& , lf
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Fig. 15

147. First solution. If a number a; satisfies the inequalities
1000/m = a; > 1000/ (m -+ 1), the total number of positive in-
tegers not exceeding 1000 and multiple of a; is equal to m
(namely, these numbers are a;, 2a;, 30y, ..., ma;). Therefore if we
denote by k; the number of those of the given numbers which sa-
tisfy the inequalities 1000 = a; > 1000/2, by ky; the number of
those of the numbers which satisfy the inequalities 1000/2 = a; >
> 1000/3, by k; the number of those of the numbers which satisfy
‘the inequalities 1000/3 = a; > 1000/4 etc., then the total number
of positive integers not exceeding 1000 and multiple of at least one
of the given numbers is equal to the sum

ky+ 2ky+ 33+ ...
By the condition of the problem, all these multiples are different;
consequently
B+ 2ky+ 3k3+ ... < 1000

Now it only remains to note that the sum of the reciprocals of
.all the given numbers is less than

1 1 1 %k 3k 4Rk ...
ki 1000 + ke 1000 + ks 1000 + ... = 1000
2 3 4
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(here we have replaced the k; greatest of the given numbers by

1%@, the next k; numbers by ﬂéo—o, the k3 numbers following these-

ko numbers by ]—i@- etc.). Since we have

2k, + 3ky + 4z + ... =
= (ky -+ 2ky + 3k; + --~)+(k1+k2+ks+ )=
= (k) + 2k + 3k3+ ...) +1r < 1000 4 n < 2000

it follows that the sum of the reciprocals of the given numbers is
iess than 2.

Second solution. Let us consider another variant of the same ar-
gument. The number of the members in the sequence 1, 2, ..., 1000
divisible by an integral number a. is obviously equal to the in-
tegral part [1000/a.] of the fraction 1000/a,. Since the least com-
mon multiple of any two of the numbers ay, as, ..., a. is greater
than 1000, there is no number in the sequence 1, 2, 3, ..., 1000
which is simultaneously divisible by two of the numbers.

a, ag, as, ..., 4, is equal to the sum
[1000]+[1000]+[1000]+ +[1000]
a; as a e an
Sitnche the sequence 1, 2, 3, ...,31000 contains 1000 numbers we
must have
[0 2] [ ] 4 .. o [ 242 < o

Further, the integral part of a fraction differs from the fraction
itself by less than 1, and therefore we have

1000 1000 1000 1000 1000 1000

[al]> ax -1 [az]> 23} _I"“’[an]> an_l
Consequently

1000 1000 1000

=)+ (- — 1)+ . + (= —1) <1000
that is

1([)100 + 1000 + 1000 + o+ 1000 < 1000 -+ 1 < 2000

1 Qs Qas an

and hence

1 1 1
E——I—-Eg——l- +E<2

Remark. The estimate derived in the present problem can be made more pre-
cise. Let us consider all the multiples of the given numbers not exceeding 500.
It is evident that %, of the given numbers are themselves greater than 500,
k3 + k3 numbers are not greater than 500 but exceed 500/2, k4 -+ ks numbers
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are not greater than 500/2 but exceed 500/3 etc. Using the same argument as
in the first solution of the problem we conclude from what has been said that
the tetal number of positive integers not exceedmg 500 and multiple of at
least one of the n given numbers is equal to

(ke -+ ks) + 2 (ks + ks} + 3 (ke + k) + ...
and consequently
(ko f3) 42 (ks -+ ks) +3 (ks + k7)) + ... <500

Now we note that the difference 500 —[(ko -+ k3) + 2(ke + ks) + 3 (ks +
4+ k) +...] is equal to the number of integers which do not exceed 500 and
are not multiple of any of the given numbers and that the difference 1000 —
— (k1 +2ky 4 3ks+...) is equal to the number of integers which do not ex-
ceed 1000 and are not multiple of any of the given numbers. Consequently,

500 — (k2 + kg) + 2 (ks + ks) +-3 (ks + k1) + ...1 <

< 1000 — (kg 4 245 + 3k -+ ...)
whenice we obtain

(fy = ko) 4 2 (ks -+ k) + 3 (ks + ke) + ... <500
Now it only remains to observe that
2k, + 3k + 4ky + Bky + 6ks + Ths + ... <
< (ki + 2ky + 3k3 + 4Ry -+ ks + Bks + ...) +
4 [(B1 + ko) + 2 (kg + ko) + 3 (ks + ke) + .. .1 < 1000 -+ 500 = 1500
and, consequently, the sum of the reciprocals of the given numbers which is less
than (2k 4- 3k; + 4ks 4+ ...)/1000 must be less than | —;—

Analogously, the consideration of the mulliples of the given numbers not ex-
ceeding 333 shows that the sum of the reciprocals of the given numbers is even

less than 1%.
It should also be mentioned that the number 1000 in the condition of the
problem can obviously be replaced by any other number.

148. Let us consider the process of changing the common frac-
tion q/p to a repeating decimal. We have

%=A.a1a2 v QpQiQo o v QpO1Qg o o

‘where A is a whole number and ay, a,, ..., ar are the digits form-
ing the period of the decimal. It is obvious that A is equal to the
quotient resulting from the division of g by p, that is we have

g=Ap+q
where ¢, is a remainder less than p. Further, Aa, is the quotient

resulting from the division of 104 by p (the number Aa, consists
of the digits of the number A and the digit a,):

109 ="Aa,- p+ g, where ¢, <p
Similarly,

102-q=Aa1a2-p+q3, ey 10k'4=Aala2 e Qe Pt Grgr e
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The period of the fraction starts to appear again when the re-
mainder gy resulting from the division of a number of the form
10%g by p coincides with the remainder g, resulting from the divi-
sion of the number g by p: gr+1 = 9;. Hence, the number & of the
digits in the period of the decimal is equal to the smallest power
of 10 such that the division of 10*q by p leaves the same remain-~
der as the division of g by p. This means that the difference
10*g — g = (10 — 1)gq is divisible by p, that is the difference
10* — 1 is divisible by p (because the number ¢ is relatively prime
to p).

Now let us suppose that k& is an even number; k2 = 2/. The
divisibility of the difference 10% — 1 = (10— 1) (10 4 1) by p
implies that either 10 — 1 or 10/ 4 1 is divisible by p. The dit-
ference 10/ — 1 cannot be divisible by p because, if otherwise, the
remainder resulting from the division of 10 by p would coincide
with the remainder resulting from the division of ¢ by p and the
period of the fraction g/p would consist of ! digits and not of
k = 2/ digits. We thus conclude that 10* 4 1 is divisible by p.

The property we have proved shows that the sum 10 g/p + q/p
is an integral number. Further, we have

104 , ¢
T+';= Aalag ees QpaQrp1Qry o0 AQuA1Qg .0 Ap. . +

—|—A.a1a2 coe Ay 2o Qo1 o

and consequently the sum of the fractions

0.a1+1a,+'2 ees QiQ1Q9 oo s A« v s +0.a1a2 coe QuQr4q vo. Qop o

is an integral number. Since each of these fractions is less than I
and greater than 0, their sum must be equal to 1 =10999 ...,
which is only possible when

ata1=9 a+ta =9 ..., a+a=9

The last relations readily imply that

arta+ ... day 9
2l 2

In case k is an odd number the equality “ta +k”' % ;
is obviously impossible because the denominator of the fraction on
the left-hand side of this equality is not divisible by 2.
149. The numbers of digits in the periods of the fractions a./p*
and a4 /p**t! are equal to the smallest positive integers & and !
such that 10# —1 is divisible by p* and 10 — 1 is divisible by
p™t! (see the solution of the foregoing problem). Now let us con-
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sider the difference
(10" — 1) — (10* — 1) = 10* (10"* — 1)

The divisibility of this difference by p* implies that 10~%* —1 is
divisible by p". Now let us show that from the divisibility of
10=%* — 1 and of 10f — 1 by p” it follows that 104 — 1 where d is
the greatest common divisor of the numbers {— & and & is also
divisible by p*.

Indeed, let [ — & = gk + r. Then we have

10% — 1 =10+ — 1 =10"(10" — 1) + (10" — 1)

Since the number 109 — 1 = (10%)7 — 19 is divisible by 10* —1,
it follows that this number is divisible by p" and consequently
10" — 1 is also divisible by p*'In just the same way we can show

that the number 10" — 1 where 7, is the remainder resulting from

the division of £ by r is also divisible by p*, the number 10— 1
where rp is the remainder resulting from the division of r by r

is divisible by p*, the number 10 — 1 where r; is the remainder
resulting from the division of r; by rp; is divisible by p* etc.®
Further, it can easily be shown that the sequence of the numbers
r, riy, 13, r3, ... must end with the number d. Indeed, since [ — &
and k are divisible by d, the number r = (I — k) — gk is also di-
visible by d; since k& and r are divisible by d the number r, is also
divisible by d; since r and r; are divisible by d the number r, is
also divisible by d etfc.; consequently, all the numbers in this se-
quence are divisible by d. On the other hand, if r, is the last num-
ber of that sequence (this means that r._; is exactly divisible by
rg, that is the remainder following r, is equal to zero) then re—;
is divisible by rs; the number rr—p is divisible by r. (because both
re—y and re are divisible by r); the number rr—3 is divisible by re
(because both re_y and ry—; are divisible by r.) etc., and, finally, &
and | — k are divisible by rr. Therefore the inequality r» > d con-
tradicts the fact that d is the greafest common divisor of I —&
and k.

According to the definition, & is the smallest positive integer
such that 10# — 1 is divisible by p* Therefore the divisibility of
104 — 1 by p® implies that d =% and [— & is multiple of &,
whence it follows that [ is multiple of &: | = km.

Now let us factor the expression 10 — 1:

100 —1=10"—1=
=(10* — 1) (10"  fq0™=2*F 1 |, 410" 4 1)

* This procedure in which a sequence of consecutive remainders ry, r2, 73, .4
is obtained is known as the Euclidean algorithm.
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Since 10* — 1 is divisible by p®, the division of 10%* by p~ leaves
a remainder of 1; it follows that the remainder resulting from the
division of 10% = 10*.10% by p" is equal to 1, the remainder re-
sulting from the division of 10% = 10%*.10*% by p” is equal to 1,
and so on. Consequently, the division of each term of the sum in
the parentheses by p” leaves a remainder equal to 1, and thus.
when the whole sum is divided by p” we obtain m in the remain-
der. It follows that if 10# — 1 is not divisible by p"*!, then the
least number [ such that 10’ — 1 is divisible by p**+! is equal to p&
and 10°* — 1 is divisible by p"*! and is not divisible by p™+? (be-
cause the expression in the parentheses is not divisible by p?),
whence we conclude that the assertion of the problem is true.

150. (a) Let a and & be the first and the last digits of the
sought-for number N respectively. Then this number is equal to
1000a 4~ 100a 4 106 4 b=1100a + 116=11(100a + b). Since the
number N is a perfect square its divisibility by 11 implies that it
must be divisible by 121 as well, that is N/11 = 100a + b is di~
visible by 11. Further, we have

100a + b =99 + (@ + b) =11 - 9a + (a + b)

and consequently a + b is divisible by 11. Since neither a nor &
exceeds 9 and a is not equal to 0 we must have l << a4 6 < 18
and therefore a + 6 = 11.

It follows that

1004+ b6=11-9 -+ 11=119a+1)
whence
100a + b

N
= et
Since N is a perfect square the number N/121 is also a perfect:
square. Among the numbers of the form 9a 4 1 where a varies
from 1 to 9 only the number 9-7 + 1 =64 is a perfect square.
Consequently, N = 121-64 = 7744 = 882

(b) Let a be the digit in the tens place of the number in
question and let b be the digit in the ones place of the number,
Then this number is equal to 10a 4 b, and the number written
with the aid of the same digits taken in the reverse order is equal
to 106 4 a. By the condition of the problem, we have 10a + b 4
+ 106 + a = 1l (a + b)= k2

It follows that %% is divisible by 11 and therefore a - b is also:
divisible by 11. Since a4 b < 18, this is only possible when,
a+ b =11 and k%2 = 121. Thus, the sought-for numbers are

29; 38; 47; 56; 65; 74; 83; 92

151. Let us denote by a the two-digit number formed of the first
two digits of the sought-for number N and by & the number
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formed of the last two digits of N. Then N = 100a + b, and the
condition of the problem yields

100a + b = (a + b)?

Ya=(@+b—(a+b=@+b@a+b—1) (*)

Thus, the product (a -+ &) (a 4 b -— 1) must be divisible by 99.
Now let us consider separately the foliowing 5 cases which can
take place here.

1°. a4+ b =99 and a + b — 1 = a/k. Since a and b are two-
digit numbers, there must be 2 << 2, and it is readily seen that the
relation £ = 2 is impossible because it leads to the values ¢ = 99
and b = 99 which do not satisfy basic equality (*). Hence we
should assume that

k=1, a+b=99, a=a+b—1=98 N=9801=(98- 1)

2°, a + b=11lm, a4 b —1=9n and mn=a. In this case we
have 9n = 11m — 1. The divisibility of 1tm — 1 by 9 implies that
‘the remainder resulting from the division of the number m by 9
is equal to 5 (it can be verified directly that if the division of m
by 9 left some other remainder then 1lm —1 would not be di-
visible by 9). Thus, m = 9¢ + 5, whence it follows that 9n =
== 99¢ - 54, that is n = 11¢# 4 6. Now we can write

a=mn = (9 + 5) (11¢ + 6) = 99 -+ 109¢ + 30

Since a is a two-digit number, it readily follows that ¢ = 0.
Consequently, a=30, a4 b=11m==55, b=25 and N=3025=
= (30 4 25)2.

3%.a+b=9m, at+b—1=11n and mn = a. The investiga-
‘tion analogous to that carried out for case 2° yields the single so-
Jution N = 2025 = (20 + 25)2.

. qg+b=33ma+b—1=3nora4+b=3mat+b—1=
= 33n. This case is impossible because a4+ b and a4+ 6 — 1 are
relatively prime numbers.

5. a+b—1=299% and a+ b = a/k. In this case we have
a+b—1=9%a+5b=100and a=(a+b)(a+b—1)/99 =
== 100, which is impossible. Thus, the only numbers satisfying the
condition of the problem are 9801; 3025 and 2025.

152. (a) A four-digit number written with the aid of four even
digits may begin with the digits 2, 4, 6 or 8; in other words, it
lies between 1999 and 3000 or between 3999 and 5000 or between
5999 and 7000 or between 7999 and 9000. Accordingly, the square
root of this number lies between 44 and 55 or between 63 and 71
or between 77 and 84 or between 89 and 95. It should also be
moted that since we have (10x 4 y)2= 100x% 4 20xy + 42, the di-

whence
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git in the tens place of the number (10x 4 y)? and the digit in
the tens place of the number y? are simultaneously even or odd in
the case when 0 <C y << 9. Therefore the last digit of the square
root of the sought-for number cannot be equal to 4 or to 6.

Since the square root of the sought-for number is even it can be
equal only to one of the following 10 numbers:

48; 50; 52; 68; 70; 78; 80; 82; 90; 92

It can be verified directly that the numbers satisiying the condi-
tion of the problems are

682 =4624; 782 =6084; 80%=06400; 922=28464

(b) The argument analogous to that used in the solution of Pro-
blem 152 (a) shows that there are no four-digit numbers written
with the aid of four odd digits which are perfect squares.

153. (a) Let us denote the digits in the hundreds, tens and ones
places of the sought-for number N as x, y, and z respectively;
then we have N = 100x - 10y - z. The condition of the problem
yields the relation

100x 4 10y 4 z=x! 4 y! - 2!

Since 7! = 5040 is a four-digit number, none of the digits of
the number N can exceed 6. Consequently, the number N itself
does not exceed 700, whence it follows that none of its digits can
exceed b (because 6! = 720 > 700). Further, at least one digit of
the number N is equal to 5 because N is a three-digit number and
3:4! = 72<C 100. It is clear that x cannot be equal to 5 since we
have 3-5! = 360 < 500. 1t also follows that x cannot exceed 3.
Further, we can assert that x does not exceed 2 since 3! 4 2-5! =
= 246 << 300. Further, the number 255 does not satisfy the condi-
tion of the problem, and if only one digit of the sought-for number
is equal to 5 then x cannot exceed 1 because 2! - 5! - 4! =
= 146 << 200. Moreover, since 1! -+ 5! + 4! = 145 << 150 we con-
clude that y cannot exceed 4; consequently z is equal to 5 because
at least one of the digits of the number N must be equal to 5.
Thus, we have x =1, 4 == y = 0 and z = 5, which allows us {o
easily find the single solution of the problem: n = 145.

(b) The sought-for number N cannot consist of more than
three digits because even 4-92 == 324 is a three-digit number.
This allows us to write N = 100x 4 10y + = where x, y and z are
the digits of the number N; here x can be equal to 0 and it is even
possible that x and y are simultaneously equal to 0.

The condition of the problem implies 100x 4 10y + 2 = x? +
+ y% 4 22 whence

(100 —x)x+(10—y)y=2(—1) *)
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From the last equality it follows that x = 0 because, if other-
wise, the number on the left-hand side of the equality would not
be less than 90 (in case x>=1 we have 100 —x > 90 and
(10 — y)y = 0) whereas the number on the right-hand side would
not be greater than 9-8 = 72 (since z << 9). Consequently, equa-
tion (*) has the form (10 —y)y = z(2—1). It can easily be
verified that the last equality cannot be fulfilled for any positive
integers z and y not exceeding 9 unless y = 0. If y = 0 we have
a single solution: it is obvious that in this case z=1.

Thus, the only number satisfying the condition of the problemn
isN=1.

154. (a) It is evident that the sought-for number N cannot have:
more than four digits because the sum of the digits of a five-digit
number does not exceed 5-9 = 45 and 45% = 2025 is a four-digit
number. Further, since 4-9 = 36 and 362 = 1296, the first digit
of N does not exceed 1 in case N is a four-digit number. But we
have 1 -+ 3-9 = 28, and 282 = 784 is a three-digit number, whence:
it follows that N cannot be a four-djgit number. Thus we can as-
sume that N = 100x 4 10y 4 z where x, y and z are the digits of
the sought-for number; it is possible that x=0 or even x=y=0.

The condition of the problem can now be written in the form

100x 4 10y + 2= (x + y + 2)*

whence
x4+ 9y=@x+y+2—x+y+ta)=k+y+2)c+yt+z—1p

We thus see that either x +y -+ z or x + y 4+ 2 —1 is divisible
by 9 (it is impossible that each of these two numbers is divisible
by 3 since they are relatively prime). Besides, | < x4y -+ 2=
= 27.

Now let us consider separately the following six cases which
can take place here.

1% x+y+2—1=0, 99%-+99y =0, x=y=0, z=1I;

= 1.

2. x+y+2=9, 9x49y=9-8=72;, x=0, 9y=72,
y=28, z2z=1, N=81=(8+1)%

¥ xty+z—1=9,99%+9y=9-10=90, x =0, 9y = 90,
which is impossible.

4, x+y+2=18;, 9x+9y=18-17=306, x=3, y=1,
z = 18 — (3 4 1) = 14, which is impossible.

5. x4-y+2—1=18; 99x 4+ 9y = 19-18 = 342, x=3, y=>5".
z = 19 —(3 + 5)= 11, which is impossible.

6. x+y+2=27, 9x+9y=27-26=702, x=7, y=1,
z = 27 —(7 4+ 1) =19, which is impossible.

Thus, the condition of the problem is satisfied only by the num-
bers 1 and 81.
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(b) A cube of a three-digit number consists of not more than
nine digits; therefore the sum of the digits of the cube of a three-
digit number does not exceed 9-9 = 81 < 100. It follows that the
sought-for number cannot have three digits; it can similarly be
proved that it cannot contain more than three digits either. Thus,
the sought-for number must contain one or two digits.

A cube of a two-digit number cannot have more than six digits;
therefore the sum of the digits of the cube does not exceed
6-9 = 54. Thus, the sought-for number cannot exceed 54. Further,
if a cube of a mumber not exceeding 54 has six digits, its first
digit must be equal to 1; therefore the sum of the digits of the
cube does not exceed 5-9 4 1 = 46. Hence, the sought-for number
does not exceed 46.

II a number does not exceed 46, its cube consists of not more
than five digits, and since the cube is less than 99 999, the sum of
the digits of the cube does not exceed 4-9 4 8 = 44. Since the
cube of the number 44 is a five-digit number whose last digit is
equal to 4, the number 44 also exceeds the sum of the digits of its
cube. Thus, the sought-for number does not exceed 43.

Further, since the remainder resulting from the division by 9
of the sum of the digits of any number coincides with the remain-
der resulting from the division by 9 of the number itself, the di-
vision of the sought-for number and of its cube by 9 must leave
the same remainders. But this is only possible when the division
of the sought-for number by 9 leaves a remainder equal o —1, 0
or 1.

Thus, the sought-for number does not exceed 43 and its division
by 9 leaves a remainder equal to —1, 0 or 1. These conditions are
satisfied only by the following 13 numbers:

1; 8 9; 10; 17; 18; 19; 26; 27, 28; 35; 36; 37

The direct verification shows that among them the numbers satis-
fying the condition of the problem are

1(13=1); 8(8%=512); 17(17°=4193);
18 (183 =15832); 26 (26%= 17576); 27 (27%= 19 683)

155. (a) We can readily check that for x << 5 the given equa-
tion has the only solutions x =1, y==+1 and x =3, y = £ 3,
Now let us prove that there are no solutions for x = 5. Indeed,
the expression 1! 4 2! + 3! + 41 = 33 ends with the digit 3 while
all the factorials 5!, 6!, 7!, ... end with noughts. Consequently, for
x == b the last digit of the sum 1! 4+ 2! 4 ...+ x! is equal to 3
and therefore this sum cannot be equal to a square of a whole
number y (because a square of a whole number cannot end
with 3).
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(b) Let us consider the following two cases that can take place
here:

1°. z is an even number: z = 2n. This case can easily be re-
duced to the foregoing problem because y?* = (y*)2. Thus, for an
even z we have the following solutions:

x=1; y==1; =z is an arbitrary even number
and
x=3; y==4%3;, z=2

2°. The number z is odd. If 2z =1 then we can take any value
of x, and in this case y = 1!+ 21 4 ... 4 x! Now let 2 = 3. We
have 1! + 2! 4 3! 4~ 4! 4 5! 4 6! 4~ 7! 4- 8! = 46 233. The number
46 233 is divisible by 9 and is not divisible by 27 while the num-
ber n! is divisible by 27 for n == 9. The sum 9!+ 10! ... 4 «!
is divisible by 27; however, since 1! 42!+ ... 4- 8! is divisible
by 9 and is not divisible by 27 the entire sum 1! 4 2! 4-... 4 x!
is divisible by 9 and is not divisible by 27 for x == 8. For the num-
ber y* to be divisible by 9 it is necessary that y should be di-
visible by 3. In that case y? is divisible by 27 (because z = 3),
and consequently there are no integral solutions for x = 8 and
Z2>=3. Now it remains to consider the case x << 8 We have
1! = 1 = 1?2 where z is any natural number; further, 1! 4 2! = 3,
that is this sum cannot be equal to any integral power (with ex-
ponent different from 1) of any natural number. We also have
114214 3! = 3% and

114214314 41=233
424 ... 5= 153
4204+ ... +6l= 873
4214 ... 4+71=5913
None of the numbers 33; 153; 873 and 5913 is equal to an in-

tegral power (with exponent different from 1) of any natural num-
ber. Hence, for odd 2 we have the following solutions only:

x=1, y=1, =z is an arbitrary odd number
and

x is an arbitrary natural number, y=11-42t4 ... +x!, z2=1

156. Let
A+t d?=2"

We shall denote by p the greatest exponent of the power of Z
by which all the four numbers a, b, ¢ and d are divisible. On can-
celling both members of the given equality by 2% we obtain

af -+ b1+ cf 4 df =277
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where there is at least one odd number among the four numbers
ay, b], C and d].

If among the four numbers a;, b;, ¢, and d, there is one or
three odd numbers, then the number a} -+ b + ¢ + d} is odd and the
equality ai + bt 4 ¢} + di =2""% cannot be fulfilled. If among
the numbers ay, by, ¢; and d, there are two odd numbers, say
ay =2k -+ 1 and by = 2/ 4 1, while the other two numbers ¢, =
=2m and d, = 2n are even, then we have

@B B4k Ak L+ AR A | dm? - 4 =
=22+ Ek+ P+ 1+m*4n?) 4 1]

The last relation contradicts the condition that the number af -}-
4 b1 + ¢ +di = 2" has no odd divisors (the expression in
square brackets cannot be equal fo 1 because, if otherwise, we
would have k=Il=m=n=0, ¢c,=d; =0 and c=d=0). In
case all the four numbers a; =2k + 1, by =2/+ 1, c;=2m + 1
and dy = 2n 4+ 1 are odd we have

@+ b4 di=
=42 A+ 1AL A+ AP+ Am+ L 42 - dn 4+ | =
=A4lk(k+ D)+ Il+Dt+mm4+1)+n@r+1)41]

A product of two consecutive whole numbers is always even
(because one of the factors must necessarily be even). Conse-
quently, the expression in the square brackets is odd and hence it
is equal to 1. Thus, n—2p =2, n=2p+2 and k=Il=m=
=n=0ai=b=ci=d =1, a=0=c¢c=d= 2~

We see that if n is an odd number then 2" cannot be written as
a sum of four squares; if the number n is even (n = 2p) then 27
admits of only one expansion

2% = (P + @Y+ @+ ()
157. (a) First solution. The equation
4y + 22 =2xyz

is satisfied by the values x = 0, y = 0, z = 0. Besides, if one of
the numbers x, y and z is equal to 0 then the other two numbers
must also be equal to 0 because in this case the sum of their
squares is equal to 0.

Now let us suppose that all the three numbers x, y and z satis-
fying the given equation are different from 0. These numbers can
be represented in the form

x=2%%, y=2", =z=2%,

8- 60
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where x;, y1 and 2; are odd numbers (if one of the numbers x, y
and z is odd then the corresponding exponent of the power of 2
is equal to 0).

Since x, y and z play equivalent roles in the given equation we
can assume that x is divisible by the lowest power of 2 and z is
divisible by the highest power of 2 (this assumption does not
restrict the generality of the argument), that is we suppose that

oSBTy

Let us determine the exponent of the power of 2 by which the
left-hand member of the equality is divisible.

1° If o« << B <<y or a = =4y then, on taking 22¢ out of the
brackets, we obtain in the brackets a sum of one odd and two even
numbers or a sum of three odd numbers respectively, that is this
sum is equal to an odd number.

2°. In case @ = f§ << y we can write

x=2Qk+1), y=2"@QI+1), 2=2"2m
Then we have
£ P o 2= 20 [(2 + 1P+ 21+ 1P + (2m)] =
=220 (42 4+ 4+ 1+ 42+ 4+ 1 + 4m?) =
=2t QR+ P+ mPt+ k- 1)+ 1]

Hence, in this case the sum obtained in the brackets (after 22+
has been taken out of the brackets) is an odd number.

On the other hand, the right-hand member of the equality x2 -
4 y? -+ 22 = 2xyz is divisible by 2e+8+v+! and the left-hand mem-
ber of the equality must be divisible by the same power of 2 as
the right-hand member. ‘

It follows that in case 1° there must be 22 = a4+ p+ v+ L.
Since o << B << v, the last equality implies the inconsistent rela-
tion 2a == 3a 4~ 1 which cannot hold.

It also follows that in case 2° we must have 2a + 1 = o + § +
=4+ v+ 1. Since o = B << v, this implies the inequality 20 + 1 >
> 3a + 1 which cannot hold either.

Consequently, the equation x? 4+ y2 4 22 = 2xyz has no integral
solutions other than the solution x =0,y = 0, 2 = 0.

Second solution. Since the sum of the squares of the numbers
x, y and 2z is even we conclude that either all the numbers are
even or one of them is even while the other two are odd. However,
in the latter case the sum x2 4 y% + 22 is divisible by 2 and is not
divisible by 4 whereas the product 2xyz is divisible by 4, which is
impossible (cf. the first solution of the problem). Hence, we can
assume that the numbers x, y and z are even: x = 2x,, y = 2y,
and z = 2z,. On substituting these values into the original equa-



Solutions 227

tion and cancelling by 4 we obtain
G+ =492

In just the same way, repeating the same argument for the
last equation, we conclude that all the three numbers x;, y; and 2z
are even. Therefore we can put x; = 2x,, y; = 2y, and z; = 22,
and write the equation

X34 vy 2 =8x0,2,

for the numbers xp = x,/2 ==, =Y z,=2. As before, from
i BTy 2Ty

this equation we conclude that the numbers xs, y» and 2, are also
everl.
Continuing the same process we conclude that all the numbers

. d Y —
X, yy 25 xl=§r yl=§’ 21_

rof &

. X
’ x2=Z’

Y 2‘ X Yy 2‘
Y= 22=-4-, X3=7g,» Ys=7g> Zs=“8—,--

x N - 2.
y Yp= 2k’ zk_2k’ e

ey Xp= ok

are even (the numbers xx, yr and 2z, must satisfy the equation
12+ 42 423 =2"1x,y,2,). But this is only possible when x =
=Yy =2 = 0.

(b) Using the same argument we can show that the only in-
tegral solution of the equation x? 4 y? 4 22 4 v?=2xyzv is x=0,
y=02=0,0=0.

Here it is necessary to consider separately the case when the
highest powers of 2 by which x, y, z and v are divisible have equal
exponents, that is the case when

x=2"2k+1), y=2@+1)
z2=2"2m+1), v=2"@n41)
where o is a nonnegative integral number and %, [, m and n are

some integers.
In this case we have

Bttt =204+ 4+ )+ AP+ 4+ 1)+
+@dmP+4m+ 1)+ (@n2 +4n + 1)) =
=202t e+ P+I+m4mtni+n+1)=

=202 [kk+ D) +I(+D+mm+1)+nn+1)+1]
The expression in the square brackets must necessarily be odd
(cf. page 225). Therefore the exponent of the highest power of 2 by

8%
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which the left-hand member of the equality is divisible is equal to
20, 4+ 2. As to the right-hand member, it is divisible by 2%+, Con-
sequently there must hold the equality 2a + 2 = 4o + 1, which is
impossible for integral o.

The second solution of Problem 157 (b) is analogous to the se-
cond solution of Problem 157 (a); let the reader consider this
solution.

158. (a) Let x, y and 2z be three positive integers satisfying the
equation

4+ 2+ P =rkxyz (*)

First of all let us show that it is allowable to assume (without
loss of generality) that the inequalities

S A o )
take place. This assumption simply means that none of the sum-
mands on the left-hand side of equation (*) exceeds half the right-

hand side. Indeed, if, for instance, we had z > % then we could

replace the numbers x, y, z by the smaller numbers x, y and
2y = kxy — z which, as can easily be seen, also satisfy equa-

tion (*):
24y 4 (kxy — 2 = kxy (kxy — 2)

1{ one of the new numbers is again greater than the product of the
other two numbers multiplied by £2/2 then we can again carry out
an analogous replacement and continue this process until we
arrive at a triple of numbers for which conditions (**) are fulfilled
(after this the continuation of the process no longer leads to fur-
ther decrease of the numbers x, y and z).

Let us suppose that x <C y << 2. It is readily seen that the ine-
qualities y << z << kxy/2 imply

kx

1>—-, thatis kx>2

Equation (*) can obviously be rewritten in the form
k 2 k 2
e () = ()

Since z << kxy/2 we see that when the number z in the left-hand
member of the last equality is replaced by y << z the left-hand
‘member increases (in the case when y = z it does not change).
«Consequently,

k 2 k222
2+ 4+ (L —y) >
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On opening the parentheses in the last inequality we obtain

22424 = kxy?
By the hypothesis, x << y and therefore we must have
y'z + 2y2 > kxy2
that is
kx <3

Thus, 2 << kx << 3, that is kx is equal to 2 or to 3. In the case
when kx = 2 equation (*) takes the form

B4y =2yz thatis x4 (y—2?=0

whence we conclude that x = 0 and that kx is not equal to 2 but
is equal to 0. Consequently, there must be kx = 3, whence it fol-
lows that £ can only be equal to 1 or to 3. Simple examples {(ci.
the solution of Problem 158 (b)) show that these values of & are
admissible.

(b) Let us continue the argument used in the solution of Pro-
blem 158 (a). In that solution we had the inequality x2 4 242 ==
= kxy?; since kx = 3, this inequality can be rewritten in the
form

%2422 >=3y% that is x*>=4?

Since we assumed that x << y, it follows that x = y. Now we
put x = y and kx = 3 in the original equation (*) to obtain

2x% 4 22=3x2z, thatis (z—x)(z—2x)=0

Thus, we have 2=x or z=2x. Since 2z << kxy/2=3y/2=23x/2
the number z cannot be equal to 2x, and consequently z = x.

Thus, if conditions (**) are fulfilled we must have x =y = 2.
Now, since kx = 3, the number x can only be equal to 1 or 3. Ac-
cordingly, we obtain the following two solutions of equation (*):

x=y=z=1 (k=3)
and
x=y=2=3 (k=1)

As was shown in the solution of Problem 158 (a), any triple
of numbers x, y, z satisfying equation (*) can be transformed with
the aid of consecutive substitutions of the form 2z; = kxy — z into
a triple of numbers satisfying inequalities (**). Now, since 2, =
= kxy — z implies z = kxy — 2z, we see that every solution of
equation (*) can be obtained from the smallest solutions written
above by means of consecutive substitutions of the form 2; =
= kxy — z. In particular, in this way we obtain the following
solutions of equation (*) not exceeding 1000:
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1°. The case B = 3.

y 1 1 2 5 13 34 8 233 5 29 169 13 29

2z 1 2 5 13 34 89 233 610 29 169 985 194 433

2°. The case &£ = 1.

x 33 3 3 3 3 3 6 6 15

y 3 3 6 15 39 102 267 15 87 39

z 3 6 15 39 102 267 699 87 507 582

(The fact that the solutions corresponding to the value £ =1
are obtained from the solutions corresponding to the value £ = 3
by means of the multiplication of the numbers x, y and 2 by 3 is
a direct consequence of the relations connecting the smallest so-
lutions of the equations x? 4 y? 4+ 22 = xyz and x2+ y2 4+ 22 =
= 3xyz.)

159. The equality x® = 2(y® 4 22%) (where x, y and z are in-
tegers) implies that x is even: x = 2x;; this allows us to rewrite
the given equation in the form

8x} — 245 — 42°=0, that is 4x}—4*—228=0
Since y®=2 (24} — 2°%), the number y is even: y = 2y,; therefore
we have
453 — 8y} —223=0, thatis 2x}—4y}—22=0
Finally, since 2°=2 (x} — 243) the number z is also even: z2=2z,,
and we obtain
2x3 — 4y} —823=0, that is x}—242—423=0
Hence, if x, y, 2 is a solution of the original equation then all

the three numbers x, y and z are even and their halves x; = x/2,
yv1 = y/2 and z; = 2/2 satisly exactly the same equation:

=2 —423=0



Solutions 231

It follows that x;, y; and 2z, are also even numbers: x; = 2xs,
y1 = 2y, and z; = 22,; besides, the numbers xs, y,, and z; also
satisfy the original equation, that is they are also even etc. In
this way we finally conclude that the integral numbers x, y, and 2
are divisible by any power of 2, which is obviously possible only

th th

/ 1=3y2+4y+!
/ t=2y-1?

i ¥ /0 ' 2\ ¥
3
(a) (b)
Fig. 16

in the case when they all are equal to zero. Thus, the original
equation has a single solution, namely

160. Let us multiply both members of the equation by 4 and
add 1 to them; this results in the equivalent equation

Cx+1Y=4y"+ 4P+ 4/ + 4y + 1

whose left-hand member is a perfect square. Further, we have
P+ 4+ 4+ +H 1 =W+ 4+ )+ B+ + 1) =

=2+ 9P+ QB+ 4+ =PI +Q®)
Since the quadratic trinomial Q(y)=3y*>+ 4y -+ 1 possesses
(real) roots yy = — 1 and y» = — 1/3 it assumes positive values
for all integral values of y different from y = — 1 (see the graph
of the function ¢=34%-+4y-+}1 in Fig. 16a). Therefore (2x+41)2>
> (P(y))? = (24 + y)*

On the other hand,

A+ 4+ 4+ 4y + 1=

=@y +y+ 1P+ Q2 — =P ) +QE)
‘The graph of the function Q,(y) = 2y — y? is shown in Fig. 16b;
the roots of the quadratic binomial Q;(y) are equal to 0 and 2.
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Therefore @,(y) << 0 for all integral values of y different from 0, T
and 2, whence (2x 4 1)2<<(P;(y))2 = (24> -+ y + 12

Thus, for all integral values of y different from —1, 0, 1 and 2
there hold the inequalities

Qyr+y+ 12> e+ 12> (288 + y)P?

This means that for such y the number (2x 4 1)? lies between the
squares of the two consecutive whole numbers Q(y) and Q(y),
and therefore 2x 4 1 cannot be equal to an integral number.

Thus, in case y is an integral number, the number x can be in-
tegral only when y is equal to —1, 0, 1 or 2, that is when the
right-hand side of the original equation is equal to 0, 0, 4 or 30
respectively. It now remains to solve 3 quadrajic equations of the
form

x>+ x=¢ where ¢ is equal to 0, 4 or 30 (*)
These equations have the following integral roots:
x<=0 and x=—1 for ¢=0; x=5 and x=—6 for ¢=30;
for ¢=4 -equation (*) has no integral roots

Hence, finally, we arrive at the following set of integral solutions
of the given equation:

(O’ —1)’ (_1’ —1); (Or O)v (—1’ 0), (5’ 2)! (_6’ 2)

(here the notation (a, b) means that x = a and y = b; the total
number of the solutions is equal to 6).
161. If y = 1 we obtain the quadratic equation

P+ (+1P=(x+2)?° thatis x*—2x—3=0

This equation has a single positive integral root x = 3 (the other
root x = — 1 of the equation is negative). Now, let y > 1. It
should be noted that since the numbers x% and (x 4+ 2)% are si-
multaneously even or odd, the number (x 4 1)%¥=(x + 2)% — x%
must be even; therefore the number x 4+ 1 is even: x + 1 = 2x;.
Further, we have

@) = (x4 ¥ = (x + 2% — 8% = @2, + ¥ — @, — V¥ (%)

Using Newton’s binomial formula we open the parentheses on the
right-hand side to obtain

(2x1)2y= 4
=2[C 2y, 1)@e)* ' +C 2y, 3) 2)* 7+ ... +C (25 1) (@x)]
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Since C(2y, 1) = 2y, this relation can be rewritten in the form
2.2y 24 =
=2x)? —2-202x) ' —2.-C 2y, ) @) P — ... —
—2:C(2y, 3)(2x,)°
{it should be noted that 2y = 4 since y = 2). It is obvious that

all the terms on the right-hand side are divisible by (2x,;)3, whence
it follows that y must be divisible by x2.

Further, on dividing both members of equality (*) by (2x)%

we obtain
= (14 2)" = (1 2)"

2)61

which implies (14 1/2x%)% =14(1 —1/2x)% < 2. On the
other hand, by Newton’s binomial formula,

1 \2 1 1 \2
()’ =142 g +Cen 2 (5) + ... =
— Y b
—l+xl+"‘>l+x.
-Consequently,
1+3€—1<2’ that is %<l whence y < x;

which contradicts the divisibility of y by x}.  Therefore the given

equation has no solutions such that y > 1, and all the solutions
are those found above: y = 1, x = 3.

162. Let us denote ’\/x+’\/x+ coo +4/x as A,(x). Then

Yy square roots

we can write
s4+ A, () =xF+Ax+ ...+ x =2 thatis A, () =22—x

y—1 square roots

Hence, if the number A,(x)= 2z is integral then the number
Ay_1(x)= 22— x is also integral; in this case the numbers
Ayo()=(—xP—x, A, 5(x) ..., 4 (»)= A/x are also integ-
ral. Since 4/x=¢ is an integral number it follows that x =2
(where ¢ is an integral number).

It is clear that for any integral value of ¢ the numbers x = /2,
y =1, 2=1 are solutions of the given equation. Now let y > 1.
In this case the numbers

AW =+/x =t and Ay(x)=Ax + Az =EFFI=~ICFD




234  Solutions

must be integral; since the numbers ¢ and #+4 1 are relatively
prime, it follows that the product #(f -+ 1) can be a perfect square-
only in the case when # and ¢ -+ 1 are themselves perfect squares,
that is only when ¢ = 0. Finally, for { = 0 we obviously have
x = 0 and A, (x)= 0 for any y.

Thus, all the solutions of the given equation are x = £2, y =1
and z = ¢ where { is an arbitrary integer (if the roots are under-
stood in the arithmetical sense then we must stipulate that ¢ can
be equal to any natural number) and x =0, y = ¢ (where ¢ is
an arbitrary natural number) and z =0.

163. To solve the problem we shall use the proof by contradic-
tion. Let us suppose that the equation indicated in the condition
of the problem possesses integral solutions x and y only for a:
finite number of prime numbers p and that the greatest of the so-
iutions is an n-digit prime number p,. Let us form the number
x=2-3-5-7-11-13- ... -p, and consider the expression X=x2 4
-+ x 4 1. Since the number X — 1 = x2 4 x = x(x 4 1) is divi-
sible by all prime numbers 2, 3, 5, ..., p,, the number X cannot:
be divisible by any of them. Consequently, there is a prime divisor
P of the number X exceeding p,, that is X = Py where y is a na-
tural number. (Here we do not exclude the case when P = X and
y = 1.) Thus, the given equation possesses integral solutions x, ¥
for p = P, which contradicts the assumption that p, is the grea-
test value of the prime number p for which such solutions exist.
This contradiction proves the assertion of the problem.

Remark. The argument used in the above solution is very similar to the one
used in the well-known proof of the theorem on the existence of an infinitude
of prime numbers (see the solution of Problem 349).

164. Our aim is to find the positive integral solutions of the
following system of equations:
PHy+ztu=(x+oy
Y+xrtztu=(y+of
24 xt+ytu=(z4 02
wtxtytez=@u+sy

(where x, y, z and u are the sought-for numbers). This system is
equivalent to the system
y+z+u=2vx-}o?
x+ 2+ u=2wy+ v? .
Xty Fu—=orzt2 *)
x4+ y+ z2=2su—+ s
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On adding together all equations (*) we obtain
Qv —3)x+Quw—3)y+ @2t —3)z2+2s—3u-+ 024
+w2—|—t2—|—52=0 (**)

We first of all note that equality (**) implies that at least one
-of the numbers 2v — 3, 2w — 3, 2t — 3 and 2s — 3 is negative: in-
deed, if otherwise, we should have a sum of positive numbers on
‘the left-hand side of this equality. Now, for definiteness, let us
suppose that 20— 3 < 0. This is only possible when v =0 or
v = 1. In the former case the first equation of system (*) imme-
.diately implies that y 4+ 2z + u = 0, which is impossible when y, 2
.and u are positive. Therefore we must assume that all the numbers
v, w, ¢t and s are positive and that v = 1. Then equality (**) can
be rewritten in the form

1=Q2w—3)y+ (2 —3)z2+2s—3)utw?+£#+s2+1 (***)

Let us consider the following five cases which can take place
‘here.

1°. The numbers x, y, z and u are all pairwise distinct. In this
«case the numbers v, w, t and s are also pairwise distinct; indeed,
if, for instance, we put v = w, then, on subtracting the first two
-equalities (*) from each other, we obtain y—x=2v(x—y),
which is impossible when v is positive and x == y. Further, under
‘the assumption that v = 1 the first equality (*) yields 2x =y +
~+z+u—1 where x=y/2+4+ 2/2 4+ u/2 —1/2, which contra-
-dicts equalities (***) where the coefficients in y, z and u on the
right-hand side are positive integers (because w, ¢ and s cannot
be equal to 1 since they are not equal to v and v = 1). Hence, this
.case is impossible.

2°. Two of the numbers x, y, z and u are equal to each other
while the others are pairwise distinct. Here it is convenient to
.consider the following two subcases.

(A) z=u. In this case f=s. Equality (***) and the first
equation (*) take the form

x=0Qw—3)y+2(2 -3zt w?*+22+1

2x=y-+22—1
As before, these relations cannot hold simultaneously.

(B) x = y. In this case w = v = 1. Equality (**) and the first
equality (*) turn into

2 =(2A—3)z2+2s—3u+2+4s*+2

and

and
x=z4+u—1
respectively.
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The substitution of the second of these equalities into the first
one results in

(2t —5)z+2s—5u+r+s24+4=0 (****)

whence it follows that at least one of the two numbers 2¢ — 5 and
2s — b must be negative. For definiteness, let 2f— 5 << 0; since
t >0 and ¢t 5= 1 (because v = 1 and ¢ % v since z #* x), it fol-
lows that { = 2. Now, on adding the duplicated first equality (*)
to the third equality (*), we obtain 4z 4 4x 4+ 6 = 4x 4 22 4 3u,
that is 2 == 3u/2 — 3. Let us put { = 2 and z = 3u/2 — 3 in equa-
tion (****); this yields
(4s —13)u+2s2422=0

It follows that 4s — 13 << 0. Since s >0, s=*1 and s %2 we
obviously have s = 3. On substituting all these values into equa-
tions (*) we arrive at the following system of three equations of
the first degree with three unknowns:

x+z4+u=2x+1

2x+u=4z-+4

2x+z2=6u-+9
From this system we easily find x = y = 96, z = 57 and u = 40.
3°. Among the numbers x, y, 2z and u there are two pairs of pair-
wise equal numbers. For instance, let x =y and z = «. In this

case the first equation (*) yields x = 2z — 1; the substitution of
this value into equation (**) results in

x=(2—3)z++1

(2t —58)z+1*4+2=0

It follows that 2/ —5 << 0; since £ >0 and f =% 1, this means
that # = 2. Now equations (*) reduce to the system

x+22=2x+1 }
2«4+ z=4z-+4
whence x =y =11,z2=u=6.
4°. Among the numbers x, y, z and u there are three numbers
which are equal to one another. Here it is also necessary to con-

sider separately the following two subcases.
(A) y = z = u. In this case equation (***) and the first equa-

tion (*) take the form
x=32w—3)y+3w’+1 and 2x=3y—1

It is evident that the last two relations cannot hold simultane-
ously.

whence we obtain
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(B) x = y = z. In this case the first equation (*) yields
2x+u=2x+1

whence u = 1; the last equation (*) results in

s(s+2)

3x=2su-+ s?=2s -+ s> whence x= 3

Since x is an integral number, we conclude that either s or s 4 2
is divisible by 3, that is either s = 3% whence x = £(3k 4 2) or
s = 3k — 2 whence x = (3% — 2)%; here k is an arbitrary integral
number,

5°. All the numbers x, y, z and u coincide with one another. In
this case the first equation (*) immediately yields 3x = 2x 41
whernce x = 1.

Hence, we obtain the following solutions of the problem:

x=y=96, 2=057, u=40; x=y=11, z=u=E6;
x=y=2=kBkx2), u=1;, x=py=z=u=1

(the last solution corresponds to the case when we put £ =1 and

take the sign “—" in the foregoing formulas).
165. Denoting the sought-for numbers as x and y we can write
xty=uxy
whence

xy—x—y+1=1
The last relation can be written as
(x—Dy—1)=1

Since there are only two ways in which the number 1 can bhe
factored as a product of two integral factors, we readily obtain

x—1l=1, y—1=1

whence
x==2 and y=2
or
x—l=—1, y—l=-—1
whence

x=0 and y=0
166. Let the numbers in question be x, y and 2z, then we have
1 1 1
1 7 Tz=1

We shall first of all show that at least one of the three numbers
x, y and z must be less than 4. Indeed, if all these numbers were
not smaller than 4, then the sum 1/x 4+ 1/y 4 1/z would be not
greater than 1/4 4 1/4 + 1/4 = 3/4. Hence, if we assurie¢ ihat
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y << z then x can take on only the following two values:
: 2 and x =3 (because x > 1). Let us consider separately
these two possibilities.

(1) x=2. Then l/y 4+ 1/z=1-—1/x=1/2. On reducing the
fractions to the common denominator and discarding the denomi-
nator we obtain

yz — 2y — 22==:0, thatis yz—2y—2244=4

whence
(y—2)(z—2)=14

Since y and z exceed 1, the numbers y —2 and z— 2 cannot
be negative, and therefore only the following two cases are pos-
sible:

(A) y—2=2, z—2=2 whence y=4, z=4.
B) y—2=1, z—2=4 whence y=3, z=656.
1 1 1 2

2) x=3; then ;—F?:l—;:?
whence ‘we obtain in succession
2yz — 3y —3z2=0, 4yz —6y — 62+ 9=9 and (Qy—3)(22—3)=9
Since y=x=23, 2y —3 =3 and 22— 3 = 3, only one case is
possible, namely

2y —3=3, 22—3=3 whence y=3 and z=3
Hence, all the solutions of the problem are expressed by the fol-
lowing equalities:

1,1, 1 1,1t 111

stzts=h stgte=L s+z+3=1

167. (a) From the given equation it obviously follows that
x, y >n; let us put x =n-+4 x; and y = n + y,. Then the equa-
tion can be rewritten in the form

1 1
n-+ x +n+y1

=1
T n
whence
(n®+ nxy) + (n* + ny) =
=n’+nx;+ny + x1y;, thatis xy=n> ()
It is clear that if n is a prime number, equation (*) possesses

only three natural solutions, namely (x;, 1) ={(n, n), (x1, y1)=
= (1, n?) and (x, y1)=(n? 1), which lead to the following three
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solutions of the original equation:

(x, y=n, 2n), (x, y=@+1,n{n-+1)
and (x, y)=@m{n+1), n+1) (*%)

In case n=ab is a composite number, the equation may pos-
sess solutions in which x and y assume values different from
those indicated by formulas (**), for instance, such is the solu-
tion corresponding to solution (x1, y;) = (a?% %) of equation (*).

(b) If 1/x+ 1/y = 1/n then, on clearing of fractions, we ob-
tain the equation

nx -+ ny=xy
which is equivalent to
(x—n)(y—n)=n?

(cf. the solution of Problem 167 (a)). The last equation possesses
2v — 1 integral solutions where v is the number of the divisors
of the number n? (including 1 and the number »? itself). To obtain
all these solutions we must write down the 2v possible systems of

the form x—n=d, y—n=n?/d and x—n=—d, y—n=
= —n?/d (where d is a divisor of the number n?); the system
x—n=—n, y—n= —n must not be considered because it

leads to the result x = 0,.y = 0 which should be discarded accord-
ing to the conditions of the present problem.
If n =14 then n? = 196. The divisors of the number n? =196
are
1; 2; 4; 7; 14; 28; 49; 98; 196

Accordingly, we obtain the following 17 solutions of the equa-
tion:

x 15 16 18 21 28 42 63 112 210 13 12

y 210 112 63 42 28 21 18 16 15 —182 -84
x 10 7 —14 —35 —84 —182
y —35 —14 7 10 12 13

(¢) The given equation can be brought to the form
(x—2)(y —2)=2° (*)

(cf. the solution of Problem 167 (a)). Now let ¢ be the greatest
common divisor of the three numbers x, y and z, that is x = xf,
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y = y,t and z = 2zt where the numbers x, y; and 2, are relati-
vely prime. Further, let us denote by m and by n the greatest
common divisors of the numbers x, and z;, and of the numbers g,
and z; respectively, that is let x; = muxs, 2, = mz; and y, = ny,,
zl=nz; where x,, 2, and y,, z; are two pairs of relatively prime
numbers. The numbers m and n are relatively prime because such
are x1, y; and z;,. Since 2; is divisible both by m and by n we can
put z; = mnp (that is 2z} = mp).

Now let us substitute x = mx,f, y = ny,t and z = mnpt into
the basic equation (*). On cancelling by mn#? we obtain

(xy — np) (yo — mp) = mnp* (**)

The number x, is relatively prime to p because m is the grea-
test common divisor of the numbers x; = mux, and z; = mnp; si-
milarly, y, is relatively prime to p. On opening the parentheses
in equation (**) we find that the number xoy, = x9mp + yonp is
divisible by p. It follows that p = 1, and therefore the equation
takes the form

(X — 1) (yo — m) =mn

The number x, is relatively prime to n because the three num-
bers x; == mx,, Yy = nys and 2, = mn are relatively prime. Con-
sequently, the number x; — n is relatively prime to n and there-
fore y, — m is divisible by n. Similarly, xo — n is divisible by m.
Thus, xo —n==m, Yy — m==n whence xo==4y,= +m -+ n;
consequently

t=mm+nt, y=xnm+n)t, z=mnt

where m, n and f are arbitrary integers.
168. (a) From the equality x¥ = y* it follows that the numbers
x and y have the same prime divisors:

x=phpl ... pi and y=pPpl>... pb

where py, pe, ..., pn are prime numbers. Therefore from the equa-
lity x¥ = y~* it follows that

oy ="Px, oy =Px, ..., O,y =PH%

Let us assume that y > x; then the equalities we have written
imply
al<ﬂlv a2<ﬁ2) LIS | an<ﬁn

Consequently, y is divisible by x, that is y == kx where £ is an in-
teger. Thasubstitution of this value of y into the equality x¥ =y*

results in
xkx — (kx)x
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Now, on extracting the xth root from both members of this

equality we obtain
=kx, that is xF-l=¢

Since y > x we have &> 1 whence x > 1. Further, we have
22-1=2 and for x > 2 or £ > 2 we always have x*~! > k. In-
deed, for £ > 2 and x = 2 there hold the inequalities

xE-1 > 001> p
because 2! > 3, and for £ = 2, x > 2 we have

xfl=x>2=¢
Therefore the given equation has a single integral solution, na-
melyx=2k=2y=kx=4.

(b) Let us denote by & the ratio y/x; then y = kx. The substi-
tution of this expression of y into the given equation yields
xkx — (kx)x

On extracting the xth root from both members of the equality and
dividing the result by x we obtain
xh-l=4F

whence
1 1 k

x=k"—:l—, y=kk'k_—_1=k7€——l'

Let the rational number 1/(2— 1) be equal to an irreducible
iraction p/q. The substitution of p/q for 1/(k#— 1) into the for-
mulas we have derived yields

19 — 9__rtgq k__rtaq,
k 1 p’ k l+p A 1

P kE—1 q

PR n A
—_(PTdY)4q _(PT4q q
x—( p ) ’ y—( p )

Since p and g are relatively prime we conclude that for x and y
to be rational numbers it is necessary that the whole numbers p
and p + g should be equal to the gth powers of integral numbers;
this is only possible when g = 1 because for ¢ = 2 and p = n¢
we have the inequalities

n<p+qg<(nd )=ni+quo-t 4 20D ooy

Thus, all the positive rational numbers satlsfymg the given
equation are expressed by the formulas

o (B e ()"

where p is an arbitrary integer different from 0 and —I.
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169. Let n be the number of the pupils of the 6th form and m
be the number of points received by each of them. Then the num-
ber of points received by all the participants of the tournament is
equal to mn -+ 8. This number is equal to the number of games
played in the tournament. Since the total number of the partici-
pants of the tournament is equal to n + 2 and each of them played
one game with each of the other n -1 participants, the total
number of the games played by the participants is equal to
(n+2)(n-+1)/2 (in the product (n 4+ 2)(n+ 1) every game is
taken into account twice). Therefore we obtain the equality

mn + 8§ — (’1+2)2(n+ 1)

which, after simple transformations, yields
n{n-+3—2m)y=14

Here n is a whole number; the expression in the parentheses is
also a whole number because m is either a whole number or a
fraction with denominator 2.

Since n is a divisor of 14 the number n can be equal to one of
the numbers 1, 2, 7 and 14. The values n =1 and n = 2 should
be discarded because in these cases the total number of the par-
ticipants does not exceed 4 and hence if n were equal to 1 or 2
the two pupils of the 5th form could not receive together 8 points.

Hence, we have n = 7 or n = 14.

lin=7then7(7+3— 2m)= 14; m = 4.

If n = 14 then 14(14 4+ 3 — 2m)= 14, m = 8.

170." Let the number of the pupils of the 5th form be n and
the number of points they received by m. Then the number of the
pupils of the 6th form is 10n and the number of points they re-
ceived is 4.5m. The total number of the participants of the tour-
nament is 11n and the number of points they receive is 5-5m.

The total number of points received by all the participants is
equal to the number of the games they played. This number of
the games is equal to 11a(11n — 1) /2 whence

5. 5m— l]n(l;n-— 1)
Consequently

m=n(lln—1)

Each of the pupils of the 5th form played 11n — 1 games (be-
cause the number of the participants of the tournament is equal
to 11n) and therefore the n pupils of the 5th form can receive
n(lin—1) points only in the case when each of them wins all
the games. This is only possible for n =1 (since two pupils of
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the 5th form cannot simultaneously win from each other). Thus,
we obtain the single solution n = 1, m = 10.
171. By the condition of the problem we have

AVp(p—a)(p—b)(p—rc)=2p
where a, b and ¢ are integral numbers and p = (a4 b 4 ¢)/2.
Let us denote p—a =x, p—b =y and p—c = 2z; then we
have

Vix+y+2xyz=2(x+y+2)
On squaring both members of the equality we obtain
xyz=4(x+y+2)

Here x, y and z are either positive integers or halves of odd in-
tegers. The latter case is obviously impossible because in this case
we have a fractional number on the left-hand side and an integral
number on the right-hand side. Thus, x, y and z are integers.

Now let us assume that x == y = z. From the equation we have
derived it follows that

y = 4y + 4z
yz — 4
and consequently
4y + 4z
ya—4 =1

Now we can multiply the last inequality by yz-—4 (it is clear
that yz — 4 > 0 because, if otherwise, x would be negative) and
consider the resultant quadratic inequality with respect to y:

Y2z —8y—42<<0, thatis (y—y)(y—y)<O *)

where y; and y, are the roots of the quadratic equation
zy* — 8y — 4z = 0 (these roots depend on 2):

44 A/16 + 427 4 — +/16 + 427
ylz_z—y y2='—2—

Since y, is negative, we always have y — y, > 0 (because y is
positive); consequently, for inequality (*) to be fulfilled it is ne-
cessary that the inequality

y— <0
should hold, whence
4+ 4/16 4+ 422
y<-—z———

Thus, we have yz<{4+ 4/16 + 42 and therefore 22 —4<
< A/16F42% (because z < y). On squaring both members of the
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last inequality we obtain
2'— 8224 16 << 16} 422, that is 241222

This relation can obviously hold only for z << 3.
Now let us consider in succession the cases that can take place
here.

1 z=1, y<L116+4< 9; the expression x=4—yyz#:—=
= _4_5_144_ is equal to a positive integer only when y = 5 (in this

case x ==24) or when y =6 (in this case x = 14) or when
y =38 (inthiscase x=9).
= ‘;z:‘_‘i = nyj—; is an mtegral number and is not less than y
only when y = 3 (in this case x = 10) or when y =4 (in this
case x = 6).

8, =3, y ATAVOFED

. ] ~

Jz+ 442 is not an integral number.

Thus, we have found the following five solutions of the pro-
blem:

—Aytaz
—— < 5; the expression x = e =

< 4. For z=y=3 the expres-

sion x ==

x y 2 x+y+z=p a b ¢

24 5 1 30 6 25 29
14 6 1 21 7 15 20
9 8 1 18 9 10 17
10 3 2 15 5 12 13
6 4 2 12 6 8 10

172. The numbers in the first row of the table can be rewritten
as 041, 0+ 2, ..., 04 n and the numbers in the last column
can be rewriltenas 0 +n,n4+n,2n+4n,..., (n — 1)n + n. Then
each of the numbers in the table is represented as a sum of two
numbers the first of which is one and the same for all numbers
belonging to one row and the second of whicu is one and the same
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for all numbers belonging to one column. Since the set of the
chosen numbers involves one summand from every column and one
summand from every row, the sum of all the first summands of
the chosen numbers is equal to

O+n+2n+ ... +(n—Dn= 3
and the sum of the second summands is equal to
1424 ... +n=£(L2+L)

Thus, the total sum S of all the chosen numbers is

__a(nt—n) nnd+1) _ n@n?4Nn
S= 2 + 2 _ 2

173. Let the number n be odd. If the table is symmetric abont
the diagonal indicated in the condition of the problem (we shalk
refer to it as the “principal” diagonal and denote it by the
letter d) then to every number lying above d there corresponds
a number lying below d which is equal to the former number; the
place occupied by the latter number is symmetric about d to the
place occupied by the former. It follows that the set of the num-
bers lying above d coincides with the set of the numbers lying
below d. Therefore every number k occurs an even number of
times a, (it is possible that a, = 0) in the set of those numbers.
of the table which do not belong to the diagonal d. Since every
number & occurs exactly once in each of the n rows of the table
(because the n places in every row are occupied by the n num-
bers 1, 2, ..., n arranged in some order) the total number of
times the number & occurs in the given table is equal to the odd
number n. Thereiore the number %k occurs the odd number of
times n — a, in the diagonal d. It follows that every number &
(where 1 << k<< n) occurs at least once among the numbers.
forming the diagonal d (because 0 is an even number), and since
the total number of the places on this diagonal is equal to n, each.
of the numbers 1, 2, ..., n occurs exactly once in this diagonal..
(In particular, it follows that gy = ax = ... =a,=n—1))

The example of the table ; ? shows that for an even num-

ber n the assertion stated in the condition of the problem may not
hold. Using an argument similar to the above we can show that
for an even n this assertion cannot hold (because in this case
every number k2 occurs an even number of times n — ax in the set
of the numbers forming the principal diagonal d).

174. Let us denote the number standing at the intersection of the
ith row and the jth column as a;;; the number a;; can assume one



246 Solutions

of the values 1, 2, , A2 (i, j==1, ..., n). Now let 1= qa;,,; then,
by the cond1t10n of the problem, 2—0,215, 3=ua;s, and so on up to
n* = aj,.,.,,. Here the indices j, J, J3 ..., .y are not of
course all different because each of them can take on only one of
the n different values 1, 2, ..., n. It should be noted that every
concrete value k& occurs in the number sequence ]l, Iy g s,

Jgr «vvs Jyor Jpor Ipeyy €xactly 2n times because the given table con-

tains n numbers in the kth row and n numbers in the kth column.
Since every number “inside” the sequence ji, jo, fo, far <« +y Jn
jner1 (that is every number except those in the first and in
-the last places) occurs exactly twice, we conclude that the fact
that the value j; must occur in the sequence the even number of
times 2n implies that j,.+; =j;, which means that the last number
of the sequence coincides with its initial number j.

We thus see that to solve the problem we must determine the
difference between the sum of the numbers in the jith row of the
table and the sum of the numbers in the j;th column of the table,
the indices of the row and of the column coinciding. From the
rule according to which the table is formed it follows that if
aj;, =s (where j 5= j» and, consequently, the pair (j, j|) is not the
last one in the above sequence, that is s = n?) thens+ 1 = a;;,
In other words, fo each number s belonging to the jith column
and different from n? there corresponds the number s 41 in the
jith column. All numbers s+ 1 =aq;;, obtained in this way coin-
cide with all numbers belonging to the jith row except only one
number 1 (which obviously cannot follow any of the numbers of
the jith column because it is the smallest number in the table).
Therefore if we denote as sy, Sy, ..., Sz~ the numbers belonging
to the jjth column which are different from n?, then those numbers
belonging to the jith row which are different from 1 must be equal
tosi+1,s82+1, ..., sne1+ 1. Now it follows that the difference
between the sum of the numbers in the jjth column and the sum
of the numbers in the jith row is equal to

{s1+s+ ... +sp- 1) —
—[si+ D+ 4D+ o0 G+ D+ 1]=r—n

175. It is clear that if we denote by a;; the element of the table
standing at the intersection of the ith row and the jth column
(where i=1,2, ..., mand j=1, 2, ..., n) then in all tables
obtained from the original table with the aid of the “admissible”
transformations this place is occupied either by the number ay
or by the number —a;; (because the admissible transformations
of the table reduce to changes of signs of some of the numbers
contained in the table). Therefore the total number of the “ad-
missible” tables cannot exceed 2m7, that is this number is finite,
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(The number 27 is equal to the number of all the possible sets of
mn numbers a;; each of which can assume fwo values.) Since the
number of the tables we deal with is finite it follows that there
is one table among them for which the sum of all the numbers
contained in it assumes the maximum possible value or there are
several tables with one and the same sum of the numbers which
exceeds the sums of the numbers contained in all the other ad-
missible tables. If we suppose that a row or a column of such a
“maximum” table contains numbers whose sum is negative then,
on changing the signs of all numbers belonging to that row or to
that column we obtain a new “admissible” table for which the
sum of the numbers contained in it exceeds the sum of the num-
bers in the former table, whence it follows that in the “maximum’
table the sum of the elements of any row and of any column musi
be nonnegative.

176. Let us denote by S the sum of all numbers contained in
the given table, by s; the sum of all numbers in the ith row
(where i =1, 2, ..., 100), by o; the sum of all numbers in the jth
column (where j =1, 2, ..., 80) and, finally, by a;; the number
standing at the intersection of the ith row and the jth column.
By the condition of the problem, we have

a;; = 8;0; (*}
whence

s;=aptapt ... ta =
=5,01+ 80+ ... + 505 =5;(0;+ 024 ... + 0g) =

=s;S f=1,2,..., 100
This means that either S = 1 or all the numbers s; are equal to 0.
If s, =0 for all i=1, ..., 100 then, by virtue of (*), all the

elements a;; of the given table are equal to zero. However, since
by the condition of the problem the “corner” element a;, is greater
than 0, we see that S = 1.

177. The equality of the numbers placed in the squares sym-
metric about any of the two diagonals implies that among the
given 64 numbers there are not more than 20 different numbers
(see Fig. 17 where the numbers 1, 2, ..., 20 symbolize some num-
bers a;, a, ..., Gy among which not all must necessarily be
different from one another). The numbers belonging to one of the
rows, say to the ith row (where i=1, 2, ..., 8) coincide with
the numbers of the (9 — i)th row and with the numbers of the ith
and of the (9 — i)th columns. If there is an index i such that the
sum of the numbers in the ith row exceeds 518, then the same is
true of the (9 —i)th row, of the ith column and of the (9 — i)th
column (see Fig. 17 where { = 3 and the corresponding rows and
columns are shaded). On adding together these four (equal) sums
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of the numbers we obtain a resultant number which cannot be less
than 4-518 = 2072. In the resultant sum each of the four numbers
placed in the squares which are cross-hatched in Fig. 17 occurs
twice while each of the numbers stand-
ing in the other shaded squares occurs
only once. Therefore the total sum of
all numbers occupying the squares
which are shaded in the figure is not
less than 2072 — ¢ where ¢ is the sum
of the numbers written in those squares
which are cross-hatched. By the con-
dition of the problem, there must be
o< 112 (because 112 is equal to the
sum of the numbers written in all the
diagonal squares), and therefore the
sum of the numbers in the shaded
Fig. 17 squares is not less than 2072 — 112 =

= 1960 whereas the total sum of all

numbers written on the chess-board is equal to 1956. We have thus
arrived at a contradiction, which proves the assertion of the problem.
178. For difiniteness, let us index the rows in the upward di-
rection and the columns from left to right. The condition of the

Ty

e
%

1 yz ya yjﬂ yn

(a) (b)
Fig. 18

problem is equivalent to the following property: for any four in-
dices, i, j, k and | where i 5= k and i = | there holds the equality
aij + aw = ari + aj. In other words, for any rectangle ABCD
(see Fig. 18a) on the board the sum of the numbers placed at its
two opposite vertices A and C is equal to the sum of the numbers
placed at the other two vertices B and D. Indeed, suppose that
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two of the n rooks are placed at the vertices A and C; these rooks
can be of course moved to the squares B and D so that, as before,
they can take a chessmen standing in the ith and in the kth rows
and in the jth and in the /th columns. Hence, when the rooks are
moved in this way the sum of the numbers written in the squares
occupied by the rooks cannot change; that is why the sum of the
numbers written in the squares A and C must necessarily be equal
to the sum of the numbers written in the squares B and D.

The further course of the solution is rather simple. Let us de-
note by yi, Y2, ..., Y. the numbers written in the lowest row of
the board and by y,, y1 + %o, y1 + %3, ..., Y1 + x» the numbers
written in its first column (see Fig. 18b). Besides, let us put
x;y = 0. It is clear that for the lowest (the 1st) row and for the
leftmost (the 1st) column we have a;; = y; = x; + y: (because
x; = 0) and aj; = xj 4+ y,. On the other hand, if i > 1 and j > |
then the number q;; written in a square M can be found using
the square MPOQ indicated in Fig. 185: by what has been proved,
we have

a;+y=(x; +y)+y; whence ay=ux-+y

It is easily seen that if there exist numbers xy, xo, ..., Xu
Y1, Yo, ..., Yn such that a; = x; 4 y; then the condition indicated
in the statement of the problem which is related to the arrange-
ment of the rooks on the board (the total number of such “ad-
missible” arrangements of the rooks is equal to n!; why?) must
necessarily hold.

179. It is clear that for j = k& = { the equation connecting x;,
xjr and xp; takes the form 3x; = 0; hence, x; = 0 for all i =
=12, ..., n. Now let £ = j==i; then the equation takes the

form
x,,+x,;+xﬂ=0

whence, since x;; =0 we obtain x; = —x;;. Finally, let us add
together all the equalities x;; 4+ xj2 + xx: = 0 corresponding to
two arbitrary fixed values of i and j and to £ =1, 2, ..., n; this.
results in

nxgp+ (ptxp+ oo Fap) — (Gt xet o0 Fx,)=0
(here we have used the relation xz; = — x;;). Let us denote

1 ,
—utxe+ oo =4 i=12...,n
It follows that
X”=f1—t]

180. It is clear that the assertion stated in the problem holds.
for a “board” of dimension 1 X 1 (consisting of one single square;
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in this case the assertion is trivial because the “board” contains
a single square in which the star is placed). This makes it pos-
sible to use the method of mathematical induction. For n = 2 the
board obviously contains a column (and, consequently, a row as
well) in which there is exactly one star. On interchanging (if ne-
cessary) the rows and the columns so that the empty square
occupies the rightmost upper place we obtain a table having a
“triangular” structure (see Fig. 19a where the sign “+4” indicates
that in the corresponding square the star may or may not stand).
Let us prove that for an arbitrary n as well the rows and the co-
lumns of the table can be interchanged in such a way that the

* ¥
+]% +| %
++]*
+ |+ |+ | *
+i+|+(+]*
(a) ()
Fig. 19

table takes a “triangular” form in which all the stars in the table
are placed along the diagonal joining the left upper corner of the
table and the right lower corner and, perhaps, below that dia-
gonal while all the places above the diagonal are empty. Indeed,
let us suppose that this assertion has already been proved for all
tables of dimension (n — 1) X (n — 1) satisfying the required con-
ditions and let us consider a table of dimension n X n satisfying
these conditions. The latter table contains a column in which there
is exactly one star. Let us move this column to the last place and
then interchange the rows so that the star occupies the lowest
place in that column (see Fig. 196). The resultant table of dimen-
sion n X n contains a “sub-table” of dimension (n — 1) X (n — 1)
which also satisfies the conditions of the problem. By the hypo-
thesis, the rows and the columns of this sub-table can be inter-
changed so that it takes the “triangular” form; after the rows and
the columns are interchanged in this way the original table of
dimension n X n also assumes the “triangular” form.

The “triangular” structure of the tables we deal with (we can
limit ourselves to the tables having this “triangular” structure
because the properties of the tables we are interested in are pre-
served when the rows and the columns are interchanged in an ar-
bitrary manner) proves the equivalence of the rows and the columns
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of the tables, whence it follows that the assertion of the problem
(which is quite obvious for the “triangular” tables) holds in the
general case as well.

181. (a) On a board of dimension 4 )X 4 there are 4 columns,
4 rows and 2-7 = 14 “inclined lines” of squares parallel to the
diagonals of the table (among them there are 4 “inclined lines™
consisting of one corner square). It can readily be seen that each
of these 4 + 4 4- 14 = 22 vertical, horizontal and inclined lines
of squares contains an even number of squares (more precisely,
this number is equal either to 0 or to 2) which are shaded in
Fig. 20a. By the condition of the problem, originally only one of

() () ()

Fig. 20

these squares contains the sign “—"’; therefore under all the ad-
missible changes of the signs the number of shaded squares
marked with the sign “—” remains odd and hence it can never
become equal to 0.

(b) For any location of the sign “—” on the board we can
always “cut out” of the given board of dimension 8 X 8 a
“smaller” board of dimension 4 X 4 so that the arrangement of
the signs on the latter board is as was indicated in the condition
of Problem 181 (a) (see Figs. 20, b, ¢ where two possible variants
of the location of the sign “—” on the larger board are shown).
Since the admissible changes of the signs on the larger board
generate the corresponding changes of the signs on the “smaller”
board which satisfy the conditions of Problem 181 (a), the re-
quired proof follows from the result established in Problem
181 (a).

182. (a) First of all let us find the number of the possible
quadratic arrays of squares of dimension 3 ) 3 and of dimension
4 3 4 which can be placed on the chess-board. It is clear that the
leit lower corner of a quadratic array of squares of dimension
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3 X 3 may coincide with any square belonging to the quadratic
array of dimension 6 X 6 which is shaded in Fig. 21 by horizontal
lines and that the left lower corner of a quadratic array of squares
of dimension 4 X 4 may coincide with any square of the (smaller)
quadratic array of dimension 5 ) 5 which is shaded in the figure
by vertical lines. Thus, the total number of quadratic arrays of
squares of dimension 3 X 3 and of dimension 4 > 4 that can be
‘placed on the board is equal to 6:6 + 5:5 =36 4 25 = 61. Con-
sequently, starting with the board whose all squares contain the
signs “--" and performing all the admissible operations described
in the condition of the problem we can obtain not more than 25
possible arrangements of the signs in all the squares of the board
because in each of the 61 quadratic arrays
of dimensions 3 X 3 and 4 )X 4 we may or
may not change all the signs independent-
ly of the other squares of the table. Since
the total number of the possible arrange-
ments of the signs “4" and “—" in the 64
squares of the chess-board is equal to 264>
=261 it is impossible to obtain all the pos-
sible arrangements of the signs on the
board starting with the arrangement in
which all the squares contain only the
signs “+". Further, if we take an arran-
gement of the signs “+” and “—" which
cannot be obtained in the way described
above from the arrangement involving only the signs “+" then,
.conversely, starting with the former arrangement of the signs
we can never arrive at the arrangement involving only the
signs “+". It follows that the answer to the question posed in the
problem is negative.

(b) This problem is very close to Problem 182 (a). The total
number of the quadratic arrays of squares of dimension 2 X 2
which can be taken on the chess-board is equal to 7-7 = 49 and
the number of pairs of neighbouring rows and of neighbouring
columns of the board is equal to 7 4+ 7 = 14; hence, there exist
10%9+14 = 10% ways in which the last digits of the numbers placed
in the squares of the board can be changed. (Among these 109
‘ways there is one under which none of the digits is changed.) It
follows that starting with an arrangement of numbers such that
all the numbers end with 0 we cannot obtain all the possible ar-
rangements of the last digits of the numbers placed in the 64
squares of the board because the number of such arrangements
is equal to 10% > 10%. Consequently, there are such arrange-
‘ments of the last digits from which it is impossible to pass to the
«ase when all the last digits are equal to 0.

Fig. 21
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Remark. 1t is clear that this solution of the problem and the negative an-
swer to the question stated in the problem remain valid in the general case when
it is required to achieve the divisibility of all the numbers in the table by any
natural number n, say by the number 1976, instead of the divisibility by 10.

183. (a) The answer to the question is positive. It is clear that
we can arrive at the case when at least one of the three sets con-
tains exactly one ball by performing a certain number of times
the operation of taking simultaneously one ball from each of the
three sets of balls. Next we duplicate the number of the balls in
the set (or in the sets) containing 1 ball and then again take
simultaneously one ball from each of the three sets. This results
in a decrease by 1 of the numbers of the balls in those sets for
which these numbers are different from 1 while those sets each of
which contains exactly one ball retain their numbers of balls
(equal to 1). Proceeding in this way we can arrive at the case
when each of the sets contains exactly one ball, after which all
the remaining balls can be taken.

(b) This problem is quite similar to Problem 183 (a) (it should
be noted that the numbers of balls dealt with in Problem 183 (a)
can be arranged as a “table” consisting of one row and three
columns in which every column contains one number). First let
us consider the numbers belonging to only one row, say to the
first. Then the admissible operations allow us to duplicate any of
the numbers in that row or to subtract unity from all these num-
bers. Therefore, in exactly the same manner as in the solution of
Problem 183 (a), we can make all the numbers in this row turn
into 0. After this, in just the same way, we can make all the num-
bers of the second row turn into 0 and then perform the same ope-
rations on all the other rows of the table.

184. Let us write the number a in the “binary number system”
that is in the form

a=0,- 2" Fa, ;-2 Fa, 2 2"+ ... 4o 2401

where each of the “digits” ag, o1, ..., tta—g, ®ny, & is equal to O
or to 1 (we can of course assume that the digit e, of the number a
is equal to 1). It is clear that if a is an even number then oy = 0

and @y =af2=a, 2" +a, - 2"+ 2"+ ... -l
If a is an odd number, we have oy = 1, and in this case the num-
ber @y =(a —1)/2 has the above structure. Thus, if the binary
representation of the number a is written as a sequence of “digits”

0 and 1 in the form a = otpttn—10n—2...t12p then the binary re-
presentation of @, has the form a; = ap0tn_10n—g...0. Ac-
cordingly, the number a, is written as as = anttn; . . . ap, the num-
ber a3 as ag=an0n—; ... 03 and so on up to the number a,=0a,=1
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inclusive. On the other hand, we obviously have b, = 2b, b, =
== 2b; = 22b, by = 2% and so on up to the number b, = 2"b.

It is evident that the number a,=a,q, ... a0, =a,:-2""" 4+
oy 2 L 24001 (wherei=10,1,2,...,n)
is odd when the digit «; is equal to 1 (we remind the reader that
a; can only be equal to 0 or 1). Thus, in this case we have

; = 2t = (ai-2%) b. Therefore the sum we are interested in which
involves all the numbers &; corresponding to the odd numbers q;
can be written in the form

[0, 2" +a,1-2" '+ ... Fa-240-1]o=
=00, 1 ... 00 -D=ab

where only the summands corresponding to the values of the
“digits” on, on—1, ..., ag equal to 1 give real inputs to the sum
0, 2"+, 2" ' o Fac24ay 1l =a.

185. A concise solution of the problem can be obtained by using
the method of mathematical induction. Let us agree to denote by
ur the kth Fibonacci number where 2 =1, 2, 3, ... . Let us sup-
pose that the assertion of the problem has already been proved
for all natural numbers n smaller than the kth Fibonacci number
ur (by the way, the validity of the assertion for all numbers“smal-
ler than us = 5 can be verified directly). It is clear that the same
assertion will hold for the number uy itself as well. Further, since
all the numbers lying between u, and us+) = usr + ug—; can be
represented in the form u, -+ m where 0 << m <C ux—; and since,
by the induction hypothesis, every number m smaller than u, ,
can be represented in the form of a sum of some different Fibo-
nacci’s numbers whose indices are less than k- 1, the number
n = ux + m can also be represented as a sum of Fibonacci’s num-
bers (among which the greatest number is equal to u, while the
other numbers have indices less than £ — 1). Thus, we have shown
that the assertion also holds for all natural numbers smaller than
Upy1, whence it follows that it is true for all the natural numbers.

Remark. What has been proved implies that the sums of Fibonacci’s numbers
we have considered (in these sums we of course put 2 = w3 but not 2=1+4
Jl=uyFuwandd=3+1l=uwy+uwbutnot4=2+14+1=u+u+u
and the like) cannot involve two “neighbouring” Fibonacci’s numbers (why?).
It can easily be shown that the sef consisting of all possible sums of Fibonac-
ci’s numbers satisfying the last condition is nothing but the set of all natural
numbers and that every number occurs in the set of all such sums exactly
once.

186. We are interested in the sums sp=ue4; + theyo + ...+ tres
of eight consecutive Fibonacci numbers. Since Fibonacci’s num-
bers obviously form an increasing sequence (that is u; = up <<
< Uy << U< oo Uy < Unp1 < ...), it is clear that to prove
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the assertion of the problem it is sufficient to show that the sum sz
lies between ueye and ugiro, that is wese << $2 << tpyio. It is ob-
vious that

Uppo = Upig T Uy < Upagt Upyr T thpret oo F U1 =5,

and hence it only remains to prove the inequality s, << upqpo. It
can easily be seen that the sum S, = u; 4+ us 4+ us+ ... 4 u, of
the first n Fibonacci numbers is smaller by unity than the
(n + 2)th Fibonacci number unys. For instance, this can be proved
with the aid of the method of mathematical induction. Indeed, we
obviously have Sy =141 =3 —1 = u4 — 1. On the other hand,
if the assertion we have just stated holds for an index n, then on
replacing n by n 4 1 and using the induction hypothesis we ob-
tain
Sn+l=ul+u2+ oo +un+un+l=sn+uh+l=

= (un+2 - 1) + Upp1 = (un+l 'i" un+2) — 1= Upys— 1

which is what we intended to prove. Now we can write

Sp=Upgr+Upat ... FUps=Sps— Sp=
= (Upy10— 1) — (upge— 1) = Up10 — Uiz < Uppio
which completes the solution of the problem.

Remark 1. Evidently, in just the same way we can prove that a sum of any
m consecutive Fibonacci numbers cannot be equal to a Fibonacci number for
m = 3.

Remark 2. The inequality sk <C ur410 can also be proved by using the follow-
ing consecutive transformations of the expression for us+10:

Up 10 Uppo T Upyg™= (Upyg T Uppq) T g s=
=tpyg T Uyt (gt pe) = U gt e T ot (Ut )=
e P L S o A o S L LR

v =gty gt o gt (Mt ) =Syt a0 > 8,
187. Let us agree to denote as o, ag a3 ... the remainders
resulting from the division by 5 of the Fibonacci numbers
uy, U, Us, ... . It is obvious that from the equality u, = up +
~+ ur—s where & = 3, 4, 5, ... it follows that
o — { Opy =+ Op_2 for o4t ap_s<5 *)
k 01+ 0p_g—5 for ap_;~+0, 92>5

Formulas (*) make it possible to find any number of terms of
the sequence o:

1_;1;2;3;0;3;3;1;4;0;4;4;3;2;0;2;2;4; I;Q; I 1; ...

20 numbers
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It is seen that the computation of any term of the sequence a,
following the first 20 terms can be performed without using for-
mulas (*) because g = a; and ags = ap, and consequently, by
virtue of (*), ags == a3, 224 = a4 and so on, that is the “sequence
of the remainders” o, as, a3, ... is periodic, the period consisting
of 20 numbers. Since the first group of 20 remainders ax has zeros
at the 5th, 10th, 15th and 20th places, the same is true of all the
other places whose indices are multiple of 5.

188. Let us leave only the last four digits (and discard the
other digits) in each member of the Fibonacci sequence which is
written with the aid of five or more digits. This results in a num-
ber sequence whose every member is smaller than 10% Let us
denote by a, the member of this sequence occupying the kth place.
Note that if the numbers ax4; and a. are known, it is possible to
find as—; because the (£ — 1)th member of the Fibonacci sequernce
is equal to the differente between its (k£ + 1)th and kth members,
and the last four digits of the difference can be determined from
the last four digits of the minuend and subtrahend. It follows that
if we have ar = @nyr and aey; = Qnyry for some indices £ and n
then ar_; = Qnyr—1, Qr—2 = Gugr—s, ..., Q1 = Apyy. Since a; = 0 we
conclude that a,y; =0, i.e. that the number occupying the
(n + 1)th place in the Fibonacci sequence ends with four noughts.

It remains to show that among the 108 4 1 pairs of numbers

ap, (253
as , Qs
aies, ajes+1

aid+1, QL5 +2

there are at least two coincident pairs. But this is quite evident

because, on the one hand, each of the numbers a;, ay, a3, ..., Gip+2
does not exceed 10% and, on the other hand, using the 10* num-
bers 0; 1; 2; 3; 4; ...; 9999 we can form only 10%.10* = 108

different pairs of numbers (since the first number in a pair can
assume 10* different values and the other number can also assume
10* different values).

Remark. 1t is even possible to indicate exactly the first number among the
members of Fibonacci's sequence which has four noughts at the end of its de-
cimal representation; the index of this number is equal to 7501.

189. Since for n > 1, we have

1

2
aiz(an—l_'_ 1 ) =a;  +2+—5—>a,_ +2
) A1
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and therefore the equality a? = 1 implies
aa>1+2=3 a>1+2:2=5 a2>1+4+3.2=7;...
vy @iy >1499.2=199

whence it follows that gy > 4/199 > 14, Similarly, using the in-
equality

@ = (s +
which also holds for all # > 1 (it turns into equality only for
n = 2) we obtain
aa=1+3=4; a2<14-2:3=7; al<1+4+3:-3=10;...

vy @y < 14-99.3=298

whence it follows that a; < 4/298 < 18.
190. First solution. Let us add to the given sequence one more
number a4, such that |an,4|=]a. + 1| and then square all the

equalities given in the condition of the problem (including the
“additional” equality connecting the numbers a, and an1):

1=0; aj=(a,+ 1Y’=a}+2a +1;
a;=(a,+ l)2=a5+2a2+1; vewy @=al_+2a,  +1;
a,,,=a,+2a,+ 1
On adding together all these relations we obtain
ad+ai+al+ ... Fal+tal,  =0+a+talt ...
e +a+2(@tata+ ... +a)tn-l
The last equality implies
2(a,+a,+a;+ ... +a)y=—n+a, >—n

and consequently

)_a2 24 —<a?_ 43

n— n—

n = 2

a+a+as+ ... +a, > 1

Second solution. For n =1 the arithmetic mean under consi-
deration is equal to a;/1 = 0; for n = 2 (in this case we obviously
have of = 1, and hence ay is equal to +1 or to —1) it is equal
to (a1+a;) /2= (0+a;) /2=a2/2, that is it is equal to 1/2 or to
—1/2; thus, in these two cases the required inequality is fulfilled.
Now let us use the method of mathematical induction; to this end
we assume that in the case when the number of the members of
the given sequence is less than n the assertion stated in the prob-

9—60
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lem holds and then prove that under this assumption it holds for
the case of n members as well. Let a), ay, ..., a. be a sequence
of n numbers satisfying the conditions of the problem and let an,
(where the index m takes one of the values 1, 2, 3, ..., n) be the
smallest of these numbers. In this case we can of course assume
that an << 0 (if all the ‘given numbers are nonnegative no proof
is needed because the arithmetic mean of such numbers exceeds
—1/2) and that am = — am—1 — 1 (because only in this case we
have |am|=|@m-1 + 1| and am << @m-1). This means that we can
assume that the arithmetic mean of the numbers am_; and am is
equal to —1/2:

Am—1 + am —

2

o —

Now it should be noted that if we exclude the numbers am-_,
and am from the given sequence the remaining m — 2 numbers
also form a sequence satisfying the required conditions. Indecd,

it is clear that m %= 1 (because a; = 0 and a, << 0); this means
that the number an,—; makes sense. Further, if m = 2 then am =
= a; = — 1 and a3 = 0 (because |as|=/|a; + 1|), and therefore

we can discard the numbers a, and a; and consider the sequence
as starting with the number a; = 0. Similarly, in case m = n we
can discard the last two terms a,—; and a,, the remaining numbers
satisfying the required equalities. Finally, if 3 << m << n — 1 then

lam_et11=lan_1 =] —an—11and | aps =] an+ 1 =] —an—1|
whence it follows that |am—s 4+ 1| =|am4|; this means that the
numbers ay, @z, ..., AGm-2, Qmt1, ..., @n do in fact satisiy the re-

quired conditions stated in the problem.
By the induction hypothesis which holds for n — 2 numbers we

have
amtad ... tam—tamri+ ... +ap >

n—2 =

that is a1+ a+...+an2tannn+...+a.=—(n—2)/2.
On the other hand, as we already know, there must be

o) =

—M;—a"i=—%, that is ap_1+ap=—1

and therefore
a+ta-+ ... +am—2+am—l+am+am+l+ cee
ot @ =g =)t (=) =—n

We thus see that (a4 a2+ ...+ as)/n = — 1/2 which is what
we intended to prove.
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191. 1t is quite clear that only one of the first two numnbers g
and a; can be the greatest member of the given sequence (be-
cause for 2> 2 every a, must necessarily be less than max
[@r—1, @r—2]*. It can also be easily seen that in the sequence of
maximum length the number a, must be the greatest one because
if a sequence starts with numbers a;, as, a;, ... where g > a,
then we can “continue the sequence to the left” without changing
its properties by writing it as ap = a1 —as, a;, a2 =|a; — ao|,
a3, ... {here we obviously have a; > ay = a; — a3). Therefore in
what follows we shall limit ourselves to the investigation of the
sequences whose first member a, is the greatest one (however, it
should be taken into account that when stating the final answer
to the problem we should increase by 1 the length of the sequence
because of the presence of the number ao = a, — a; having the
“zeroth” index).

It is evident that if the greatest member of a sequence is a; = 1,
this sequence consists of not more than two numbers (it can be:
continued by adding only one number ay = 1). If the greatest
member of a sequence is a; = 2, the sequence contains not more
than three members (in case a; =2 the sequence has the form 2,
2 and in case a; = 1 it has the form 2, 1, 1). If a; = 3 the se-
quence contains not more than five members (if we put a; = 3 or
as = 2 or as = 1 we arrive at the sequences 3, 3 or 3, 2, | or
3, 1, 2, 1, 1 respectively). These examples hint that the “optimal™
sequence probably begins with the numbers a; = n and a; = |,
its initial part being of the form

n ly;n—1n—2;1; ... (*)

It follows that on denoting the number of the members forming
sequence (*) by k, we can write

kn=38+ kp_o (**)

(because, starting with the 4th member ay = n —2, we arrive
at a similar sequence for which n is replaced by n — 2).
From relation (**) we find

ky=2, ky=3, k3=342=5, k,=3+3=6,
k5=3+5=8, k6=3+6=9,

All these numbers k&, can be described by the formula

kn=[3n;—l] (***)

* Cf. the footnote on page 265,
9=I
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where, as usual (cf, page 36), the square brackets designate the
integral part of a number. Formula (***) can obviously be simply
derived from (**) with the aid of the method of mathematical in-
duction. Indeed, as was shown, it holds for n =1 and n = 2; if
(***) holds for a value n — 2 then for n this relation also holds

because
kn=kn_2+3=[-3(£22_).i—_1]+3=[3n2+1]

Thus, we have already constructed sequence (*) (which starts
with its greatest number) of length %, which is connected with
the magnitude n of the greatest number by relation (***). Now
we shall show that if the sequence described in the conditions of
the problem starts with the greatest number a, = n then its
length cannot exceed the number k, defined by farmula (***). To
carry out the proof it is natural to use-the induction method. Let
us assume that the proposition we have stated has already been
proved for all n smaller than a certain value (the fact that this
proposition is true for n=1, n=2 and n =3 was already
checked) and then show that under this assumption the proposi-
tion is true for that value as well. Indeed, suppose that we are
given a sequence satisfying the conditions of the problem which
starts with the numbers

n, m, ...

where m < n. Next let us consider the possible variants (corres-
ponding to different values of m) that can take place here.

1°. If m = n the sequence ends with the second term; the pro-
position we have stated obviously holds for such a sequence.

2°, If n is an even number and m = n/2 then the sequence ends
with the third term, namely it has the form n, n/2, n/2; in this
case the length of the sequence obviously does not exceed k.
either.

3°. If n>m > n/2 then after the first member n of the se-
quence has been discarded, we obtain the sequence m, n — m,
which also starts with its greatest member m. By the induction
hypothesis, the remaining sequence contains not more than &, =
=[(3m 4 1)/2] members. Since we have discarded one member
and since m < n — 1, the number of the members of the entire se-
quence is not more than

1+[3m—|—1] 1+[3(n—21)+1]=[%]<[3n2+l]=kn

4°, Finally, if, m << n/2 then the beginning of the sequence is
of the form n, m, n—m, n —2m, m, ... If in this case we have
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n—2m>=m (that is if m << n/3) then the sequence obtained
after the first three members of the given sequence have been dis-
carded (this resultant sequence starts with the number n — 2m)
is such that its greatest member is the first one; therefore, accord-
ing to the induction hypothesis, the number of terms in the resul-
tant sequence does not exceed

kn_2m=[3(n—§m)+1]<[3(n—22)+1]=[3n2+1]_3

(because m = 1), and consequently the total number of the mem-
bers of the given sequence does not exceed [(3n + 1)/2] = k,. II
n—2m < m (that is m > n/3) then the sixth member of the se-
quence is equal to m —(n — 2m) and hence it is less than m. The-
refore in this case the sequence obtained after the first four terms
have been discarded is such that its greatest member m stands at
the beginning of the sequence and hence the number of the terms
of the resultant sequence does not exceed k., = [(3m + 1) /2] <<
< [(3n + 2)/4]. Consequently, the total number of terms of the
given sequence is again not greater than k. + 4 <<{[(3n + 2) /4]+
+4<[(3n+1)/2] = kn.

We have thus completed the proof of the assertion for the se-
quences beginning with their greatest members. It follows that the
sequence described in the condition of the problem cannot contain
more than 1 4 kg7 = 1 4+ [(3-1967 + 1) /2] = 2952 members; the
number of the members of the sequence is equal to 2952 if and
only if the sequence begins with the numbers 1966; 1967; 1; 1966;
1965; 1; 1964; 1963; 1; ... .

192. In this problem we shall use the proof by contradiction.
Let us suppose that the sequence «;, ojag, ooeas, ... contains
only a finite number of composite numbers. It is clear that in this
case the sequence ay, ap, a3, ... contains only a finite number of
even digits (because every number whose decimal representation
ends with an even digit is a composite number), and consequently
all the digits an, ny1, Onts, ... (beginning with the nth digit
where n is some index) must be odd. In just the same way we
can show that in the given sequence a;, o, o3, ... of digits there
are only a finite number of fives (because every number having 5
as its last digit is divisible by 5). Thus, beginning with some place
in the sequence, the digits following this place can only be ones,
threes and sevens (because, by the condition of the problem, this
sequence of digits does not contain nines). Further, when 3 is ad-
ditionally written at the end of a number the remainder resulting
from the division of the number by 3 does not change and when
one or seven is additionally written at the end of a number the
remainder resulting from the division of the number hy 3 in-
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creases by 1 (because 7 = 2-3 4 1). Therefore, if the number of
ones and sevens in the sequence of digits is infinite then every
third number ending with 1 or with 7 is divisible by 3, that is it

is a composite number. Thus, for the sequence oy, a o2, 20003, ...
to possess the property that only a finite number of its members
are composite numbers we must additionally write at the end of
the given numbers the digit 3 beginning with the Nth place in
the sequence of digits o, oo, @, ... where N is a certain value of
the index. In this way we arrive at a sequence of numbers having
the form

M=o0, ... ay_1333 ... 3=10"4 - 3B

N e ot s et

k times
where

A=aq@y ... ay_; and B=111...1 (k=1,2,3,...)

k times

Now let p be a prime divisor of the number A (it is possible
that p coincides with A). We can assume that p is different from
2 and from 5 because if N is sufficiently large the digit ay_; is
equal to 1 or to 7 or to 3 (the case ay—; = 3 is not excluded here).
Further, there are infinitely many values of & such that the number
B written with the aid of k ones is divisible by p (see the remark
at the end of the solution of Problem 144). To all these values of
k there correspond composite numbers M = 10*4 4 3B (which are
divisible by A). This contradicts the assumption that among the
numbers M there are infinitely many composite numbers, which
proves the assertion stated in the problem.

193. (a) The last digit of a sum of four numbers and the sum
itself are simultaneously even or odd depending solely on whether
the digits in the given sequence are even or odd. Let us agree to
symbolize by the letter 0 an odd number and by the letter e an
even number. It is readily seen that the beginning of the given
sequence can be written symbolically in the form

0000€0000€e0000€ ...

and that this sequence continues periodically: after every four-
tuple of odd numbers o there appears one even number e. It
follows that the sequence 1234 having the structure oeoe cannot
occur in the given sequence of digits.

(b) The number of different four-tuples of digits each of which
assumes the ten possible values 0, 1, ..., 9, is equal to 10% There-
fore in the sequence of 10004 digits one and the same four-tuple
of digits (standing side by side) must necessarily occur twice.
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Further, if the ith, the (i 4 1)th, the (i 4+ 2)th and the (i + 3)th
digits coincide with the jth, the (j 4 1)th, the (j 4 2)th and the
(j + 3)th digits respectively (where we assume that j << i) then,
by virtue of the rule according to which the given sequence is
formed, the (i — 1)th digit coincides with the (j — 1)th digit, the
(i — 2)th digit coincides with the (j —2)th digit etc. Conse-
quently, the (i — j — 1)th, the (i — j)th, the (i — j 4- 1)th and the
({ — j 4+ 2)th digits of the given sequence must necessarily coin-
cide with the Ist, the 2nd, the 3rd and the 4th digits respectively,
that is they form the four-tuple 1975.

194. The answer to the first question pesed in the problem can
be found quite simply. It is clear that among the 8-digit numbers
and the numbers consisting of a smaller number of digits there is
no number the sum of whose digits is equal to 9-9 = 81 and that
among the 9-digit numbers there is exactly one such number, na-
mely 999 999 999; accordingly, in sequence (**) the number 81 oc-
curs for the first time in the 111 111 111th place; the number fol-
lowing 81 in sequence (**) is equal to 9 (9 is equal to the sum of
the digits of the number 1 000 000 008).

The answer to the second question can also be found in a rather
simple way. Since among the numbers belonging to sequence (**)
which correspond to the numbers in sequence (*) consisting of
not more than three digits the number 27 occurs exactly once (in
the 111th place in sequence (**); in sequence (*) this place is
occupied by the number 999), it is clear that the number 27 can
not repeat four times here. As to the 4-digit numbers of sequence
(*), among them there are 4-tuples of consecutive numbers whose
sums of digits are equal to 27: these are the numbers 3969; 3978;
3987 and 3996; it is evident that the corresponding numbers 27,
27, 27, 27 in sequence (**) precede the first triple of the numbers
36 in this sequence (they even precede the first number 36 corres-
ponding to the number 9999 in sequence (*)).

The last question of the problem is stated rather ambiguously;
however it is closely related to the way in which the four-tuple of
the numbers 3969; 3978; 3987; 3996 indicated above can be deter-
mined. We do not go into detail here and only limit ourselves to
indicating that the structure of the numbers forming sequence (**)
is connected with the monotonicity of the sequence of digits in the
numbers resulting from the division by 9 of the numbers belonging
to sequence (*). In particular, the numbers 441 = 3969/9; 442;
443; 444 corresponding to the four-tuple of numbers of sequence
(*) considered above are such that their digits do not form in-
creasing sequences. Let us write down all numbers from 1 to 110
as the following table in which the two-digit numbers whose digits
(different from 0) do not increase and the three-digit numbers



264  Solutions

whose digits (different from 0) do not decrease are printed in
bold face type:
1 2 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20 21 22
23 24 25 26 27 28 29 30 31 32 33
3 3 3 37 38 39 40 41 42 43 44
45 46 47 48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63 64 65 66
67 68 69 70 71 72 73 74 15 76 77
78 79 80 81 82 8 8 85 8 87 88
89 90 91 92 93 94 95 96 97 98 99
100 101 102 103 104 105 106 107 108 109 110

On multiplying all these numbers by 9 and computing the sum of
the digits for each of them we arrive at the following remarkable
fable:

9 9 9 9 9 9 9 9 9 9 18
9 9 9 9 9 9 9 9 9 18 18
9 9 9 9 9 9 9 9 18 18 18
9 9 9 9 9 9 9 18 18 18 18
9 9 9 9 9 9 18 18 18 18 18
9 9 9 9 9 18 18 18 (8 18 18
9 9 9 9 18 18 18 18 18 18 18
9 9 9 18 (8 18 18 18 18 18 18
9 9 18 18 18 (8 18 18 18 18 18
9 18 18 18 18 18 18 18 18 18 18

There also exist some other interesting configurations of the
numbers forming sequence (**).

195. First of all we note that each of the collections /o, Iy, o, ...
is obtained from the preceding collection by adding to it several
new numbers, all the numbers contained in the preceding collec-
tion entering into the new one. Further, it is readily seen that the
new numbers appearing when we pass from /,_; to the collection
I, are greater than n. Therefore the number 1973 does not occur
in the collections with indices exceeding 1973, that is all such
collections contain one and the same number of the numbers 1973.
Now let us prove that a fixed pair of numbers a and b (where,
for definiteness, a stands to the left of b; here two pairs of the
form a, b and b, a are considered different) occurs in the sequence
Io, Iy, I, ..., I, ... Of the collections exactly once in case the
numbers a and b are relatively prime and does not occur at alf
in case a and b are not relatively prime. This assertion is quite
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obvious for the pairs of numbers a, & the greatest of which does
not exceed 2 (there are only two such pairs: I, 2 and 2, 1; each of
these pairs occurs only once, namely in the collection 7, which
consists of the numbers 1, 2, 1). We shall prove this assertion
using the method of mathematical induction. Let us assume that
the assertion has already been proved for all pairs of numbers a,
b such that max [a, 6] << n* and then show that under this as-
sumption the assertion is also true for the pairs a, & such that
max |[a,b] = n. Indeed, let a, b be a pair of positive integers,
say such that max [a, b] = b =n. It is clear that the pair a, b
can appear in a collection /x only if the preceding collection /.-,
contains a pair of numbers a and b — a standing side by side.
Now, since max [a, b — a]<< max [a, b]= b = n, the above as-
sumption implies that the pair of numbers a, b — a occurs exactly
once in the collections Iy, ..., [,—; when the numbers a and b — a
are relatively prime and does not occur in these collections when
a and b — a have a common divisor d > 1. It follows immediately
that the pair a, b also occurs in the collections we are considering
exactly once when the numbers a and b are relatively prime and
does not occur at all when a and b are not relatively prime be-
cause the numbers a and b are relatively prime if and only if so
are the numbers a and b — a.

Now it becomes clear that since 1973 is a prime number (let
the reader check this), each of the pairs of numbers 1, 1972;
2, 1971; 3, 1970; ...; 1971, 2; 1972, 1 occurs exactly once in the
collections under consideration because all these pairs consist of
relatively prime numbers. It readily follows that the number 1973
is contained in the collections /, with indices n > 1973 (and, in
particular, in the collection /y g0 000) exactly 1972 times (1972 is
equal to the number of the pairs 1, 1972; 2, 1971; ...; 1972, 1).

Remark. From the solution of this problem it also follows that an arbitrary
natural number N occurs in the collections I, (where n > N) exactly ¢(N)
times where @ (N) is the number of positive integers which are less than N and

are relatively prime fto N; on the computation of the number @(N) (for any
given N) see the remark to the condition of Problem 341.

196. Let ajopascs (where each a; is equal to the digit 0 or 1;
i=1, 2, 3, 4) be the last four digits of the given sequence. If the
sequence did not contain a subsequence of the digits ajoeasoes0
standing side by side it would be possible to continue the sequence
by writing an additional digit 0 at its end. Similarly, if the se-
quence did not contain the five-tuple of the digits ooeosasl it
would be possible to write an additional digit 1 at the end. There-
fore, the four-tuples of the consecutive digits ajaso3oe4 occur threce

* The symbol max|[a, b] designates the greatest of the numbers a and b in
case a = b and any of the numbers a and b in case a = b.
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times in the given sequence (one of these four-tuples is followed
by the digit 0, another four-tuple o0,a304 is followed by the digit
1 and one more four-tuple ojopo304 stands at the end of the given
sequence). Two of these four-tuples are preceded by the digits 0
and 1 whereas the third four-tuple a;osa304 cannot be preceded by
any digit oo (because, if otherwise, the five-tuple of the digits
oo aaesoty Would occur twice in the sequence). Therefore the third
four-tuple ajoeasos must stand at the beginning of the sequence.

197. The number N is the product of all prime numbers from 2
to 37 inclusive; every divisor of the number N is a product of
some of these prime numbers. Let us show that the assertion of
the problem is true for any number Np = 2-3-5.7- ... -p; equal
to the product of the first £ prime numbers *. We shall prove what
has been said with the aid of the method of mathematical induc-
tion (with respect to the number £). It is clear that for 2 =1 we
have the number N; = 2 possessing only two divisors 1 and 2
below which the numbers -1 and —1 are written respectively;
in this case we have 41 4 (—1) = 0. Further, let us assume that
the assertion has already been proved for the number N, equal to
the product of the first 2 prime numbers; in other words, we sup-
pose that it has already been proved that the number N, has an
even number 2n of divisors (including the numbers 1 and N)
among which there are n divisors each of which is a product of
an even number of prime factors (let us agree to call these di-
visors “even”; in particular, the number 1 is a divisor of this kind
since it has zero prime factors since 1 is neither a prime nor a
composite natural number, the number zero being even) whereas
each of the other n divisors is a product of an odd number of
prime factors (we shall conditionally call them “odd” divisors
of N¢). We shall prove that under this assumption the assertion
of the problem is true for the number Npyy = Ng-psq1 as well
where pryy is the (& 4 1)th prime number. It is evident that each
of the divisors of the number N, is also a divisor of the number
Ney1, and hence Ngyy has 2n divisors (which do not exhaust the
set of all divisors of Ney;) among which there are n “even” di-
visors and n “odd” divisors. In addition to these 2n divisors the
number Ngyy has a number of divisors which are not divisors of
the number N,: these are the divisors of Ny, which are divisible
by pe+1- They all can be obtained by multiplying all divisors of
the number Ny by peyr. The n “even” divisors of N, thus generate
n “new” divisors of N4y each of which is a product of an odd
number of prime factors and the n “odd” divisors of N, generate
n “even” divisors of Ny, Thus, the total number of the divisors

* This assertion even holds for all natural numbers which are factored as
products of pairwise distinct prime numbers.
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of the number N,y is equal to 4n; among them there are 2n =
= n 4+ n “even” divisors and 2n = n 4 n “odd” divisors. There-
fore for Ngy; the numbers written in the lower line are 2# num-
bers --1's and 2n numbers —1's; the sum of these numbers equal
to 41 or to —1 is equal to 0.

Remark. The argument used in this solution allows us to state the assertion
of the problem in a more precise manner. Namely, this argument shows that
the number N, has 2¢=! “even” and 2*-! “odd” divisors (in particular, the num-
ber N = Ny, indicated in the condition of the problem has 2!! = 2048 “even”
and 2048 “odd” divisors) whence it follows that for N, the sequence of num-

bers written in the lower line consists of 2%=! numbers 41 (for the number N
we have 2¢-1 = 2!1) and of 2*-! numbers —1.

198. The fact that the numbers p and ¢ are relatively prime
makes it possible to use the Euclidean algorithm to prove that
any integer n can be represented in the form

n=px-+qy *)

where x and y are integers. Indeed, let p > ¢; then p=gqd + r
where 0 << r <C ¢, that is

r=p+1+q(—d)=px +qy

where d is the quotient and r is the remainder resulting from the
division of p by ¢, x; = 1| and y; = — d. Further, we have ¢ =
= rd, 4+ r; where 0 << r; << r (the number is equal to the remain-
der resulting from the division of ¢ by r). On combining these
two equalities we represent r; in form (*):

ry=gq—rdi=q— (px; +qy) d, =
=p(—xd)) + q(l — y,d)) = pxs + qy»

where xp = — x;di = — d, and Yy = 1—ydy = 1| 4 dd, are in-
tegers. Next we put r = ridy + ro where 0 << ry << ry and use the
foregoing equality in order to represent in just the same way the
number rp as a combination of the form px; 4+ qys of the numbers
p and g, and so on until we arrive at the greatest common divisor
1 of the numbers p and g. (It is readily seen that in this process
the last remainder different from 0 is the greatest common divisor
for any two initial numbers p and g; in the case under considera-
tion p and g are relatively prime and this greatest common divisor
is equal to 1.) Now, since the number 1 can be written in the form
1 = pxr 4+ qyr where xx and y, are integers it follows that any
number n = n-1 = n(pxr + qy:) = p(nx.)+ g(ny.) can also be
written in form (*).

Further, the fact that p and ¢ are relatively prime implies that
if n can be represented in form (*) in two different ways, say

n=px+qy=ps +aqy **)
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where x, y, x' and y’ are integers, then the difference x — x’ is
multiple of q and the difference y— y’ is multiple of p. Indeed,
relation (**) implies that p(x — x') =—¢q(y —y’), that is x —x'=
= —q(y —y')/p, and since p and ¢ have no common prime
factors the difference x -— x’ is divisible by ¢. The last assertion
means that representation (*) is “unique” in the sense that every
integer n can be uniquely represented in form (*) where 0 <
<{x << ¢. Indeed, the number x in formula (*) can always be
written in the form x = kg -+ x; where 0 << xo << ¢ (the number
xo is equal to the remainder resulting from the division of x by g),
and we have '

n=npx—+ qy = p(kq + xo) + qy = pxo + q(pk 4 y) = pxo+qgyo (***}

where 0 << xo << ¢ and the numbers x; and y$ are integers. On the
other hand, two different representations (***), that is two equali-
ties of form (**) with 0 << x << ¢, 0 << ¥’ << ¢ and x = &/, do not
exist because if they existed then we should have |x —x'|<<gq
and the difference x — x” would not be divisible by ¢. The number
n is obviously “good” when the number gy in formula (***) is
nonnegative and is “bad” when y, is negative because if n =
= pxo + qyo where 0 << xo << ¢ and yo << 0 then the replacement
of xo and yo by x = xo — Ag and y = x, + Ap respectively where
A is an integer can never lead to representation (*) of the num-
ber n in which both x and y are nonnegative.

What has been said makes it possible to easily solve the pro-
blem. :

(a) It is evident that the smallest “good” number is the num-
ber 0 =0-p+ 0-g; by virtue of the above, the greatest “bad”
number is a number of form (***) where x; is the greatest of the
“admissible” (positive) numbers, that is xo = g — 1, and yo is the
smallest of the negative numbers, that is yo = — 1. Thus, the
greatest “bad” number is P=p(g— 1)+ g(—1)=pg—p—q.
Further, it is natural to assume that these two numbers 0 and P
are those whose sum is equal to the number A mentioned in the
condition of the problem, that is it is natural to put A equal to
P = pg — p — q. Indeed, if n is a number of form (***) then the
number

n'=A—n=(pg—p—q)— (pxo+ qy) =
=p(@g—1—x)+qg(—1—y)

is also of form (***) where the role of x is played by the number
x,=¢g —1—x, and the role of yo by the number yi= —1— y,.
The relation 0 << xp << ¢ — 1 implies 0<{x{<Cqg— 1, and one of
the numbers y, and y; is positive whereas the other is negative;
this proves the assertion of the problem.
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(b) First solution. From the result established in the solution
of Problem 198 (a) it readily follows that exactly one half of the
numbers n satisfying the inequality 0<{n<<{ P=pg—p—
(where P 1s the greatest “bad” number) are “bad” while the
others are “good”. Since we thus exhaust all “bad” natural num-
bers, the number ¢ of such numbers is given by the formula

P+1_  pg—p—q+1__ (p—DHE-—1
2 2 = 2

[ =

Second solution. The “bad” numbers are those natural numbers.
n which can be represented in form (***) where 0 << xy < g,
Yo << 0 and pxo 4+ qyo = 0 (because n
is a positive number). Let us consi- 4 A
der the plane with coordinates xy and
yo shown in Fig. 22. The straight
lines xp==¢q, yo=0 and pxo+qyo=0
cut the triangle OAB from the plane A
(it is shaded in the figure). The prob-
lem reduces to the determination of
the number of the points in the plane 7

1
)
which have integral coordinates and | .. /,//
lie within this triangle. The number

we are interested in is clearly half e T BT\
that of the points with integral coor-
dinates lying within the rectangle
OABC (there are no points with in-
tegral coordinates on the diagonal of
the rectangle because p and ¢ are relatively prime). Since
the number of the points with integral coordinates lying
within the rectangle OABC is obviously equal to (p—1)(¢g— 1),
we arrive at the same value of the sought-for number { as
above.

199. First solution. We have to prove that every nonnegative
integer n can be uniquely represented in the form

(x+y)P+8x4+y _ x+y)P+x+y)+2x
2 - D) -

)

2
KW///

Fig. 22

n=—

— (x+y)2-21->(x+y) oy = X(X2+1) +x

where X = x 4 y and, consequently, since x and y are nonnega-
tive numbers, X = 0 and 0 << x << X. It is clear that for a fixed
X = 0 and x varying within the admissible limit from Q to X the
number n=X(X 4+ 1)/2 4+ x assumes all integral values from
Nx=X(X+1)/2 (in this case x =0) to Ny = X(X +1}/24+ X
(in this case x = X), each of these values occurring exactly once.
The next integral number Ny+4+1=XX+1)/24+ X+ 1=
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= (X 4 1) (X + 2) /2 corresponds to the value of X exceeding the
former value by 1 (that is to the value X 4- 1) and to the value
x = 0; in this case when x varies from 0 to X 4- 1 we again ob-
tain in just the same way all the integral numbers from Nyy =
=X+ 1)(X+2)/2 to Nx+1=~Nxys—1 etc. This argument
proves the assertion stated in the problem.

Second solution. Let us index all the points in the plane having
nonnegative integral coordinates (x, y) in the way indicated in
Fig. 23. Let us prove that the point with coordinates x, y receives
the index n=[(x+4+ y)?+ 3x 4 y]/2; this auxiliary assertion
will imply the asscrtion of the problem because in the infinite se-
quence of the poinis (x, y) with nonnegative integral coordinates
the point indexed by the number n
will occur exactly once.

We. shall prove the auxiliary
assertion by induction (with res-

214 © °© o o o pect to n). It is evide it that the
758 o o o o o index n=0 is assigied to the
point (0,0) with zero coordinates

e e e and the index 1 to the point with
! o o o coordinates (0, 1); for the coor-
NN, o o o dinates of these points we
have
i 9 14 20

and
| = O+1)24+3-0+1
- 2

Fig. 23

Now let us suppose that the auxiliary assertion has already been
proved for all points belonging to the sequence whose indices
range from 1 to n; let the nth point have ccordinates x, y. 1f the
coordinate y of this point is different from zero then the coordi-
nates of the (n 4 1)th point are equal to x4-1 and y — 1, and
for this point we do in fact have

[(x+1)+(y—1)]2-2!-3(x+1)+(y—1)=(x+y)22+3x+y+l=n+1

If y = 0, the coordinates of the (n 4 1)th point are (0, x 4 1)
and in this case we also have

Ot 1fb3 0GPl  (hOE3ed0 4y

200. To every irreducible fraction p/q where
0<p<<100 and 0<¢g<<100 &)
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we shall assign a point M whose coordinates are p, g; inequali-
ties (*) indicate that the point M belongs to the square # =
= OACB shaded in Fig. 24 which is bounded by the coordinate
axes and by the straight lines x = 100 and y = 100 (the point M
lies inside the square & or belongs to one of the sides AC and BC
of that square). The irreducibility of the fraction p/q implies that
the line segment OM contains no points with integral coordinates.
other than M (indeed, the equa-
lities p=—kpy and g=¢kq
showing that the fraction p/g
can be reduced by a factor %
mean that the point M;(p, ¢1)
with integral coordinates also
belongs to the line segment
OM). Further, if the line seg-
ment OP which lies on a straight
line ! passing through the
origin O (P is the point
of intersection of ! with the
side AC or with the side BC
of the square J#') contains n
points  (po, 4o), (2po, 240),
(3po, 390), ..., (npo, ngo) with Fig. 24
integral coordinates (among
them My(po, go) is the point lying at the shortest distance from 0)
then (since npe << 100 and ngo << 100) we have

pe< AR O MO < B

n—1 n—2

and

<V« 0 0 o <X

n n—1 n—2

This means that the irreducible fraction po/qo is taken into account
when the terms d (11&), d(%o), veey d (m of the sum §

n

are computed, that is the total number of times the fraction po/gg
is taken into account when the sum S is computed equals =
(whereas the reducible fractions 2po/2q0, 3po/3qo, ..., npo/nqo are
not of course taken into account in the computation of the sum S).
Thus, the input which the fraction po/qo gives to the sum S is
equal to n, that is fo the number of the points with integral coor-
dinates which belong to the line segment OP.

What has been proved implies that the total number of the frac-
tions which are taken into account when the sum S is computed
(this number is equal to the sum S) is equal to the total number
of all points with integral coordinates lying within the square J7,
that is S = 100-100 = 10 000.
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201. (1) Let x be an arbitrary real number. Then we can write
x == [x]+ o where a is a nonnegative number less than 1. Now
let us represent y in the form y={[y]4+ p (0 << P << 1). Then
x+y=I[x]4+{yl +a+p. Since a4 B =0 the last equality
shows that [x]4-[y] is an integer not exceeding x -+ y. Further,
since (x -+ y) is the greatest of the integers not exceeding x + y
we have [x + y] =[x]+[y].

(2) First solution. Let us represent x in the form x = [x] 4+ «
where 0 <C a << 1. The division of the integer [x] by n results in
a quotient ¢ and a remainder r, that is [x]=gn+4r(0<r<<n —1).
Thus, we have

ﬁ=q-l—i, [ﬁl—]—-q and x=qgn+r+a=gqgn-+r
n n
where ri=r+ a<<n. Hence, x/n=qg+n/n 0<rn/n<<l)
and [x/n]=¢g=[[x]/n], which is what we intended to prove.

Second solution. Let us consider all whole numbers which do
not exceed x and are divisible by n. The number of these whole
numbers is obviously equal to [x/n]. Let us also consider all
whole numbers which do not exceed [x] and are divisible by n.
Their number is equal to[[x]/n]. Now, since these groups of whole
numbers coincide, the numbers of the members in these groups are
equal, and consequently [[x]/n]=][x/n].

3). If (x)=[x] (that is x—[x] < 1/2) then [x- 1/2]=]x],
and we have [2x]=2[x] and [2x]—[x]=2][x]—[x]=[x]=
=[x+ 1/2]. If (x)=[x]+ 1 (that is x — [x] = 1/2) then [x 4 1/2]=

=[x]+1, [2x]=2[x] + 1, and we again have [2x] —[x] =2 [x] +
+ 1 —[x] =[] + I =[x + 1/2].

(4) First solution. Let us write x in the form x =[x]+ .
Since 0 << o << 1, the number o lies between two nelghbourmg
fractions belonging to the set 0/n, 1/n, ..., (n—1)/n, n/n. Let
these neighbouring fractions be k/n and (k+ 1)/n, that is let
k/n < o <(k+ 1)/n; then we have

x.}_l___k_—l_ [x]_|_a+”+k_l<
<p+EEL =Rl g
and
=[x]+1
Further,
=[x]+ o k'H r=1_

n

=[]+ 2EE < [a] 42
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It folows that

M<[r+g]<[r+2]< .. <[r+ 2L <1+ 1
and

[ +1<[s+ 222 ] < [r + 22250 <
co<[r+ L < 2

n

that is
f=[s+5]=[¢++2]= ... =[s+2=2=1]
and
R =L I PRELLE Y P L p

Since the first group of the equalities involves n — £ numbers
while the second group involves £ numbers we have

R
==k x]+E(x]+ )=nlx]+

The integral part of the number nx is equal to the same number
n[x]+ k. Indeed, since & << no << k-4 1, we have na =k 4§
where 0 << p << 1, and consequently

[nx]=[nlx]+no]l=[n[x]+ &k +Pl=nlx] + &
We have thus proved that

[x]+'[x+%]-|- +[x+ n; ]=[nx]

Second solution. Let us consider the left-hand side of the given
equality. If 0 << x << 1/n, all the numbers x, x4+ 1/n, ..., x4
4+ (n— 1) /n are less than 1 and their integral parts are equal to
0. In this case [nx] is also equal to 0, and consequently the equa-
lity holds for all x satisfying the condition 0 << x << 1/n.

Now let x be an arbitrary number. If x is increased by 1/n
then all the summands on the left-hand side shift one place to the
right and the last summand [x 4 (n — 1)/n] turns into the num-
ber [x 4+ 1] which exceeds [x] by 1. Consequently, when x re-
ceives an increment of 1/n the left-hand side increases by 1. The
increase of x by 1/n also results in an increment equal to 1 of
the right-hand side of the equality. Further, for any x there is a
number o« lying between 0 and 1/n (0 << a << 1/n) such that x
differs from o by m/n where m is a whole number, whence it fol-
lows that the given equality is valid for any x.

1
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202. First solution. By virtue of the result established in the
solution of Problem 201 (3), the sum we are interested in (it ob-
viously contains only a finite number of terms different from zero)
is equal to

n 1 n 1 n 1
[s+z]+[F+z]+5+2]+

= (o= [30)+ (=D + (-8 + - ==

Second solution. For n=1 the sum under consideration is
obviously equal to 1. Further, when n is replaced by n + 1 every

IA
c B
N

P

k | M
0 A T

q
Fig. 25

term of the sum either remains unchanged or increases by 1. More
precisely, there is exactly one term in this sum which increases
by 1 under this operation, namely the term corresponding to the
value of & such that 2% is the highest power of 2 by which n 41
is divisible. Indeed, if n 4+ 1 = 2%(2m -+ 1) then

n+ 142k 2% (9m + 9)
[ QR T ]=[ prES ]=m—|—1

and .
n+2 1
[588)= [r+1= ]
whereas for i sk we have [(n -1 2) /214 = [(n 4 2i/2i+1]
(why?). By the principle of mathematical induction, it follows that
the sum under consideration is equal to n for all n.

203. Let us mark all the points in the plane xOy whose both
coordinates are integers such that 1 <x<<g—1 and | <y <
=< p—1 (here x and y are the coordinates of the points). These
points lie inside the rectangle OABC (see Fig. 25) the lengths of
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whose sides are OA = ¢ and OC == p; the total number of these
points is equal to (¢ — 1) (p — 1). Lel us draw the diagonal OB
of the rectangle. 1t is clear that none of the points with integral
coordinates lies on that diagonal (because the coordinates x and
y of the points belonging to the diagonal OB are connected by
the relation x/y = OA/AB = ¢/p, and, since ¢ and p are rela-
tively prime numbers, there are no positive integers x << p and
y << g such that x/y = ¢/p). Now we note that the number of the
points with integral coordinates whose abscissa is equal to &
(where £ is a positive integer smaller than ¢) and which lie below
the diagonal OB is equal to the integral part of the length of tlie
line segment MN shown in Fig. 25. Since MN=(OM/0A) -AB=
= kp/q, this number is equal to [kp/q]. Consequen'ly, the sum

p 2p 3p (g—1op
2]+ (2] [+ oo 4[5
is equal to the fofal number of all points with integral coordinates
lying below the diagonal OB. The total number of the points with
integral coordinates lying inside the rectangle OABC is equal to
(g — 1) (p — 1); the symmetry of the location of these points about
the centre of the rectangle implies that exactly half of these points
lies below the diagonal (in this argument it is important to take
into account that the diagonal itself contains no points with in-
tegral coordinates). Thus,

i

In just the same way it is proved that

q 29 3q (pP—NDqgl__(p—N(—1
[£]+[F]+ 5]+ - +[55] = ;

204. First solution. For n = 1 the right-hand side and the left
hand side of each of the given equalities reduces to exactly one
term equal to I; hence, for n =1 these equalities hold. Now let
us prove that if the given equalities hold for a given value of n
then they also hold for n+ 1; by virtue of the principle of ma-
thematical induction, this will imply that the equalities hold for
all values of n.

If n 4 1 is not exactly divisible by &, that is if

n+l=qgk+r

where the remainder r lies between 1 and & — 1, then n = gk + r*
where r' = r — 1, that is 0 << ¢ << k — 2. 1t follows that in this
case the numbers [(n 4 1)/k] and [n/k] coincide (they are both
equal to g). In case n - 1 is divisible by & (that is n 4+ 1 = gk)
we obviously have [(n+ 1)/k] =q and [n/k] =g — 1, that is
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[(n+ 1)/k] = [n/k]+ 1. Thus,
[n+ 1]=[£] if £ is not a divisor of the number n-1[

k k
and
[”j‘]:[%]+1 if kis a divisor of the number n+ 1.

Now it follows that:
@ [T+ [
[3]+ - +[75T) + T

that is if
[H]+[5]+ - +[5]=n+n+ ... +

[+ 2]+ -+ [ ] =ntnt o Tt T
o) [2F ]2 [2H ]+ e [ ] =

n

=[f]+2lz]+ -+ 0[]

[%]+2[§]+ oo F 2=t at ... o,
then

[ 2 [ e [
=040+ ... + 0,1+ 0nyy

Second solution. The number of those members of the sequence
1, 2, 3, ..., n which are divisible by a definite number % is equal
to [n/k] (these are the numbers &, 2k, 3k, ..., [n/k]k). The sum
of the divisors equal to k& of all such numbers is equal to £[n/k].
Now it follows that:

(a) The numerical value of the sum [n/1]4[n/2}4 ...
-+ [n/k]4- ...+ [n/n] is equal to the number of those terms of the
sequence 1, 2, 3, ..., n which are divisible by 1 plus the number
of those terms of the sequence which are divisible by 2 ... plus
the number of the terms of this sequence which are divisible
by n, and the sum 1y + v + 13 + ... -+ 7. has the same numerical
value.

(b) The numerical value of the sum 1-[n/1]4 2[n/2]4- ... 4~
+ kln/k]+ ...+ nln/n] is equal to the sum of the divisors equal
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to 1 of all the numbers belonging to the sequence 1, 2, 3, ..., n
plus the sum of the divisors equal to 2 of all the numbers belong-
ing to this sequence plus the sum of the divisors equal to 3 of the
numbers belonging to that sequence ... plus the sum of the di-
visors equal to n of all the numbers of the sequence, and the sum
o) + 02 + 03+ ...+ o, has the same value.

Third solution. We shall also present here a simple geometrical
solution of the problem whose basic idea is close to that of the

4

Fig. 26

second solution. Let us consider an equilateral hyperbola des-
cribed by the equation y = k/x (or, which is the same, by the
equation xy = k; such a hyperbola serves as the graph represent-
ing the inverse proportionality). More precisely, we are interested
in the part of the hyperbola lying in the first quadrant (see
Fig. 26a).

Let us mark all the points with integral coordinates belonging
to the first quadrant. If x is a divisor of the number £ then there
is a point with abscissa x on the equilateral hyperbola xy = &.
Conversely, if a hyperbola described by an equation xy = & passes
through a point with integral coordinates whose abscissa is equal
to x then x is a divisor of the number k. Thus, the number 1. of
the divisors of the number £ is equal to the number of the points
with integral coordinates lying on the hyperbola xy = k. The sum
o, of the divisors of the number £ is equal to the sum of the
abscissas of the points with integral coordinates lying on the hy-
perbola xy = k. Further, we shall also use the fact that all the
hyperbolas xy =1, xy =2, xy=3, ..., xy =n—1 lie below
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‘the hyperbola xy = n. Now we can draw the following conclu-
sions.

(a) The sum 7 + 12+ 13+ ...+ 1. is equal to the number of
all points with integral coordinates lying below the hyperbola
xy = n and on the hyperbola itself. On the other hand, none of
these points has an abscissa exceeding n; as to the number of the
points with integral coordinates whose abscissas are equal to %
and which lie below the hyperbola, it is equal to the integral part
of the length of the line segment MN shown in Fig. 26a, that is
this number is equal to [n/k] because MN = n/k (ci. the solution
of Problem 203). Thus, we have

wtntunt .. +n=[1]+[5]+ 3]+ +[F]

(b) Let us assign to every point with integral coordinates an
index equal to its abscissa (see Fig. 266). Then the sum o, 4 0s +
~+o3+...4 0. is equal to the sum of the indices of all points
with integral coordinates lying below the hyperbola xy = n. On
‘the other hand, the sum of the indices of all such points whose
abscissas are & is equal to £[n/k]. Thus, we have

oitotot .. +o=[1]+2[5]+3[5]+ .- +r[5]

205. The expression (2 4+ 4/2)"+(2—+/2)" is  obviously
equal to an integral number, for, if 2+ '\/2)n=an+ b, /2
where a, and b, are whole numbers, then (2 — 4/2)" =a, — b, 4/2
(this follows from Newton’s binomial formula and can also be
proved by means of the method of mathematical induction). Since

(2 —4/2)" <1, it follows that

[+ V2 ]=(E++/2)"+2—-v2)"—1
and, consequently,

C+v2)" —[+ VD) I=1—-(2—v3)"

Since (2 —4/2) <1, the expression (2 — 4/2)" can be made
arbitrarily small by taking a sufficiently large exponent n. 1f we
chose 7 such that (2 — 4/2)" < 0.000001 then

C+42)" [ 24+ v2)"T=1—-(2—4/2)" > 0.999999

206. (a) First solution. Since (24 4/3)" 4 (2 — 4/3)" is a whole
number and since (2 —4/3)" < 1, we have

[(2+v3)T=0C+v3)"+(2—-v3)"—1
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(cf. the solution of Problem 205). Using Newton’s binomial for-
mula we can open the parentheses in the expression (2+ «\/3)" +
+ (2 —4/3)" to obtain
@+v3)"+(2—+3)'=
=2(2"+C(n, 22" 2.34-C(n, 42" -3+ ...)

It follows that this expression is divisible by 2, and consequently
the number [(2 + 4/3)"]= (2 + '\/g)n —|—_(2 — «\/3)“ — 1 is odd.

Second solution. The number (24 4/3)" can be represented in
the form a, + b,4/3 where a, and b, are whole numbers. Let us
prove that

az—302=1

To this end we shall apply the method of mathematical induction..
First of all, for n =1 we have ay = 2, by =1 and 22 — 3-1=1.
Further, let us suppose that

(24 v3)" =a,+5.+/3
for some n where a2 — 3b, =1. Then we can write
@+ /3" =(aa+,4/3) @+ V3) =
= (22, + 30,) + (an + 26,) V'3
whence ap+1 = 2a, 4 36, and b,y = a, + 2b,.. Consequently,
at, —3b,,=(2a,+ 3bn)2 —3(a,+ 2bn)2=ai —3p2 =1

We have thus proved that o — 365 =1 for any n.
It follows that

[a. + b, V3] =a, +[b,v/3] =a, + [/35]] =
=a,+ 7@ —1]=a,+ (a,—1)=2a,— I

which means that the number [(2 4 «\/3)”] =[a, 4 b,4/3] is odd..
(b) Let us check that

—n (1+1/§)n+(1—1/§)n—1 for even n
[(1“/3)]:{(1+¢§)"+(1_4§)” for odd n

Indeed, the sums on the right-hand side of this formula are whole-
numbers (cf. the first solution of Problem 206 (a)). For an even n.

we have 0 < (1—4/3)* <1 and for an odd n we have —1 <
< (1—43) <o,



‘280 Solutions

Now let us consider separately the cases when n'is even and #
is odd.
(1) Let n be even: n = 2m; then

[+ V)" ]=(+ V" + (1 =3 —1=
(O (), L
=(44243)"+(4—243)" — 1=
=2"{2+ 3"+ (2 - v3)"} -1

The expression in the curly brackets is obviously equal to an in-

tegral number and consequently the number [(1 + 4/3)"] =
= 2m"N — 1 is always odd. Hence, when n is even the highest ex-

ponent of the power of 2 by which [(1 +1/§)n] is divisible is
equal to zero.
(2) Let n be odd: n = 2m + 1; then

[0+ V)™ =0+ V3" + (1 - v3)"" =
=(“+2v3)"(1+v3)+(4—243)" (1~ v/3) =
=2"{2+4/3)"(1+v/3) +2—V3)"(1—3)} =
=2"{(2+v3)" + (2 —3)") + V3 ((2+43)" = (2—v/3)")}
Let (24 4/3)"=a, + b,+/3 where a, and b, are integers;
then (2—4/3)"=a,, — bm4/3. On substituting these expressions
into the above formula we find
[0+ )" T=2" {an+ bw 3+ an—bm 3+

+ /3 @am+ bm V3 —am + b A/ 3)} =

=2" (20, + 6b,) = 2™ (a,, + 3b,)

Now let us show that the number a, + 3b. is odd. Indeed, we
have

(a,, + 3b,,) (a,, — 3b,,) = a2, — 962, = (a2, — 362,) — 662, = 1 — 67,

(see the second solution of Problem 206 (a)). Since the number

1 — 6b%, is odd such are both factors (@m + 3bm) and (am — 3b4).
Consequently, the exponent of the highest power of 2 by which

{(1+4/3)" is divisible for an odd n =2m + 1 is equal to
_a+l _TIn
m+ 1 =20 =[F]+1
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207. The fact that the expression (2 + 4/5)" + (2 — 4/5)" is an
integral number and the inequalities —1 < (2 —4/5)” <0 (they-
hold because p is odd) imply that

[(24-4/5)]=(2+ /B) + (2 — 4/5)

(cf. the solutions of Problems 205 and 206). By Newton's bino-
mial formula,

(24 /5)° +(2— +/5) =

—1
=2(2”+C(p, 2)2°7% +C(p, 4)2°7'5" +... 4+ C(p, p—l)Q-SE'T)
and therefore

[2+ v5)°]—2" =

p=1
=2(C(p, 2)2°7% + C(p, 42°7'5°+ ... +C(p, p—1)2-5 2 )
All the binomial coefficients

—1 —N(p—2)(p—3
C(p,2)=-’i%, C(p, 4) = 22 1).(’2’.3.,)4(’7 oL

y Clp, p—N)=p

are divisible by the prime number p because the numerator in the
expression for C(p, k) is divisible by p whereas the denominator
is not. Consequently, the difference [(2 4+ 4/5)’]—2°"' is also
divisible by p, which is what we had to prove.

208. We have

C(n, p)=2L

Among the p consecutive whole numbers n, n—1, n—2, ...
..., n—p—+1 there is only one number divisible by D; let us
denote it by the letter N. Then we can write [n/p] = N/p, and the
difference mentioned in the condition of the problem assumes the
form

—1N(n—2)...(n—p+1)
pl

nin=1) ... (N+O)NN=1)...(a—p+1) N
p! P

Now we note that the division of the numbers n, n—1, ...

N4+1,N—1,..., n—p-+1 by p leaves all the p0551b!e~

remainders l, 2,3, ..., p — 1 (when the p consecutive whole num-

bers from n--p -+ 1 to n are divided by p we obtain all the re~

mainders 0, 1, 2, ..., p — 1, each of them occurring exactly once)..
It follows that the difference

nn—1)...N+ D(N=1) ... (n—p+ 1)~ (p— 1)1
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is divisible by p (to prove this it is sufficient to perform the term-
‘by-term multiplication of all the equalities n =k jp+a;, n — 1 =
=kp+a, .... N+l=kpt+a, N—1=kyp+ay, ...
e, B—p—+41=kyp+ a,_y wWhere &y, ky, ..., kp_y are integers
and the numbers a;, as ..., @p—) are equal to the numbers
1, 2, ..., p—1 taken in some unknown order). On multiplying
this difference by the whole number N/p we obtain the new dif-
ference
nin—1)...(n—p+1) _Np=1
P p

‘which is of course also divisible by p. Finally, on dividing both
members of the last difference by (p — 1)! we arrive at the re-
«quired result (the quotient resulting from the division by (p — 1)!
is also divisible by p because the numbers (p — 1)! and p are re-
latively prime).

209. Let oo > 0. It is clear that the value o = 1 satisfies ths
condition of the problem. In the case when o« > 1 and, accordingly,
1/a = B < 1, the numbers [a], {2«], [3«], ..., [Na] are all
pairwise different, and therefore it only remains to check that all
the numbers [p], [2B], {3B], ..., [NB] are different from one ano-
ther. Since {NB]<<NB<<N we have [NB]<<N — 1, and therefore
the N nonnegative numbers [B], [2B], ..., [NB] can assume N
different values only when these values are

[ﬂ]=0v [2|3]=l’ ]3ﬁ]=2"-'r[Nﬁ]=N_l (*)

Further, since the equality [£f]= k& — 1 is equivalent to the in-
-equalities £ — 1 <C 28 << k& or, which is the same, to the inequali-
ties

l—5<B<l (¢=1,2 ..., N) (**)

‘we conclude that the system of inequalities (*) is equivalent to
inequalities (**), that is to the inequalities

1
-5 <Bp<I1

Hence, if « > 1 then (N —1)/N < p = 1/a < 1, and conse-
quently 1 <a<<N/(N—1), and if a <1 then (N—1)/N <
<< o << 1 (this was in fact already proved above),

Now, taking into account the value o = | mentioned at the
beginning of the solution of this problem we see that for &« > 0
there must be (N —1)/N << a << N/(N —1). It can be shown in
a gimilar manner that for o << 0 there must be —(N—1)/N =
=a=—N/(N-—1).
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210. First solution. It is evident that (a)==[a <4 1/2]; conse-
quently, the equality we have to prove can be written in the form

V[ [ [ 2]

Now, let
N=ag, 2"+a,_1-2'+ ... +a,:24a,

(where each of the digits an, an—y, ..., a1, ao is equal to 0 or 1) be
the expansion of the number N in powers of 2 (this corresponds
to the binary representation of the number N). It obviously follows
that

1

[+ 3] o2 a2 ]
=0, 2" Fa,,- 2"+ ... +a+a

[F+3]=la 27+ a2+ 4 2Ly 2]
=a, 2 g, -2 .. +a

L A N
[+ ][ b ] =
and N t N 1
[7=+3]=[zm+e]= =0
(we remind the reader that each of the digits a,, ..., ap is equal
to 0 or 1). Thus, we obtain
R R E R LR o

c=a, (T 2T L 1+ D)+
+a, (27720 1D+ a0+ D ta=
=a, 2"+ a,1-2"'+ ... +a,-24a=N

which is what we had to prove.

Second solution. It is evident that the number of those odd
numbers which do not exceed N is equal to N/2 in case N is even
and is equal to (N +1)/2 =[N/2]+ 1 in case N is odd, that is,
it is always equal to (N/2). Similarly, the number of those even
numbers which do not exceed N and are not divisible by 4 is equal
to [N/4] in case N is divisible by 4 or in case its division by 4
leaves a remainder of 1 and is equal to [N/4]+4 1 in case the di-
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vision of N by 4 leaves a remainder equal to 2 or 3; in other
words, this number is always equal to (N/4). Further, the number
of those numbers which do not exceed N and are divisible by 4
and not divisible by 8 is equal to [N/8] in case N is divisible by
8 or in case its division by 8 leaves a remainder equal to 1 or 2
or 3 and is equal to [N/8] 4 1 in all the other cases; hence, this
number is always equal to (N/8). In an analogous manner we
can prove that (N/16) is equal to the number of those numbers
not exceeding N which are divisible by 8 and are not divisible
by 16, (N/32) is equal to the number of those numbers not ex-
ceeding N which are divisible by 16 and not divisible by 32 etc.
In this way we obviously enumerate all whole numbers from 1 to
N, and consequently

(D +E+E+

‘which is what we had to prove.

211. Since 2!° = 1024, we have 2!9° —= 1024!°, The decimal re-
presentation of the number 1000!° = 10% consists of one digit 1
and 30 noughts, and 1024'° > 1000'; therefore the number
2100 = 102410 cannot have less than 31 digits. On the other hand,

doan (dogye_ (ALyR_dL L AL AL AL AL AL gL 4
1000+ 1000 40 40 40 40 40 40 40 40 40 40
40 39 38 37 36 35 34 33 32 41
<45 W T W/ I}CF e s =ar <10
since
41 33 32
40<39<38< <3z <3
) 40 1 33 1 32
(because gg=1+35. =1+, .. gy =1+, o=
=1+3).
Thus,

219 =1024'° < 10 - 1000'°

whence it follows that 219 consists of less than 32 digits. There-
fore the number 2'% has 31 digits.

. Remark. This problem can easily be solved with the aid of the table of loga-
rithms. Since log 2 = 0,30103, we have log 2!% = 100 log 2 = 30.103, and con-
sequently the decimal representatlon of the number 2'% involves 31 digits. Ho-
wever, in this problem it is required to obtain the result without using the
table of logarithms.

212. (a) First solution. Let us denote by A the product
{1/2) (3/4) (5/6) ... (99/100) and let us also consider the product
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B = (2/3) (4/5) (6/7) ... (98/99). Since

2 1 4.3 6_5 98 _ 97 99
37 50T 7o w o w2
we have B > A. At the same time,
1 2 3 4 5 6 98 99 1
AB=5 3757 99 100 =100
It follows that
2 - 1
A2 < AB = TR and therefore A< T
Further, B << 24 =(3/4) (5/6) (7/8) ... (99/100) because
2 3 4 _5 6 7 98 99
3<7 F<% 7<% > ® <TI0
Consequently,
1 1
A2 = th —_
A> AB ™ and therefore A4 > Wi
Second solution. As before, we denote
1 3 5 99
278 T4
Then
=L 3 5 997
T 27 4 e 1002
whence
12 32—1 52—1 992 — |
= TE @ 00 <AL
2 2 2
<! 3 5 992

271 " —1 =1 " 1000—1

Now let us use the formula a2 — b%? = (a 4 &) (@ — b) to factor the
numerators of the fractions on the left-hand side and the denomi-
nators of the fractions on the right-hand side. This results in

1 2:4 4.6 98- 100 1 3-3 5.5 99 .99

. 3 2 - .
53 44 66 100100 <A <7335 57 W00
On cancelling the fractions we obtain
1 1 1 1 1
— <A< ——, whence —=<A<——=<—
200 101 104/2 4/101 < 10

which is what we intended to prove.
Remark. In just the same way we can prove a more general relation
1 1 3 5 2n ~ 1 1
24 2 4 67 on A/2n
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(b) Let us prove that
1 3 5 2n—1 1

2 4 677 o 437 + 1
for n > 1.

The simplest way to prove this inequality is to use the method
of mathematical induction. For n = 1 we have

1 1

2=1/3-1+1

Now let us suppose that
1 3 5 2n — 1 < 1

2 4 6 " BTl
for a certain value of n. On multiplying both members of the last
inequality by (2n 4+ 1) /(2n 4+ 2) we obtain
1.3 5  2n—1 2141 2n + 1
2 4 6 " 21 242 @+ E1
On the other hand, we have
( 2n + 1 2 _ (@n+ 1)? —
2n +2)4/3n+1 121 4 2812 4 201 4 4
_ 2n+ 1)? _ (2n + 1)? 1
T e F P+ 10ntd)+n @rt+1)2@n+d+n <%Fi

whence it follows that

2n + 1 1
©@n+ 23 +1 A/3n + 4
We thus obtain the inequality
1 3 5 2n—1 2n-41 1

2 4 67" 21  2m+2  AB@EDLI
By the principle of mathematical induction, it follows that
1 3 5 Mm—1 1

2 4 6 " 21 S ABagl

for any n, the sign ol equality appearing only in the case when
n=1,

Now let us substitute n = 50 into the last inequality; this re-
sults in the inequality

1 3 5 99 1 1 1

2 4 6 "7 100 4/3.50+1  4/I151  12288..,
which is even stronger than the one we had to prove.
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213. The solution of the problem is a consequence of the two
inequalities
3111 < 3211 —_— (25)11 p— 25.11 _— 255
and
1744 > 1614 == (24)14 — 9414 — 956 > 255

which are quite evident; they imply that 31" << 174 (It should
be noted that the decimal representations of 31!! and 174 consist
of very many digits, and it is rather difficult to compute these
numbers.)

214. (a) Since 22° = 2 = 16 << 27 = 33, we obviously have

222 23 3%
22’ < 22' < 33'
(n+1 digits in digits) (n digits)
for any n > 1 (and, in particular, for n = 1000). (In the case
when n = 2 the last inequality turns into an equality whereas the
first inequality remains strict; there is only one case when the in-
equalities change their sense, namely when n = 1: it is clear that
4= 22> 3)
(b) Let us prove that the inequalities

4 8 .3
w9 < 3

=
(n—1digits) (n digits) (n diglts)

hold for any n > 1 (and, in particular, for n = 1000). Since the
last inequality is evident, it only remains to prove the first one.
The proof can easily be elaborated with the aid of the method of
mathematical induction. It is clear that when n = 2, that is when
n—2 =20, we have one and the same number 4 = 22 on the left-
hand and on the right-hand sides of the first inequality. Let us
assume that the inequality has already been proved for a certain
value of n and show that under this assumption the inequality
remains true for the “next” value n 4+ 1 == 3. We have

! -4 o3
44t = (22)44 ) < (22)223
(n fours) (n—1 fours) (n—2 threes)
(here we use the induction hypothesis). Further, we have

3 .3 -3 .3

@ —p® 2oty < g

(n~2 threes) (n=2 threes) (n—2 threes) (n—1 threes)
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because it is evident that
.3 .3
3" 33"
3 > 2 +1
{n—1 threes) (n—1 digits)

This argument completes the proof of the required inequality.

215. Let us denote by £ the number of digits in the decimal re-
presentation of the number 19747; then 10%1 << 1974" << 104,
(Since 1974™ > 1000® = 10%, it is clear that & = 3n.) If the re-
presentation of the number 1974" 4- 2" contains more than % digits
then 19747 4 2" = 10%*. However, since 19747 = 27.987" and
19747 + 27 = 27 (987" + 1), we obtain (on cancelling the corres-
ponding inequalities by 27) the relations

087" < 27" .5* and 987" 1>2""".5F

which can hold simultaneously only when 987" 4- 1 = 2*-%.5% (in
this case 9877 = 2*k—".5% — 1),

Since & — n=3n — n = 2n, the number 2%".5" is multiple of
8 (and even of 16) for n > 2. On the other hand, the division of
987 by 8 leaves a remainder 3; therefore the division of 987" by 8
leaves the same remainder as the division of 37 by 8. Further, on
raising consecutively 3 to the powers 1, 2, 3, ... and replacing
every time the resultant power by the remainder obtained when
that power is divided by 8, we see that the division of the powers
of 3 by 8 leaves remainders forming an alternating sequence of
the form 3, 1, 3, 1; 3, 1; ... . Therefore the division of the number
987" 4+ 1 by 8 can only leave remainders equal to 4 and 2, and
this number can never be exactly divisible by 8. We have thus
arrived at a contradiction which proves the assertion stated in the
problem.

216. Since the last digit of the number 36™ is 6 for any natural
m and the last digit of the number 5" is 5 for any natural n, the
last digit of the difference 36™ — 5” is 1 when 36™ > 5" and the
last digit of the difference 57 — 36™ is 9 for 36™ << 57. Therefore
the last digit in the decimal representation of the number N =
=]36™ — 5"| can only be 1 or 9, and the smallest possible values
of this number can be 1 or 9 or 11. For m =1 and n = 2 we ob-
viously have N = 11. Let us show that the equalities N = 9 and
N =1 are impossible; this will mean that it is the value N = 11
that is the smallest one. Indeed, if we had the equality 5*—36m=9,
it would follow that the number 5" = 36™ 4 9 is multiple of 9,
which is impossible; if we had the equality 36" — 57 = 1, it would
follow that 5"=36"—1=6>"—1=(6"+1)(6"—1) or,
which is the same, 6" — 1 = 5% and 6™ 4+ 1 = 5" *, which is im-
possible because the number 6™ -+ 1 ends with the digit 7 and
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therefore cannot be equal to a power of 5. We have thus proved
that the smallest value of the absolute value of 36™ — 57 is equal
to 11.
217. We have
| 1.2.3,,.100
gree C (100, 50) = omyy 35 o9 23 o 0 —
1.2:3...100 1-3:5...99

~ (2-4:6...100)-(2:4:6...100)  2:4:6... 100
and therefore it only remains to use the result established in the
solution of Problem 212 (a).

218. It is required to find which of the two numbers 101* — 99
and 100" is greater. Let us consider the ratio

1017 — 997 (100 - l)"—(lOO—l)"’
1007 = 1007

2(C(n, 1)- 100"~ 4+ C (n, 3) - 100" 3 4 ...)
1007

_of_n_ nin—1)(n—2)
_2(100 3. 1007 + )
It readily follows that for n = 50 this ratio exceeds 1. Let us
show that for n = 49 this ratio also exceeds 1:

49.48. 47 18 424 1002
2 ( o0 T 31007 T - )> 2 (100 007 ) > 2 (100 W) =1
Now let us show that for n == 48 this ratio is less than 1. In-

deed,
48.47. 46 48-47-46-45-44
2(100 + e T+ 51+ 100° )<
483
<2(100 + (1-2-3).100° + 1.2 3)(2 3) 100° +

48" .
+(123)(2 3@ g 00 T o )—

—2(100 (1oo)+62(100)+ )

48
100 ___ 9600

<l
1__(100) = 9616

For n < 48 this ratio is of course also less than 1.

Thus, finally, the number 99" - 100" is greater than 1017 for
n << 48 and is less than 1017 for n > 48.

219. Let us begin with proving the following auxiliary proposi-
tion: a product of n consecutive whole numbers is greater than the

10 — 60
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square root of the nth power of the product of the smallest of these
numbers by the greatest one. If we denote these numbers as
a,a+1,...,a+4 n—1 then the £th number, counting from left
to right, is equal to a + & — 1, and the kth number, counting from
right to leit, is equal to @ + n — k. The product of these numbers
satisfies the relation

@te—at+n—k=ad4an—a+k—1)n—k>=
=d+an—a=a(lat+n—1)
where the sign of equality can only appear when 2 =1 or & = n.
In other words, the product of two numbers of the form a 4+ 2 — 1
and a + n — & (in the case when n is odd these two numbers may
coincide with the number at the middle of the sequence a, a + 1,
a + n— k) always exceeds the product of the extreme num-

bers. It follows that for the product of all numbers a, a + 1,
, a+ n—1 we have

al@+1)... (a+n—1)>[a(a+n—l)]%=[«/a(a+n—1)]"

where the sign of equality occurs only for n =1 or n = 2.
Now let us prove that 300! > 10039, We have

1:2... 25> 4/25% =5%
26 ... 50> (4/26-50)" > 355
51 ... 100 > (4/51 - 100)* > 70%

101 ... 200 > 4/1001% . 4/20070° = 120 . 950
and
201 ... 300 > 4/200'%° . 4/30070 = [0 . 250 . 350

On multiplying the left-hand and the right-hand members of the
inequalities we obtain
300! > 525 . 3525_, 7050 . 10400 . 2100 R 350=
— 550, 725 , 550, 1450, ] (%00 . 9100 , 350 — ]()500 , 725 , 1450 , 350 —
= 10500 . 9125. 4925 . 1425 > 10500 . 90% . 4025 . [45 —
= 10550. 925,425,142 — 108%0. 11225 — 10600.1,1925 > 10800 — 100300
Remark. A more general result is stated in Problem 223.

220. Let us prove that

<) <tebed
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for any positive integer k such that &2 << n. To this end we shall
use the method of mathematical induction. For £ = 1 the required
relation obviously holds. Now let us assume that it holds for
some k and prove that under this assumption it holds for £ 41
as well. We have

(+D)"=0+2) (+)=(+5) (1 +3)=
i kA1

k k41
>+

It should be noted that here we have not used the relation 2 << n
and consequently this inequality holds for any positive integer 4.
Now let us put & << n; then we obtain

(4= (4 <25 ()=

E4+1 | B24+2% 41 k41
L i

1 2 R+1)— &2 k 2
=1+k—’i1- +(k—’l;21) _n(k+1) k<1+ ;11-1+(k-r|1-21)

nd

because n(k - 1) > k2 for n = k.
On substituting the value 2 = n into the inequalities we have
derived we obtain

e=1+2<(1+ 1) <1+ 242 =3

221. By virtue of the result established in the solution of Pro-
blem 220, we have

1000 000 — 1 000 000
(1.000001)! 000 = (] o) 0 > 0
222. We obviously have
(1001)89° 1001 1000 00 1
(1000)1990 — \ 1000 ’ 1001 (1 + 1000) “Joor <3 Toor <!

(see Problem 220), and consequently
1000'%%° > 1001%°

223. Let us suppose that the inequalities indicated in the con-
dition of the problem hold for some n. To prove that they hold
for n - 1 as well it is sufficient to verify the validity of the follow-
ing inequalities:

(%I_)n+1:(;—)n>n+1>(%1—)n+1:(%)n

10*
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On cancelling these inequalities by n 4 1 we obtain the equivalent
inequalities (1 4 1/n)?/2 = 1 = (1 4 1/n)*/3 which follow from
the inequality 2 <<(1 4+ 1/n)" < 3.

Now it only remains to note that the assertion of the problem
holds for n = 6 because

() =3"=729, 61=720 and (g) =2"=64

224. (a) By Newton's binomial formula, we have

n
(1+l) =1+C(n,1)-1-+C(n,2)_]2_+... 4=
n n n n
1 nin—1 1 nin—1(n—2) 1
=ltn-o+—F— 7+ 31 RrORED
nin—1)...2 1 n(n—l) __I__
(n—l)' n"_'+ nt

cne (D (D=2
h0-(-)-

and, similarly,

(14 ) 142 (=) 4
tx(l—mr) (D) + -
ot (=) (=) - (= 55T) +
+ oz (=) (= 557) - (=55 (0= 757)

The comparison of these expressions shows that (14 1/(n -+
4 1))+ > (1 4- 1/n)", whence follows the assertion stated in the
problem.

(b) Let us consider the ratio

(1+i)"*‘=(1+n11>"=(ﬁaf—‘)"*‘:(ni,)"=
et = (25 = (1-) (1)
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For n = 2 we have

-1 1 —1 —2
‘(1_—_) =1—n- n2+n(n )n“—n(n 3)l(n )71,13—+
n(n—l)(n—2)(n—3) 1
+ vy

e

—g (=) (-2 (- =] <

S =gty —gw
Qn the other hand,

1 1 1
(—stsm—aw)(+g)=1—gm—gx<I
Consequently, (1 —1/n2)"(1 4+ 1/n) << 1, and therefore

(1+%)n+1: nll)n<1,

(1+7n+1 n-l—l)n

whence follows the assertion we had to prove.
225. We shall use the proof by induction.
1°. Let us show that

that is

n
nl > (:_) *)
for any positive integer n. Indeed, for n = 1 this inequality ob-
viously holds: 1l =1 > 1/e. Now we assume that inequality (*)

has already been proved for certain n and then show that under
this assumption it holds for n4- 1 as well; in other words, we
must establish the inequality

(n+ D> (L)

By virtue of the result obtained in the solution of Problem 224
(a), we have

e>(1+%)", that is —t— > 1

(+5)

n+l1

«n+1n=4n+1yn>(%)ﬂn+1ﬁ=(”j‘) mi%n=

1 1
=) (1:5)0("}51)“

Using inequality (*) we now find
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By the principle of mathematical induction, it follows that in-
equality (*)} is fulfilled for any positive integer x.
2°. Now we pass to the inequality

n<n (%)n (**F

We have to prove that it holds for all integral values of n exceed-
ing 6. Using tables of logarithms (tables of natural logarithms
are particularly convenient for this purpose) we easily check that
inequality (**) holds for n = 7;

7N
n<7(1)
This means that 6! << (7/¢)7 because In6! = In 720 ~ 6.58 and
In (%)7= 7(In7 — 1) ~ 6.62

Now let us assume that inequality (**) has already been proved
for a certain n. By virtue of the result of Problem 224 (b), we
have

e

(1+%)n+l <1

(1+ %)"H >e, that is

From inequality (**) we now derive
(et D=+ D<@+ )n(2) =

. /n+1 n+l nn+le _
_(n+1)( e ) (4 )T

=@+ (2™ (1+i)n+1 <@+ (2EL)

We see that inequality (**) with n replaced by n 4- 1 also holds..
Since inequality (**) holds for n = 7, by the principle of mathe-
matical induction it follows that (**) holds for any integer n:
greater than 6 as well, which is what we intended to prove.

226. We shall proceed from the fact that for x > 1 the greatest
term in the sum S = x* F x*1+ x#2 4 ... + x4 1 is the first
one and the smallest term is the last one while, conversely, for
x << 1 the greatest term is the last one and the smallest term is.
the first one. It follows that

G+D*F>S>E+1 for x> 1
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and
E+DE<S<kF1 for x<1

On multiplying both members of each of these inequalities by
x — 1 we see that

B+Dxt(x—1D>t—1>(k+1)(x—1)
for x 5= 1. Let us put x = p/(p — 1) in the last inequality; this
results in

+1Dp* PPl —(p =1 e+ D -1
(p — D! (p—1F+! (p— 1!

Similarly, on putting x = (p 4 1) /p we obtain

(k+1) (p+1* > (p+ D —pftl (k1) pF

>
P P PR

Now it follows that
(p 4 D —p*+i > (R4 1) p* > p**! — (p — 1)+

Next we consecutively put p=1, 2, 3, ..., n in the last relation
2o obfain

2k+l — lk+1 > (k + 1) lk > 1k+1 — 0
3k+l —_— 2k+l > (k + 1) 2k > 2k+l —_— 1/Z+l
4k+l — 3k+l > (k _I_ 1) 3k > 3k+l —_— 2k+l
(n+ l)k-H —_ nk+l > (k + 1) nk > nk+l _ (/7, _ 1)k+l
©On adding together all these inequalities we find
A+ D —1 >R+ 1D)(1E4 254354 ., + nk) > pkt!

Finally, the division of all the members of the last inequalities by
£+ 1 yields

1(1 n _)k+1 k+l] -1|-1 nk+l >

> 16498 36 ... +nk>?lln"+‘

ahence follows the inequality we intended to prove.
227. (a) It is quite evident that

1 1 1 1 1
arrtagzt ot > temt o s

n times
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On the other hand, we have

R B (GRS

+(n+l +2nL1)+(n-:-2 +2nl—2)+ +(%+%)]=
_;[2n2 + 2n2+3(n—l) + 2n2+gn(n—2) + . +—23nl"]<
<glgrtort tgrl=get g =3+ <ty

n+1 times

This relation implies the second assertion stated in the condition
of the problem.

(b) We begin with the obvious relation

1
n

wtomrr<wmwtm=
Now it follows that

1 1 1 1 1
n+ 1 +n+2+ TN oy +(§+3n+1)<

<zdot o tatbi=2_o

n n

2n—1 times

On the other hand, we have

1 1 11 1 1
n+ 1 +n+2+ +3n+1—?[(n+1 +3n+1)+

+(Ertw) G+ o el

1 4n 42 4n+ 2
sl =y

4n 4+ 2 an + 2
t@oFy—e=gr T - +(2n+1)2—n]>

1 4n + 2 4n 42 4n42
>glmryrt eyt -+ (2n+1>2]

2n+1 times

4n+2
(2 + 1) (2n+1)2 _I

228. (a) First we shall prove the inequalities

24/ +1—24/n< — ’\/_ <24/n—24/n—1
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ndeed. (WAL = V) Wi+
— ~__2(Wnt1—vn)WnET14 n)
24/n+1—24/n VS
1

T VaFiANE S NatvER A
and the second inequality is proved in a similar way.
Now we can write

1+ — +«/3 . +41000000>1+2[(V3—f)+

4
+ (/= 4/3)+ ... +(4/T000001 — 4/T000000)] =
=14 2(4/T000001 — 4/2) > 2+ 1001 — 4/8 +
41> 2000 — 3+ 1=1998
Analogously,

1+4_ «/3+‘ +m<1+2[(«/2—1)+

+(4/3 —4/2) + ... +(4/17000000 — 4/999999)] =
=1-+2(4/1000000 — 1) =1+ 2999 = 1999

Consequently, the integral part of the sum 14 1/4/24+ 1/4/3 4 ...
... +1/4/1000000 is equal to 1998.

.(b) By complete analogy with the solution of Problem 228 (a),
we obtain

1 1 1
4/10000 + 4/10 001 +oet 4/1000 000
> 2[(4/T0001 — 4/10 000) 4 (4/10002 — 4/10001) + ...
. + (4/1000001 — 4/T000000)] =

=2 (4/T000001 — 4/10000) > 2 (1000 — 100) = 1800

>

and

1 1 1
4/10000 + 4/10001 Tt 4/1000 000 <

< 2[(4/T0000 — 4/9999) -+ (4/10001 — 4/10000) + ...
... + (4/T000000 — 4/999999)] =
= 2(4/1000000 — 4/9999) =
= 2000 — 4/39996 < 2000 — 199.98 == 1800.02

Consequently, the sum  1/4/T10000 4 1/4/10001 + ...
«.. +1/4/1000000 is equal to 1800 with an accuracy of 0.02,
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229, First of all we note that the comparison of the two rela-
tions

d (143 =142t
an

{ 2 13\3 1 4 1 8 1
(1+53) =1+25+5m+mw

(14 327> (12

for any positive integer n. It follows that 1 4 2/3n > (14 1/n)%3.
On multiplying the last inequality by n?2 we obtain n?° 45
+2n="%/3 > (n + 1)* whence, finally,

= > 5 [T 17— ]

shows that

Similarly,

1 1 1\
(1-33)=t1—2r+5m—ga>1—20+m=(-2)
(because 1/3n2 — 8/27n% > 1/3n2 — 1/3n® = 0) whence it follows
that

2

_%% (1_._) 3——n 3>(n—1)% and
:'_,Vn: < E['\s/’?_'\y(n_ 1)2:[';

Now we can write
1 1 1
T s
> 3B — D) + (YFE— ) + ...
. + (A/1000001% — 4/1000 000%)] =
3 e 3 —_
=+ (4/T000002 000 001 — /16) >~ - 10 000 — /54 >
> 15000 > 4= 14996

>

On the other hand,

1 1 1
:71:4_?/5:_'- e /1000 000

<WE—B) + (§F T + ...
e+ -+ (4/T000000% — 47999 9992) ] =
= 2 (4/T000 000 000000 — 4/3) < 3 (1 000 — 2) = 14997

<
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Thus, the integral part of the "sum 1/474 + 1/4/5 + ...
J 1/4/T000 000 is equal to 14 996.
"230. (a) We obviously have

1 1 i

1 1 !
—— —_ _—
12+ 1z "’+10002>l0~11+ll-l2+"'+1000-1001=

—(w—w)+(r %J+-~+(ﬁw—m%)=

1
= 5 — o[ 1001 > 0.1 —0.001 =0.099

and, similarly,

1 1 1 1 1 I
02+W+ cee o00r <o.10 T 10- 11 + ... +999-1000='

=)+ ) G-

1000)=
1

= 5 — Tog5 < 0112 —0.001 =0.111

Consequently, the sum 1/102 4 1/1124-...4 1/1000? is equal
10 0.105 with an accuracy of 0.006.

(b) First of all we note that

1 1 1 1 1 1

On the other hand,

—%+11'+121+ +10(l)0' {%+lll+l2l + +1%%?)I}
=_;_{ 1010—!l+111-1-;1+12-—1+ +1010(;)0(;!-1}=

—slo—wmtw—mr Tt - e — Tow ) =
=+ (o~ Too5) <3 o= 33035 ~ 0.000000305

Thus, the sum 1/10!+4 1/1114...4 1/1000! is equal
0.00000029 with an accuracy of 0.000000015.

231. Let us prove that the sum

to

RS SR

<an be made greater than any preassigned number N by taking
a sufficiently large value of n. Assuming that N is an integer
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(this does not lead to loss of generality) we take n = 22¥; then

l+5+g+g5+ - +mr+a=1+5+(3+5)+
Pt e D)o (b o

1 1 1 1 1 1
'+?2ﬁ+22_N)>1+'2‘_+3+E+ o >N FI

n—1

2N times

(according to the result established in the solution of Problem
227 (a), each of the sums in the parentheses exceeds 1/2).

Remark. The assertion of this problem can also be proved on the basis of
the result established in the solution of Problem 227 (b).

232. Let us denote by ne the number of those summands lying
between 1/10* and 1/10%+! (including the number 1/10*% but not
1/10%+1) which are not deleted. If a summand 1/¢ lying between
1/10%-! and 1/10% is not deleted then among the summands 1/10g,
1/(10g +1), 1/(10g+2), ..., 1/(10g+8), 1/(10g +9) lying
between 1/10% and 1/10%t! only the last one is deleted. In case the
summand 1/q is deleted all the summands 1/10g, 1/(10g + 1), ...

, 1/(10g + 8), 1/(10g -+ 9) are also deleted. It follows that

Ny = gnk-l

Since no = 8 (because among the summands 1, 1/2, 1/3, ..., 1/8,
1/9 only 1/9 is deleted), we have

n=8:9=72, 1n,=8-9, ..., n,=8 9

Now let us take the sum 14-1/241/34+...4 1/n with
n << 10m+. On adding to this sum the terms needed to obtain the
sum 141/241/3+4...41/(10"* — 1) and deleting those
summands whose denominators involve 9 we can group the re-
maining terms thus:

(14354 1)
+(o+rtmt - gt .. +%)+
(ot o twm) o (et A Es)

m+1 elghts
The last expression does not exceed the sum

1
1. n0+—---n1+— et oo + —— ﬂm—1+
100 10
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because it is obtained from that expression by replacing every sum
in the parentheses by the product of the greatest of the expressions
in the parentheses by the number of these expressions. Further, we
obviously have

1 1 1
l'no+‘6'n1+l—m'ﬂ2+ cor

lom—l :

1
Ry +—7 Ry

9 9 gm-1
=8(1 Tttt o Tt 10'")

gm-l-l
—
10m+1 1
—8. — 0 8.1 _—8.10=80
- P
10 10

whence follows the assertion we had to prove.

233. (a) Let us consider the sum 14 1/441/9+ ...+ 1/n2
with n smaller than 2*+! and also the sum 1+4-1/224 1/3% -
4 ...+ 1/(2!'—1)2 On grouping the terms by analogy with
the solution of Problem 231 we obtain

I+ (gtg)+(wrsteatam)+ ..
.+((2L)2+(2k-|1‘1)2 +"'+(2k+—111)?)<1+(§+§)+
+(p+EtEteE)t-

1
- +(W+W+ o p)=
1

pat L T 1
= +;+:+.--+?——-1—_1—=2'—7¢-<2
2

which is what we intended to prove.

Remark. In a completely similar manner we can show that if o is a number
greater than 1 then
pa 1 1 g2-!
tEtEt et <y

for any n.
Thus, for any & > 1 the sum
1 . 1 1
ottt

remains bounded for arbitrarily large n (from the result of Problem 231 it

follows that for o << 1 the sum 1 4 1/2% + 1/3%4 ... 4 1/n%can be made ar-
bitrarily large by taking a sufficiently large value of n).
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(b) We obviously have
Attt bt 4 < (= 1)+
+21-3+3l4+4-15+ +(T—-l_1)Z=
1

1 1 1 1
=(ln2+2~3+3-4+ e (n-—l)n)—T

Further, since 1/(k# — 1} k=1/(k—1)— 1/k for all k=2, 3, ...
, n, there holds the equality

1 1 1 1 1
Tetestsat - tamge =17 <!

and, consequently,
1 1 1 !
l+g+gtgpt - +m<t+(-7)=13

which is what we had to prove.
234. We shall first prove the inequality

I4g+g+5+ ..
1, 1 1,1 !
<(1 +;+Z+ +2—k)(1 +§+3+ +§)X

”XO+L+%+””PQ
Py 1] Py
where & is an integer such that 2% <C n << 2%+! and p, is the grea-
test prime number not exceeding 7. To prove the inequality we
open the parentheses on the right-hand side. Every integral num-
ber m from 1 to n can be represented as a product of powers of
the prime numbers 1, 3, 5, ..., p; in the form

m=292%".3%.5% . p

where all the exponents ay, o, as, ..., o are nonnegative integers
(which, of course, do not exceed k). Therefore the sum obtained
after the parentheses have been opened on the right-hand side in-
volves a summand equal to 1/m which is the product of the num-
bers 1/2%, 1/3%, 1/5" etc. taken from the first expression in the
parentheses, from the second expression in the parentheses, from
the third expression in the parentheses etc. respectively. Hence,
after the parentheses have been opened, the sum on the right-hand
side involves all the summands 1,1/2,1/3,1/4,...,1/(n—1),1/n
and some other positive summands. This means that the right-
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hand member of the given inequality is in fact greater than the
left-hand member.
Now, taking logarithms of both members we obtain

log(1+5+3++5+ ... +oir+s)<
<log[(1 +%+%+ +;;)(1 +§+3+...+3‘—k)><...
...><(1+i+-p‘?+ +—’}lk—)]=
=log(l+5+5+ ... +5)+
+Iog(l+—;—+%-+ +;1,;)+
clog (Tt rt o)
Further, for any positive integers & and p = 2 we have
10g(1+_;+.pg+;13.+ +—p‘;)<2—“f—3-
Indeed,

R R P
1+p+p2+...+pk —T <1_L p_

and from the result established in Problem 220 it follows that

(1455 <5 5. tog(14 5

and, besides, there obviously holds the inequality
21log3 log 3
p > p—1
We thus conclude that

Iog(l +_;_+ - 1)<2Iog3+21<;g3+2log3+ +210g3

=210g3(—2—+§+g+ W)

If there existed a number N such that the sum 14 1/2 4 1/3
A+ 1/5+...4 1/p; were less than N for any positive integer
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then for any positive integer n the inequalities
1 1 1 1 l
og(1+3+3+7+ - +7=7+7)<
1 1 1 1 1
<2log3(g+g+tg+ ... +5) <2V~ 1)log3

would be fulfilled. Therefore on taking exponentials of the leftmost
and the rightmost members of the las" inequalities we would ob-
tain

1
n—1

1, 1,1 1 b
l+5+5+5+ ... + + - <FE-D=N,
where N, is independent of n. However, as was shown in the solu-
tion of Problem 231, such a number N; does not exist; consequently
a number N such that

ltg+gtgt o +o-<N

for any positive integer ! where p, is the /th prime number in the
sequence of natural numbers does not exist either,

235. It can easily be seen that (a4 b6+ ¢)?—a®— b3 — 3 =
=3(a+b)(b+¢)(c+ a) (check it!). Therefore it is sufficient
to show that the expression

P (a, b’ C) —_ (a + b + 0)333 _— a333 — b333 —_— 0333

is divisible by a + b, by b 4 ¢ and by a 4 c. It is evident that the
expression P(x, b. ¢c)=(x + b - ¢)33% — x333 — p333 _ (333 regarded
as a polynomial in the variable x turns into zero when —b is sub-
stituted for x; therefore P(x, b, c¢) is divisible by x —(—b)=
= x + b, and consequently P(a, b, c¢) is divisible by a4 b. It
can similarly be proved that P(a, b, ¢) is divisible by both b 4 ¢
and ¢+ a (this also follows from the fact that the letters a, b
and ¢ are involved symmetrically in the expression P(a, b, c)).
236. We have
10 5 —(a5)3_1—al5_1-
a +a +1—“ at—1 = ab—1
_ (a®)5—1 __(@—N(a?4-a4-a5+a’+1)
T @—D@'Faf+taltatl) (@—D@F+ldFalFat1)
_@+tad+)(@?+a+a+a*41)
— atdadtdattat 1

The division shows that

12 9 6 3 1
ST SR N N
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and consequently
a’+attl=@+at+)@—ad +a—a"+d—a+1l)
237. First solution. Let us denote the given polynomials as B
and A respectively. Then we can write
B — A — (x9999 — x9) __|_ (xSSSB —_ x8) + (x7777 — x?) +
- (x8855 — xB) - (x3555 — xB) - (MM — %) |-
_I__ (x3333 — xa) + (x2222 — 2) + (xllll — x) —
— x9 [(x10)999 — 1] + x8 [(xlO)SSB _— 1] + x7 [(x10)777 - ]] +
+ x6 [(x10)666 —_— 1] + x5 [(x10)555 — 1] _I_ x4 (x10)444 — 1] __I_
+ xB[(x10)333 — 1] _I__ x2 [(x10)222 _ I] _I_ [(XIO)III — 1]
Here every expression in the parentheses is divisible by x!% — 1
and, consequently, by A = (x1°— 1) /(x — 1) as well. We thus see

that B — A is divisible by A, and therefore B is divisible by A.
Se¢ond solution. We have
D T R P 2 N E s i

_ D —a)r—m)(x—a) ... (x—a)) __
x—1 -

=(x—a)(x—a) ... (x —a

where o = cos 2kn/10 + isin 2kn/10 (k= 1, 2, ..., 9) because
the roots of the equation x1°— 1 =0 (that is the tenth roots of
unity) are expressed in just this way. Consequently, to prove the
required assertion it suffices to check that the expression

x9999 + x8888 + x7777 __I_ x6666 + x5555 __I__ x4444 __I__ x3333 __I_ }C2222 + xllll + 1

is divisible by each of the binomials (x — o)), (x — as), ...
..., (x — ag). But this divisibility is equivalent fo the fact that
the equation
x9999 + x8888 _|_ x7777 + x6666 _l_ x5555 + x4444 +

+ X3333+ x2222 + xllll + l — O (*)
has the roots equal to o, og, a3, ..., og. Let us verify that these
values of x do in fact satisfy equation (¥); indeed, since a}’=1
(k=1,2,3,...,9) we have

9990 —_ 9990+9 — {10199 4O — O
o =0, = (a)™ 0} = o}

8888 — (1888048 — ((y10}888 o8 — (8
0388 = 8048 = ()0} 0 = af etc.
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and
a0 - 888 |- Q7777 - 9866 - 555 - ¥4 |- 30 . 0222 | gllll | | =
=0} o+ o] +af -+ o + o+ af o+, + 1=
=0 (k=1,2,...,9)

238. First solution. We have
a®+ b4 ¢ — 3abc =

=a®+ 3ab(a+ b) + 8>+ ¢ — 3abe — 3ab (a -+ b) =

=a3 4 3a?h 4 3ab® -+ ¥+ c*~3ab(c+a+b)=

=(@+b°+c*—3aba+b+c)=

=[a+b)+clllat+b)?—(a+bc+c]—3abla+b+c)=
=(a+b+c)l@a+b?—(a+ b)c+ c* — 3ab] =

=(a+ b+ c)(a®+ 2ab + b® —ac — bc + ¢? — 3ab) =

=(a+b+c)(@®+ b+ c2—ab—ac— bc)

Second solution. Let us replace the letter @ by x and put x -
4+ b+ ¢ = 0. On transforming the expression (x+4- b + c)® we
conclude that x3 -+ 63 4 ¢3 — 3xbc=0 when x -+ b 4 ¢=0. There-
fore the value x =—b — ¢ is a root of the equation x® — 3bcx +
+ 6%+ 3= 0, and consequently the expression a3+ 6%+
—+ ¢ — 3abc is divisible by a 4 b 4 ¢. On performing the division
(to this end it is convenient to regard the expressions a® — 3abc -
+ b3+ ¢® and a+ b + ¢ as being arranged in ascending powers
of the variable a) we arrive at the former result:

AP+ —3abc=(a+ b+ )@+ b®+ 2 —ab—ac — be)

(b) Let us choose two numbers a and b such that the equality

24+ px+g=x*4+a®+ b — 3abx

is fulfilled. To this end it is sufficient that a and & should satisfy
the relations a® 4 6 = g and ab = — p/3. These two relations
are a system of two equations in the two unknowns a and 4 from
which a and b can be found. We have a® 4 63 = ¢ and a®h® =
= — p3/27; it follows that a® and b2 are the roots of the quadratic
equation 22 — gz — p%/27 = 0, and consequently *

a=AE+AS+ G b= i AT+ S ©

* The numbers a and b defined by fermulas (*) are real when ¢%4 -+
+ p3/27 = 0. 1If ¢2/4 + p3/27 << 0 we have the third roots of complex numbers
in formulas (*). In this case the numbers @ and b are also complex; they can
be found using the formula for the nth root of a complex number. On applying
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bNOW by virtue of the result established in Problem 238 (a), we
obtain

2Fpe+g=x+a+ b —3abx=
=(@+b+x)(@+ 0>+ x2—ab—ax—bx)

Consequently, the solution of the given cubic equation reduces
to the solution of the first-degree equation

at+b+x=0
and the quadratic equation
2—(a+dx+a®+—ab=0
From the first equation we find

x1=—a—>b
that is

3 T g3 3 T 53
— A 4 4P _AfL A4 P
x“‘—ﬁ/2+ﬂ/4+d7 'Vg N/4+27
It follows that
a+b , (a—b)43 . _a+b  (a—b)43
7+ 2 b Xy=——7H—— 2 :
where a and b are determined by formulas (*).

239. First solution. Let us denote 4/a 4 x by y; then we obtain
the following system of two equations:

Vatx=y, Aa—y=x
On squaring these equations we find
atx=y’, a—y=x*
Let us subtract the second of the last relations from the first
one; this resulfs in

Xo =—

xty=y—x
The last equality can be rewritten as
P—yP+r+y=G+y)x—y+1)=0

Now we see that there can be the following two possibilities:
(1) x+y=0, y=—x and x> —x—a =0 whence

.2=%+ /\/a-f

this formula we can take as a any of the three values of the third root of the

complex number q/2+ A/ ¢*/4 + p?/27, after which b can be found from the re-
lation ab = —p/3
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(2) x—y+1=0; then y=x41 and x>+ x4+ 1—a=0

whence
1 3
X3, 4=— £ /\/a vy

It can be verified directly that the expressions xi, xo, x3 and x4
thus determined are in fact the roots of the given equation provid-
ed that the signs of the radicals occurring in this equation are
chosen appropriately *.

Second solution. Let us eliminate the radical in the given equa-

tion:
a—Aa+x=x
@a—x=a+=x

and, finally,
H—2ax2—x+a?—a=0

Thus, we have arrived at a fourth-degree equation in x; with
respect to a it is a quadratic equation. Let us find a from it. To-
this end we regard temporarily x as a given quantity and express.
a in terms of x:

a?— 2+ DNa+xt—x=0
Q= 2x2 4 1 Af4xt + 4x2 1 — 444 - 4x
o 2

2l A £ 1 221 (2 1)
'— 2 - 2

and, finally,
a=x*+x+1, ay=x2—x

We see that the equation ,
a?— 22+ at+xt—x=0
possesses the roots
a=x2+x+1, a=x*—x

whence, by virtue of the general properties of the roots of a
quadratic equation, we conclude that

— 22+ Datxst—x=@—a)la—a)=
=@a@—x*—x—Da—x*+x)
Hence, the given equation takes the form
K—=x—a)(>+x—a-t+1)=0

* It should be noted that if all the radicals are considered positive them

the equation possesses only one root xz==—1/24 1/a —3/4 in case a=1
and has no roots at all in case a << 1.
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and can easily be solved:

1 1 1 1
x1,2=?i/\/—4-+a =5 =% /\/a+r
1 1 . 1 3
X3,4=—?i ’\/T_I'a'—l =_?i /\/a—"z
240. First solution. Let us denote
x2+2ax+%=y, a+z\/a2—|-x—-—-—-y,

The given equation takes the form

y=1mn
Now let us express x in terms of y;. Simple calculations result
in

1
=i+ 20y, + 15

We thus see that x is expressed in terms of y; in just the same
way as y is expressed in terms of x. It follows that the graphs of
the functions

y=x*4+ 2ax + —116- y /
and r2+2ar+ig=y

p=—a+ /\/a2 +r— g5 e

are parabolas located symmetri-
cally about the bisector of the
first quadrant (see Fig. 27; fo
every point x = xg, y = yo lying
on the first graph there corre- S~
sponds the point x=yo, y==x 4
i y2+2c1_1,/+——-x

Col—

i |

lying on the second graph
which is symmetric to the for-
mer point about the bisector of
the first quadrant). The points Fig. 27

of intersection of the two graphs

correspond to those values of x for which y =y, that is to the
roots of the given equation. These points must necessarily lie on the
axis of symmetry of both curves, that is they satisfy the condition

Yy=x=Yy
On solving the equation y = x which can be written as

x2+2ax+%=x
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we obtain

1—2a 1 —2a\2 1
na= i w0/ (5E) -5

It can readily be verified that for 0 << @ << 1/4 both roots are
real and do in fact satisfy the original equation.

Second solution. This problem can also be solved in a more
traditional manner without using graphs. On eliminating the ra-
dical in the given equation we obtain

1 \2
(x2+2ax+a+—l—g) =a2+x—-—11—6-
Next we open parentheses and collect like terms, which yields
2+ dad+ (40 + 20+ g) 2+ (402 +a—1) 2 +
a 1 1
+5twEtieE=0
The left-hand member of the resuitant equation can be factored as
1
[#+@a— D+ 5 ]+ [Ca+ D+ (tar— )2+ (5 + 55 ) 2]+
17 a 17 a 1 1
+[(2a+15) 2+ (1t + g — ) + (5 +w+1e)]=
1
=[e+ea—x+][¢+ @+ Dr+ (20 +15)]

Now we readily obtain the solutions:

R4 @a—1)x+45=0

whence
1—2a 1 — 2a \2 1
*L2="3 i\/( o
and
24+ Qa4 Dx42+10=0
whernce

_ 14 2a 1+ 2a\2 17
X3, 4— — 2 :t/\/( 9 )—261—'1—6

For 0 << a << 1/4 the first two roots are real and satisfy the ori-
ginal equation; the last two roots are complex.

241. For the left-hand member of the given equation to be real
when x is real it is necessary that all the radicands should be po-
sitive. On denoting these positive radicands beginning with the
last one (which is equal to 3x) up to the first one as 7, 43, 2, ...
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., ¥2_,» Y respectively we can write
Ix=x+4+2x=1y}

x+ 2y, =y;
x+2y,=y}
x + 2!/,,_2 yn—l
x + 2yn—1 = y?x
where all the numbers y,, y2, ..., yn are real and positive. The

original equation itself takes the form

Yn=Xx
Let us prove that y; = x. Indeed, let us suppose, for definite-
ness, that x > y,. Then the comparison of the first and the second
of the above equalities shows that y; > y,. Similarly, from the
second and the third equalities we find that y, > y,; further, we
analogously obtain the inequalities

YaZ> Ys> cve D Yn—1>Yn

Thus, for x > y, we have x > y., which contradicts the equation
Y. = x. It can similarly be shown that for x << y, the equality
y» = x cannot be fulfilled either (in this case the inequality x << ¢
must necessarily hold).

Since y}=13x, it follows that the relation

3x = x*

must hold, whence we readily conclude that only the following two
values of x are admissible:

x1=3, XQ’:-'O

The direct verification shows that both these values satisfy the
given equation.

Remark. We shall also mention one more method for the solution of the
equation

’\/x+2’\/x+2'\/x+...+2 x+2xr =x *y

n radical signs

On replacing the last letter x on the left-hand side of equation (*) by the va-
lue of x expressed by (*) we obtain

s=VrtroAlito et .. +24/% + 2x

2n radical signs
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Further, let us replace the last letter x by the same expression; again and
again this yields

x =’\/x+2’\/x+2 AVx+ ... +2/x f2x =

3n radical signs

=’\/x+2’\/x+2 Vst ... +24x 2k =...

4n radical signs

On the basis of these relations we can write

s =AxteAiteArt .. =
= lim ’\/x+2’\/x+2 Vx4 ... +24/xFt2r (*%
> 00

N radical signs

whence it follows that
s =Axt24ct24it ... =
Arre[WVetevarever o ) =viTo )

From the last relation we find x==4/3x, that is x2 = 3x, and consequently
x; =0 and x; = 3. In particular, this method of solution readily shows that
the roots of equation (*) are independent of n because equation (**) does
not involve n).

This argument cannot be, of course, regarded as a rigorous solution of the
problem since we have not proved the existence of limit (**) and the validity
of transformation (***). It should be noted however that it is in fact possible
to modify this argument to elaborate a rigorous solution.

242. Let us consecutively simplify the fraction on the right-hand
side:

1 _x+1, 1 2 +1
1+-)-c—_—x T T A x 41 1_I_.:c+l X1
X
1 x+1 _ 3x42.
I+ 2% + 1 _1+2x+l TT2x 41t
x4+ 1
Finally we arrive at an equation of the form
ax+b __
cx+d—x

where a, b, ¢ and d are some integers yet unknown. This equation
is equivalent to the quadratic equation x(cx 4 d)=ax +-b. 1t
follows that the original equation possesses not more than fwo
different solutions (this equation cannot turn into an identity bes
cause, if otherwise, any value of x would satisfy it, which is false
since x = 0 obviously does not satisfy the equation).
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These two roots of the equation can easily be found. Indeed, let
us suppose that x is such that

1+71‘-=x

Then, simplifying consecutively the given fraction “beginning with
its end”, we obtain

1+,ch_=x; ]+%-_=x; 1—|-%=x;....

and finally arrive at the identity

xX=x
Thus, we see that the roots of the equation 1+ -;1‘— = x (it is equi-
valent to the quadratic equation x2 — x — 1 = 0) which are equal
to
1 5 1 —4/5
TSRS

satisfy the given equation, and this equation has no other roots.

Remark. We shall also mention another method for the solution of the prob-
lem (cf. the remark to Problem 241). Let us replace x on the left-hand side
of the given equation by the expression of x in the form of a terminating con-
tinued fraction given by the equation itself. This results in an equation of the
same form which however involves 2n fraction lines. Continuing this process
we consecutively obtain fractions with an increasing number of fraction lines.
On the basis of this transformation we can write

x=1+_1__ =14 lim 1
1+ 1 N—)ool+ 1
1+—'—l 1+1+l
1+—1+—.. -' l
' +1+53 @)

fraction line is repeated N times

where on the left-hand side there is a nonferminating continued fraction involv-
ing infinitely many fraction lines. The last expression implies

p=tp— =1 — "
14— 14—
T [+1+_1_
1 1 1
NI S 14

14, l+...]
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that is we arrive at the quadratic equation for x found in the former solution
of the problem. The latter solution of the original equation shows directly that
its roots cannot depend on n.

This argument cannot be regarded as a rigorous solution of the problem be-
cause we have not proved the existence of limit (*), the equality between x
and this limit and the validity of transformation (**). However, it should bhe
noted that this argument can be modified to obtain a quite rigorous solution.

243. We have
x+3—44/x—T=x—1—44/x—1 +4=
AT i T4 4= T -2
and, similarly,
x4+8—64x—1=x—1—64/x—1+9=(y/x—1—23)°
Hence, the given equation can be rewritten in the form

NAWr=T—2f +V(Wx—1 -3 =1

Since all the roots are considered positive the equation can also

be written as
V=1 —=2]+]|4/x—1—=3|=1

where |y| designates the absolute value of the number y.
Now let us consider separately the following possible cases.

1° If 4/x—1—2>0 and 4/x—1—32>0, that is if
'\/x— 1 >=3, then we have x — 1 =9 whence x>>10. In this case

|vVx—1—2|=4/x—1—2 and Iq/x—1—3|= AVx—=1-—3;

therefore the equation takes the form
AVx—=1—24+4x—1—=3=1
24/x—1 =6, x—1=9, x=10

2. If 4/x—1—2>0 and 4/x—1—3<C0, that is if
Ax =122, x5 but 4/x— 13, x<<10, then [4/x — 1 —2|=
=4/x—1—2, |4/x—1—3|=—4/x—1+43 and the equation

turns into the identity

Vx—1—=2—4/x—143=1

This means that all/ the values of x lying between x =5 and
x = 10 satisfy the given equation.

. If 4/x—1—2<<0 and 4/x—1—38<C0, that is if
Ax—1<2, then x<5; in this case we have |4/x — [ — 2|=
=—Ax=1+42, |//x—1—3|=—4/x—=1+3, and the equa-

whence
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tion takes the form

—Ax—142—4x—1+4+3=1

24/x—1=4, x—1=4, x=5
4°, The case when 4/x—1—2<0 and 4/x—1—32>0 is

obviously impossible.

Thus, the solutions of the equation are all the values of x lying
between x = 5 and x = 10 5 << x << 10.

244. To solve the given equation we shall first determine its
roots lying within the interval from 2 to oo and then, consecuti-
vely, the roots lying within the intervals from 1 to 2, from 0 to 1,
from —1 to 0 and from — oo to — 1.

1°. Let x > 2. Then we have x4+1>0, x>0, x—1 > 0 and
x—2=0 “therefore x+1=x+1 |x|=1x |x—1]=x—1
and |x — 2| = x — 2. We thus arrive at the equation

x+1—=x+3x—1)—2x—2)=x+2

which is satisfied identically.

Hence, any number greater than or equal to 2 is a root of the
given equation.

2°. let 1 <<x<<?2 Then x+1>0, x>0, x—1>=0 and
x—2 < 0; consequently |x+ 1|——x+ 1, [x|=1x, |x—1]|=
= x— 1 and [ —2|= —(x—2)

Thus, we obtain the equation

x+1—x4+3x—1D)42(x—2)=x+2

From this equation we find 4x = 8, whence x = 2. Since the
number x = 2 does not belong to the interval 1 << x << 2, the
given equation possesses no roots which are greater than or equal
to 1 and are smaller than 2.

3° Let 0 << x << 1. Then we have

Ix+1]l=x+1, {x|l=x
lx—1ll=—(x—1), |x=2|=—(x—2)

whence

and

Hence,

x+1—x—3x—D4+2x—2)=x+2, x=~—1
Sinee the value x = 1 lies outside the interval 0 << x << 1, there
are no roots which are greater than or equal to 0 and are less

than 1.
4°. Let —1 << x << 0. Then |[x 4 1|=x + 1. In this case

[#l=—x, [x—1l|l=—(x—1), [x—2|=—(x—2)
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and
x+14+x—3x—-—1D+2(x—2=x+2

which is impossible, that is the interval —1 << x << 0 does not
contam roots either.

Let x<<—1. Then |x+1[——(x+1) [*]= —x,
|x—l|——(x—-l) and |x —2|=—(x—2)
‘We obtain
—(x+D+x—3x—-D+2(x—2)=x4+2, x=~—2
Hence, there is one more root x = — 2.

&v

Fig. 28

Finally, we conclude that the roots of the equation are the num-
ber —2 and all the numbers greater than or equal to 2.

Remark. The result of the present problem becomes particularly clear if we
construct the graph of the function

y=|x+1|—|x|+3[x—1|=2]x—2]—=(x+2)
In Fig. 28 the thin lines represent the graphs of the functions y, = |x + 1],
Y= —|x|, y3= 3!x—1|, Yo =—2|x—2| and ys = —(x 4 2), and the hea-
vy line the graph of the function y = y; 4 y2 -+ ys 4 ys 4 ys (here we have per-

formed the “addition” of the graphs). As is readily seen from the figure, the
variable y turns into zero on the ray x == 2 and at the separate point x = —2.

245. Let us denote the right-hand side of the given equation of
the nth degree as f.(x). It is easily seen that f,(x) =0, that is
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the equation 1 — x = 0 has the root x; = 1; the equation f,(x)=0
has the form x(x — 1)— 2x |- 2 = 0 or, equivalently, x2 — 3x 4-
+ 2 = 0; this equation has the roots x; = 1 and x, = 2. Now let
us prove that the equation f.(x) = 0 possesses the following roots:

=1, x%=2, x3=3,..., xp_1=n—1, x,=n *)

We shall make use of the method of mathematical induction. To
this end we assume that the assertion has already been proved
for the equation f.(x)= 0 and then show that under this assump-
tion the equation fn.41(x)==0 possesses the same roots (*) and
an additional root x,4y == n - 1. First of all, since

—D(x—2) ... (x— 1 (x —
Foot () = Fn (x) - (—1)r+t 2D )<n+(1’§1 Rt 1) (x—n)

jt is clear that if the equation f,(x)= 0 has roots (*), then the
same roots also satisfy the equation fn.4;(x) = 0. Finally, the equa-
lity foe1(nn 4 1) = 0 can be written in the form

n-41 (n+Dn n+Dn@nr—1)
l—— 45— 1.2.3 + ...
ntl (n+Dn@—10.,.2.1

that is
—Cn+1,H+Cr+1,2)—C(n+1,3)4 ...
L EDTICEF L) =0 (¢

where C(n+1, k)= (ntDntn— I,Z!"' (n=k+2) ,re the so-called

binomial coefficients. By Newton’s binomial formula, the right-
hand side of (**) is equal to (1 — I)**! = 0, whence it follows
that the number xn.41=n-4+ 1 is also a root of the equation
fng1(x)=0.

246. Let us denote by {x} the fractional part of the number x:
{x} =x— [x] (see page 37). It is evident that 0 << {x} <<'1 and
1x] = x — {x}. Thus, the given equation takes the form

2B—(x—{x}))=3, thatis x*—x=3—{x}

whence it follows that 2 << x® — x << 3. Further, for x = 2 we
have x* —x = x(x2—1) >2(4—1) =6>3; for x < —1 we
have x2—1>0 and ¥* —x=x(x2— 1)< 0<2; for x =—1
we have ¥* —x =0<<2; for —1 < x<< 0 we have x®—x <
<< —x<<1 and for 0 << x << 1 we have x® — x << x3 << 1. There-
fore there must be 1 << x << 2, and consequently [x] = 1. Now the
original equation can be written in the form

x*—1=3 whence #*=4, thatis x=+74
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Thus, x= \3/4 is nothing other than the (single) solution to the
problem.
247. From the first equation of the given system we immediately
obtain
y2 = x2, y =4 X

The substitution of this expression of y? into the second equa-
tion yields
(x—aP+12=1 *)

This is a quadratic equation; in the general case it determines
two values of x. Since to every value of x there correspond two
values of y, the total number of the solutions of the problem is
equal to four.

The number of the solutions of the system reduces to three when
one of the values of x is equal to zero; to the value x = 0 (and
only to this value) there corresponds a single solution y = 0 and
not two different values y = + x. On substituting x = 0 into
equation (*) we find

a’?=1 whence a==+1

For only these values of a the system possesses three solutions.

The number of the solutions of the system reduces to fwo when
the equation for x has only one solution. For the quadratic equa-
tion (x —a)?4-x2=1 which can be written as 2x?—2ax 4
+ a2 — 1 = 0 to have only one solution (in this case the two roots
coincide) there must be

a?—2(a?—1)=0 whence a?=2, that is a=4-4/2

For these values of a the system possesses two solutions.
248. (a) On solving the system we find

a®—1 —a’+ta
F=mTe YT aor

It follows that if a 4+ 1 5= 0 and a — 1 == 0 then the system has
only one solution x= (a?+a+1)/(a+ 1), y=—a/(a+ 1). If
= — 1 or a = + 1 the formulas we have derived do not make

sense. In the case a = — 1 we arrive at the system
—x+y=1 }
x—y=1

which is inconsistent (that is it has no solutions at all) and in
the case a = - 1 we obtain the system

x+y=1}
x+y=1
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possessing infinitely many solutions (in this case x is arbitrary
and y is expressed by the formula y = 1 — x).
(b) On solving the system we obtain

_at—1 __—a+a

Y=o Y=Ta
Thus, in this case as well the system has only one solution
x=a?+4+1, y=—a when a2—150. As to the cases when

a= —1or a=1, we arrive at the systems
—x+y=—l} x+y=1}
and
x—y=1 xty=1

respectively each of which possesses infinitely many solutions.
(¢) From the first and the second equations we find

y+z2=1—ax and ay+2=a—x

These two relations can be regarded as a system of two equations
in the two unknowns y and 2; on solving the system we obtain
a—x—14ax __ (a—1)(14x)

y= a—1 - a—1

— a(l—ax)—a+x __ —x(@®—1)

a—1 a—1

Thus, if a =1 then y =1+ x, 2 = —(1 4 a)x; the substitution
of these values of y and z into the third equation results in
x+(l4+x)—a(l+a)x=a xQ—a—a>)=
=a’—1, —x@+2@a—1)=a—1
Therefore for a — 1 == 0 and a 4 2 % 0 the system has a single
solution:
a?—1 . a1
T @¥F2@=1n a+2

xX =

1 1)?
y=ltr=rpy, 2=—(+nr="22L

In the cases when a =1 or a = — 2 we arrive at the systems

x+yt+z=1 —2x4ytz=1
x+yt+z=1 } and x—2y+z=—2}
x+tytz=l1 x+y—22=4

respectively; the first of them has infinitely many solutions where-

as the other has no solutions at all (the addition of the first two

equations of the second system results in the equation —x —y +4-
—+ 2z = —1 which contradicts the third equation).
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249. Let us subtract the second equation from the first one and
the sixth equation from the fifth one; on equating the two expres-
sions for xo — x3 thus obtained we find

o (g — 0y) = @, (@ — a3) whence (a; — ay) (0 — a3) =0

In just the same way, on finding two different expressions for
each of the differences x; — x; and x; — xa, we arrive at two more
relations:

(@ —ag) (@3 —ay) =0 and (a; —az) (@ —ay) =0

From the first of the three relations we have derived it follows
that o, = o4 or oo = as. For definiteness, let us assume that
as = as = a. From the second relation it follows that oy = a or
oy = a. For each of these equalities the third relation turns into
an identity. Thus, for the given system to be consistent it is ne-
cessary that three of the four numbers o, o, as and as should be
equal to one another.

Now let us suppose that a; = as = a3 = a, oy = B. Using the
expressions for the differences x; — x5, x; — x3 and xp — x3 which
we derived earlier and with the aid of which the relationships
between a1, o2, o3 and o, were established we immediately obtain

X1 = X3 = X3

Now let us denoté xy== xs= x5 by x and x, by y. Then the given
system of six equations in four unknowns goes into two equations
in two unknowns:

2x=0a? x-+y=ap
From the last system we find
2
e=7. y=a(s—3)

Remark. Using an analogous argument we can show that a more general
system of the form

Htxt o FxmertFrm=0 .00 Q-0
i+ x4 o0 Ftm—tF Xt =002 oo Op—1Cmtt
Xntm—1+ Xntm—2+ oo + Xn=1+ Xa=0ntm—104m—2 ... Gp—1Qp

consisting of C(n, m) equations in n unknowns (n > m - 1) is solvable only
in the following two cases:

1% a0y =oag=...= an_) = a, an =p (in this case x; = x, =
- n—1
=...=Xp = a"/N, X, =a" l(ﬁ—- — a)).
2°, In the sequence oy, og, ..., o, there are n—m 41 (or

more) numbers equal to zero (in this case xy=uxe=,.. =x,=0).
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250. From the first equation we obtain x = 2 — y; the substitu-
tion of this expression into the second equation results in the re-
lation

Qy—yP— =1

which can be rewritten as
24+ P —2y+1=0, whence 224 (y—12=0

Each of the two summands on the left-hand side of the last
equality is nonnegative and, consequently, it must be equal te
zero. It follows that

z=0, y=1
and hence
x=1

Thus, the system possesses a single real solution.

251, f x4+ y*=1then x*=1, y*=00r x*=0, y* =1 or,
finally, 0 << x*, y* << 1 (because the numbers x* and y* are non-
negative). For x* <1 and y* <1 we also have |x|<C1 and
jy] << 1 whence

== 1xI<]¥®], ¢ <y
and |83+ P2 1>+ yt=

It follows that two numbers x and y of one sign satisfying the
eonditions |x| << 1 and |y|<< 1 cannot serve as a solution to the
given system. It is even more evident that two numbers x and y
of opposite signs such that |x|<<1 and |y| << 1 cannot serve as
a solution either because in this case

P+ P2+ Pl<max((£], £ <1

Thus, the solutions of the system can only involve values of x
and y such that x*=1 and y*=0 or x*=0 and y*=1, that
isx==1and y=0or x=0 and y= 1. It is clear that
among these four pairs of values of x and y only the fwo pairs
x=1, y=0 and x =0, y =1 are the solutions of the system.

252. One solution (or, more precisely, a system of solutions)
is quite evident: x) = xg = x3 = x4 = x5 = 0 and x is arbitrary;
therefore in what follows we shall assume that at least one of the
numbers x; (i = 1, 2, 3, 4, 5) is different from zero. Further, from
the first and the last equations of the system we derive

Xg=xxo — x; and xs=2xx; — xo *)
Similarly, the second and the last but one equations yield
Xe=xx3— Xo and x;=xx5 — x| (**)

1] —60
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On substituting into (**) the values of x;3 and x5 expressed by
formulas (*) we find

xa=(2—=Dxo—xx;, and x;==(x*— 1) x; — xx5 (**%)

Now we equate the right-hand members of equalities (***); this
yields
(2 — 1) xp— xx, = (x> — 1) x| — xxo

FHx—Du=E+x—1x

In the further course of the solution it is natural to distinguish
between the two cases when x24x— 150 and when x2--
+x—1=0. If x4+ x — 1 = 0 then obviously x; = x,. Since all
the unknowns are involved symmetrically in the given equations
it can similarly be shown that in this case xp=x3, x3=x4, x4=xs.
Thus, here we have x; = x3 = x3 = x4 = x5. The substitution of
these values into the original equations yields x = 2. 1f x24-
4+x—1=0 (that is * — 1 = —x and x=(—1 %= 4/5)/2), sy-
stem (***) reduces to one equation

whence

xy=—x(x2+ x1) (****)

We can verify directly that in this case the values x3 = xxo — x4,

xg =—x{x; 4+ x3) and x5 = xx; — xp satisfy the given system for
arbitrary x; and x,.

Answer: (1) x) = xg=x3 = x4 = x5 =0 and x is arbitrary;

(2) the values x; = xp == x3 = x4 = x5 are arbitrary and x = ¢;

(3) x; and xp are arbitrary, x3 = xxo — x|, x4 = —x(x; + xg),

X5 == xx, — %y and x=(— 14 4/5)/2.

253. Let x, y, z and ¢ be the sought-for numbers and let xyzt=A.
It should be noted that A 5= 0 because if, for instance, x = 0 then
the conditions of the problem imply inconsistent equalities y=2z=
=t =2 and yzt = 2. Further, the equation x 4 y2f = 2 can be
rewritten as

x42=2, thatis 2—2x4+A=0

We similarly obtain
y¥—2y+A=0, 22—22+4+A=0 and #2—2t+A=0

For a given A the equation x*2 — 2x + A = 0 can have only two
distinct roots; therefore among the numbers x, y, 2 and ¢ there
are not more than two different numbers. Let us consider separa-
tely the cases that can take place here.

1°. If x = y = z = ¢ then the given equations yield

x-+xt=2
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whence
WB¥B+x—2=0

x—1D2+r+2=0

From the last equation we find x; =1, xo 3 ——(— 1 += V 7)/2
Thus, in this case we have a single real solution: x = y=z=
=f=1.

2°. If x = y = z while £ may be different from these numbers
then the conditions of the problem imply

x+x%=2 and f+x3=2 (*)
On subtracting one of equalities (*) from the other we obtain
X—x%—x+t=0, thatis x—8)(x*—1)=0

and therefore either x = ¢ (this case has already been investigat-
ed) or x = 4 1. For x =1 the first equation (*) immediately
yields { =1, that is we again arrive at the solution obtained

and, finally,

above. In case x = —1 the same equation yields { = 3.
3°. If x = y and z = ¢ the system reduces to
x+x22=2, 24 x22=2 (**)

On performing the termwise subtraction of one of these equations
from the other we find

x—24+x22—x%2=0, thatis (x—2)(1 —x2)=0

Equality x = z immediately leads to case 1°; if xz =1 then (by
virtue of the first equation (**)) x4+ z =2, and we again find
the solution x = 2z = 1 obtained earlier.

Answer: Either all the four numbers are equal to 1 or three of
them are equal to —1 and the third one is equal to 3.

254. To underline the complete symmetry of the equations form-
ing the given system with respect to the unknowns involved in the
system and with respect to the coefficients in these unknowns let
us introduce the notation x = x;, y = x3, 2= x3, t = Xy, a = a,,
b=a,; ¢ =a; and d = a,. Then the given equations take the
form

4
gm—mm=1a=nz&9 (*)
].:

Further, let, for instance, a; > as > as > a4. Then

(@ —ag)xo+ (a1 —az) x3+ (a1 —a) xy=1
(a1 — a) xy + (@ —a) x3+ (@2 —a) xy=1
(a; — a3) x; + (a2 — az) xo +(a3—a4)x4-—1
(a1 — ag) x1 + (a2 — a4) X2 + (ag — a3) x3

1n*

|
o
|
1)
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Let us subtract the second equation of system (**) from the first
one, the third equation from the second and the iourth from the
third; this results in

(a—a)(—xi+ x4+ x3+x)=0
(@2 — ag) (— x1 — %2+ %3+ x4) =
(a3 —a)(—xy—xs—x3+x) =0

The number a,, as, as and a4 being pairwise distinct, we must
have

Xi=xoFx3+x, X1t xe=x34x%x, X F x4 x3=12x
whernce it follows that
X2=X3=0, X =— Xy

and therefore we obtain (for instance, from the last equation (**))

the value ,

a, — ay

X =

The verification shows that the values xo = x5 =0, x; = x4 =
= 1/(a; — a4) do in fact satisfy all the equations of the system.

Answer:ifa>b>c>dthenx=t=1/(a—d),y=2=0.

255, Let us denote xo—x1 =Xy, x5 —xo=Xo, ..., Xn — Xn_1=
= Xy, X1 —Xn = X,.. Then X\, + Xo4+ ... + Xy + X, = 0, and
the given system of equations can be rewritten thus:

ax?+b—Dx+c=X, ai+bG—Dx,+c=X, ...
e a2+ b—1x,+c=X, (¥

It is clear that if the discriminant A = (b — 1)2 —4ac of the
quadratic binomials on left-hand side of (*) is negative all the
binomials retain sign (namely, their signs coincide with that of a).
Therefore all the variables Xy, Xo, ..., X, must be of the same sign
as the coefficient a of the equations, and their sum cannot be equal
to zero. This means that the given system possesses no real solu-
tions. In case A =0 the right-hand sides of equations (*) assume
the value 0 only for x; = (1 — &) /2a; accordingly, in this case
Xe=1x3=...=x,=(1—0>0)/2a; (for the other values of
X1, X2, ..., X, the right-hand sides have the same sign as the num-
ber a). Therefore the equality X, 4+ X+ ...+ X, = 0 is only pos-
sible when X, =X;=...= X, =0 and X =Xg=..,= X =
=(1 — b)/2a. Finally, for A > 0 the given system has at least
{wo different solutions

— — — —_— 4 —_— —— —_— —
¥ =x,= ... =x,=x; and x,=x,= ... =x,=1x,

where x} ;= (1 — b £ 4/(1 — 5)? — 4ac) /2a.
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256. We shall separately investigate the following two cases.

1°. The number n is even. On multiplying by one another the
1st, the 3rd, , the (n — 1)th equations of the given system and
the 2nd, the 4th , the nth equations we obtain

X1XoX3 oo Xp=@Q)Q305 ... Qu_y aANd X\XoX3 ... Xp =045 ... Q,

respectively, whence it becomes clear that for ajasas ... a._) %
= Gga4as ... an the system has no solutions at all. If ajasas ...
.. Qn-) == Q20406 ... an then, on taking an arbitrary value of x;
(of course, x| % 0), we can consecutively find from the Ist, the

2nd, the (n — 1)th equations of the system the values
_— & 2 — 8n—
xg—-xT. 3——x—z ...,x,,—m

The substitution of all these values into the last equation shows
that the last equation is satisfied as well.
2°. The number n is odd. On dividing the product of the 1st, the
3rd, ..., the nth equations by the product of the other equations
we obtain
2 .E'.‘f!aL_a_na_’:_ whence x, = ,\/ 313435 . (*)

t Q204 Qad4Qg ... an—

{we remind the reader that all the numbers a; are positive).
Further, from the Ist, the 2nd, ..., the (n — 1)th equations we

find in succession
ay ane
Xo = —, X3—'_x—2. ceey Xp= L=l

Xne

The verification shows that, by virtue of (*), the last equation of
the system is also satisfied by these values.

Answer: if n is even and @,a3 ... a,—) 5= asa, ... a, then there
are no real solutions; if n is even and aja; ... @n—y = a9ay ... an,
there are infinitely many solutions; if n is odd there are two solu-
tions.

257. (a) First of all we note that if x¢ is a root of the given
equation then —xy is also its root. Consequently, the number of
the positive roots coincides with that of the negative roots. Fur-
ther, the number 0 is a root of the equation, and therefore it suf-
fices to find the number of positive roots. Now we note that if
x/100 = sin x then

| x|=100] sin x | << 100+ 1 =100

Hence, the absolute value of a root of the equation cannot exceed
100.

Let us divide the part of the axis Ox from x =0 to x = 100
into intervals of length 2x (the last of these intervals may have
a smaller length) and determine the number of the roots of the
equation lying within each of these intervals (see Fig. 29).
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In the first interval (from x = 0 to x = 2n) there is one posi-
tive root (and also the root x = 0), and each of the following
intervals, except the last one, contains two roots. To determine
the number of the roots belonging to the last interval let us esti-
mate its length. The number 100/25 obviously lies between 15 and

I
y‘\ y=/_0_0_

10,

0 Zyl_.ll'oonf[@*‘zﬁ \/;

oo.on..—zﬂ

Fig. 29

16 (because 100/15 = 6.66... > 2x and 100/16 = 6.25 << 2x),
and consequently altogether we have 15 intervals of length 2n
each and one interval whose length may be less than 2n. The
length of this last interval is equal to 100 — 152 > 5 > x, and
consequently the horizontal length of the corresponding half wave
of the sine curve lying above the x-axis is smaller than the length
of that interval, whence it follows that this interval also contains
two roots.

Thus, the number of the positive roots of the equation is equal
to 1 4+ 14-2 4+ 2 = 31. The number of the negative roots is the
same, and there is also one root equal to zero.

Finally, the total number of roots is equal to 31-2 4 1 = 63.

Y
0 / ? JW 78 9%;‘
Fig. 30

(b) The solution of this problem is analogous to that of the
foregoing problem. It is quite evident that if sinx = log x then
x << 10 (because, if otherwise, the left-hand member of the equa-
tion would be not greater than 1 while the right-hand member
would exceed 1). Since 2:-2rx > 10, the interval of the axis Ox
from x = 0 to x = 10 contains only one wave of the sine curve
y = sinx and a part of the next wave (see Fig. 30). The graph
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of the function y = log x obviously intersects the first wave of
the sine curve at one point. Further, since 2n 4 n/2 << 10, for the
point x = bn/2 we have sinx = 1 > log x, and consequently, the
graph of y = log x also intersects the first half of the second po-
sitive half wave of the sine curve; further, since at the point x=10
we have log x = 1 > sin x, the graph of y = log x must intersect
the second half of that half wave as well. We thus see that tne
total number of the roots of the equation sin x = log x is equal to
three.

258. On adding together the left-hand sides of all the given in-
equalities we obtan the sum of the numbers ay, as, ..., ae, aice
each of which is multiplied by a coefficient equal to 1 +(—4)+
-+ 3 = 0. Hence, this sum of 100 nonnegative numbers is equal to
zero, which is- only possible when all these numbers are equal to
zero. Thus, the given system of inequalities is in fact a system of
equalities of the form

ar—4a+3a;=0, ay—4a;+3a,=0, ..., ap—4a,+ 3a;,=0
This system'can also be written as
a—ay=3(@—a), a—g=3a—a) aG—a=
= 3 (a4 — as), gy — Q100 == 3 (@100 — Q1)s
Qo — a1 =3 (a; — ay)
Now we consecutively find
a—a;=23(a—as) =3 (a3 — ) =3 (a, — a5) =
= 3% (@100 — a1) = 3'° (2 — a»)
The equality a, — a,=3'%(a, — a,) implies that a; — a, =0, and

therefore we also have a,— a3= g(al — ) =0, a; —a,=

1 1
=§(a2—a3)=0, co oy Qo — @ =75 (@99 — Q100) = 0.

Hence, all the number a,, ay, ..., Qgy, Qo0 Qre equai to one ano-
ther; therefore if a;=1 then we also have ay=as= ... =ap=1.
259. First solution. Let us rewrite the given inequalities as

A=—a—b+c+d>0
B=ab—ac——ad——bc—bd+cd>0‘}
C =abc -} abd — acd — bed > 0
and consider the equation
Pry)=kx—a)(x—0)(x+c)(x+ d)=
=x*+ Ax*+ Bx2+ Cx + abed =0

Since all the coefficients of this equation are positive (because,
according to inequalities (*), A, B, and C . are positive and the

*)
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numbers a, b, ¢ and d are also positive, the equation has no posi-
tive roots (for x > 0 we have P(x)= x*++ Ax®* 4+ Bx>+4- Cx +
+ abed > 0). On the other hand, the equation Px = 0 has even
two positive roots: x = a and x = b. Thus, we have arrived at
a contradiction, which proves the required proposition.

Second solution. From the first two inequalities indicated in the
condition of the problem it follows that

(@ + b (c+ d) <(c+ d)(ab+ cd)
(a+b)?<ab+cd (**)
(because ¢ + d > 0). Similarly, from the last two inequalities we
derive
(a+ b (c+d)cd < (ab--cd)(c + d)ab

(a4 b cd < (ab+ cd)ab (¥**)

Further, since (a 4 b)2 — 4ab=(a — b)? = 0, we have (a+b)?=>
= 4ab, and therefore inequalities (**) and (***) imply that

dab < ab+ cd and 4abed < (ab+ cd)ab

that is

that is

that is
cd > 3ab and 4ed < ab-}+ cd whence ab > 3cd

However, this is impossible because the inequalities ¢d > 3ab
‘and cd << 1/3ab cannot hold simultaneously.
260. It is evident that

(e -Votao 44t ... 1 42)X

n radical signs

e +Vetra2 1Azt .. t42)=2—

n radical signs

—le+Ae+2r . 1 2)=2-Ao 42+ ... 42

n—1 radical signs n—1 radical signs

and therefore the fraction indicated in the condition of the pro-
blem is equal to the reciprocal of the expression

Ri=2+A2+42+ ... +42

n—1 radical signs

Hence, it only remains to prove that R, << 4. To this end we shall
use the method of mathematical induction: it is clear that R, =
= 2 < 4 and that

if R,_y <4 then also R,=2-+ A/R,_ <2++/4=4
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Remark. 1t is easily seen that lim R, =4; indeed, the sequence R, possesses

n-»oo
a limit because it is bounded (R, <C 4 for all #) and increases monotonically
(since R4y > R, because R,4; is obtained from R, by replacing 2 in the last

radical in the expression of R, by the greater number 24 1/2 ). On putting
lim R, = R = r? and making n tend to infinity in the relationR,4+, =2 + 4/R,

n-=>»oo

we obtain in the limit the equality r?=24r, that is 2—r)(14r) =0
whence r = 2 (because r << 0), which implies R = 4. It follows that for n— o
the fraction indicated in the condition of the problem has a limit equal to 1/4,
and therefore the estimate given in the condition of the problem cannot be made
more precise.

261. Let a, b and ¢ be the given numbers. Since abc = 1, we
have ¢ = 1/ab. The second condition of the problem implies

atbte>t4t4 Ll thatis atb+S >4l 4a ()

Inequality (*) can be brought to the form

ab—a—b+1<p—t— ]

a
whence

1 1 1
@—nDe—n<(+=1)(3-1)=g5E=D06—1
Thus, inequality (*) is equivalent to the inequality
1
E(a— DE—D>@—1)GB-—1),
that is (@ —1)(6— 1) (55 — 1)>0

Therefore among the triple a— 1, b —1 and 1/ab—1=c-—1
there is an even number of negative members; in other words, two
of these differences are negative and one is positive, which is
what we had to prove. (It is obvious that all the three differences
cannot be simultaneously positive because if a > 1 and b > 1
then there must necessarily be ¢ = 1/ab << 1, whence it follows
that the difference 1/ab — 1 is negative.)

262. It is clear that the numbers 1959 and 1000 occur acciden-
tally in the condition of the problem; a more general proposition
to be proved reads: ifa;>0for alli=1,2,...,nand Y a;=

n
=a+a+...+a,=1 thenthesumS,,_k:-l i Z i la;lagz cee ay,
l, 2, ey k“‘
of all the possible products of k factors chosen from the n given
numbers ay, as, ..., an (where 1 << k << n) is not greater than 1
and for k> 1 this sum is less than 1. To prove this proposition
we can, for instance, use the induction method (with respect to
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the numbes n and £). It is evident that the proposition is true
for n==1 and for n=2. Let us assume that the proposition has
already been proved for all n smaller than a certain value N and
that for the value N itself the proposition has been proved for all
k = 2 smaller than a fixed value X (K = 2). (It is obvious that:
for any n and £ =1 the proposition is true.) Our aim is to show
that under this assumption the proposition is true for the values
N and K themselves.

N
Let us consider the sum Sy = Z aiai, ... aig. It can
il’ 12, ey iK=1

be written in the form

N-1
S = Z a. a, ... ai aN+
MRy by g =1 TR K1
N=
+ 2 @y o aiK=SN_1,K_1-aN+SN_LK

3y, g, «ee, lK=l

where Sy_i, k-1 and Sy_j, ¢ are, respectively, the sum of all pos-
sible products of K — 1 factors and the sum of the products of X
factors chosen from the numbers ay, as, ..., ay—;. The sum of these
N — 1 numbers can be written as

a+a+ ... ftayr=(@+a+ ... +ay_1+ay) —ay=1—ay

Next we replace the numbers ay, as, ..., ay—; by the numbers
a=af(l —ay), a=af(t —an), ..., ayv—i = anv—1/{1 —ay) res-
pectively, the sum of the new numbers being equal to 1. Let us
denote the sum of all possible products of K — 1 factors and the
sum of the products of K factors chosen from these new N —1
numbers a; (=1, 2, ..., N—1) as Sy_y k-1 and Sk_; x res-
pectively. By the hypothe51s Sh— -1, K= 1 << 1 and Sy—; xk < 1; on the
other hand, ‘since the numbers a{ are proportional to the numbers

a; (i=1,..., N—1), we obviously have
Sy, ko1 =Sy, k-1 (1 = ay) < (1 —ay)k-!
and .
Sy-rx=Sy_r, k" (L —ay) < (I —ay)

Finally we obtain

Sw k=St k1" y+Sy_r.x <A —ap)"" vay (1 —ay)=
=1 —ay)ay+ (1 —ay]=(1—ay ' <1

which completes the proof.
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263. For N = 2 we have only one pair of numbers m and n
satisfying the condition of the problem, namely, m =1, n = 2;
in this case the “sum” s, of the fractions under consideration is
equal to 112 =—;.
an=3 and m = 2, n = 3; in this case the sum of the fractions
under consideration is s3 = 1/1-341/2-3 = 1/2. Let us prove
that the sum sy is equal to 1/2 for any natural N > 1.

Since the assertion we have stated holds both for N = 2 and
for N = 3 we can use the method of mathematical induction. Let
us suppose that sy_, = 1/2 and prove that then we also have
sy == 1/2. 1t is clear that the sums sy_; and sy are connected in
such a way that to obtain the sum sy from the sum sy—; we must
perform the following operations. On the one hand, we must de-
lete from the sum sy_; all the terms having the form 1/mn where
m 4 n=N, that is the terms of the form 1/i{(N —i) (here
1 <<i<<N/2 and the numbers i and N — i are relatively prime),
and, on the other hand, we must add to the sum sy, all the pos-
sible fractions of the form 1/jN where 1 << j << N and the num-
bers j and N are relatively prime. For every i we have

For N = 3 we have two such pairs: m =1,

1 1 1
i(N—1) =t WN=0)N

and the numbers i and N — i are relatively prime if and only if i
and N are relatwely prime, that is if and only if N — i and N are
relatively prime. Therefore the sum sy is obtained from the sum
sy—1 by deleting a number of fractions of the form 1/{(N — i) and
adding instead of every such fraction a sum of fractions of the
form 1/iN + 1/(N — i) N, this sum “compensating” for the deleted
fraction. Consequently sy = sy-y =.1/2.

264. We assert that all the given 1973 numbers are the same.
Indeed, let us suppose that this is not true. For definiteness, let
a) =0y = a3 = ..., = a; ¥ ai4;- For the sake of simplicity we
shall index the given numbers in a cyclic order: let us assign the
index 1 to the number a;, the index 2 to the number a:, and so on
up to the number a;_; inclusive to which we assign the index 1973.
Thus, in what follows we shall assume that not all the numbers
are equal and that a; # a»; for definiteness, let a; > a, (the case
a; << ap is investigated in a similar way).

From the equalities indicated in the condition of the problem it
clearly follows that either all the numbers in question are greater
than 1 or all the numbers are less than 1 or, finally, all the num-
bers are equal to 1. In the last case all the numbers a, (where
E=1, 2, ..., 1973) are equal to one another, and therefore it
remains to consider the other two cases.
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1°. All the numbers ap are greater than 1. In this case
a#*=a$ and a, >a, imply a,<a,
af=a} and a,<a, imply a,>a,
a=af and a,>a, imply a,<a;

-----------------

Thus, we have
Q>a<a>a<ag... Qo< Qg > 0 < 0
Hence, we have arrived at a contradiction (the inequality a; > a»
contradicts the inequality a; << ap), which proves that in case 1°
we must necessarily have gy =ay=a; = ... = ao73.
2°, All the numbers ay are less than 1. In this case
at=a$ and a, >a, imply a,> a,
a; =a$ and a,>a, imply a,>a,

Thus, here we have
Q> A>a>a;> ... >0 > 4
The contradictory inequality a; > a; we have obtained shows that
in this case as well all the numbers a, must necessarily be equal

to one another.
265. The proposition of the problem is true for n =1 and for

n = 2 because
B4 x=141=2, x+x=6
and
24 xl=(x,+ %) — 2xx,= (6 —2-1=234

Further, we have

xp -+ xp=(x -+ x5) (xf—l 27N — xxy (2 X TE) =
=6(xf '+ a7y — 1. (x772 4 x572)

that is

a5 (4 ) () — (] )

First of all, this formula implies that if ¥ 2+ x"2 and

x}7! 4 %1 are whole numbers then xf + % is also a whole num-
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ber, whence, by the principle of mathematical induction, it follows
that the first assertion of the problem is true.

Now, let n be the first natural number such that x? 4+ x# is di-
visible by 5. From formula (*) it follows that in this case the
difference (x’l'" + x5 — (¢ + x;“Q) must also be divisible by 5.
On replacing n by n — 1 in formula (*) we obtain

Xt bt =5 (1 ) F (R ) — (3 a2 )
whence it follows that the expression
xn—3 + xn—3 5 (xn—2 + xn 2) —_— [(xn—l + xn—l) —_— (xn—2 + xn 2)]

must also be divisible by 5, which contradicts the assumption that
x4+ xm is not divisible by 5 for all the numbers m smaller
than n. It follows that a positive integer n for which x? 4 x% is
divisible by 5 cannot exist. It is readily seen that the assertion of

the problem holds for the negative integers n as well: if n << 0
then the sum

X7 x = 1 1 =x,‘"+x;’"
i 2 xl—n x2—n (xlxz)—n

is an integral number not divisible by 5 because —n > 0.

266. Let us suppose that the sum a, 4- a2 + ... 4 ay000 contains
n positive terms and 1000 — n negative terms. Then all the pair-
wise products of the n positive terms (the number of these pro-
ducts is obviously equal to n(n — 1) /2) and all the pairwise pro-
ducts of 1000 — n negative terms (the number of such products is
equal to (1000 — n) (1000 — n — 1) /2) are positive, and the pair-
wise products of positive terms by negative ones (the number of
these products is equal to n(1000 — n)) are negative. The condi-
tion of the problem requires that the relation

- xl—n + x2—n

n (n2—- N + (1000 — ) (12000 —n—1) =n(1000 _ n)
should be fulfilled. It follows that
n? — n <4 (1000 — n)? — (1000 — n) .
5 = 10001 — n?
whence
— 20001 + 999000 =0
and

1000 =+ 4/1 000 000 — 999 000 1000 + 1/ 1000
2

which is obviously impossible.
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For the second expression we argue in a similar way and arrive
at the condition
10 000 + «\/10000 __ 10000 == 100

2 2

It follows that the numbers of the positive and negative duplicated

products in the second expression may be equal; to this end it is

sufficient that the original polynomial should contain (10 000 +-

-+ 100) /2 = 5050 positive terms and (10000 — 100) /2 = 4950 ne-

gative terms or 5050 negative terms and 4950 positive terms.
267. First of all we can write

(V2= 1)'=42—+T
(VE— 1)’ =3 — 24/ — A8 — A8
Now we shall prove that if the expression
(W2 — 1)* ' =BAT — A=+/3B — A/ T
can be written in the form 4/N — 4/N — 1, that is if 2B2 — A?=1,

then the number
(WV2a— 1" =B 42— A

can also be represented in this form, that is 2B — A2 =1. In-
deed, we have

(We—D)" " =(WEI-1)"" (v2—1)'=
=(B4/2—A4)(3—24/2) = (3B + 24) 4/2 — (4B + 34)

and consequently
B’'=3B-+2A and A’=4B-+ 34

.and

whence
9B — A" =2 (3B 4 24)° — (4B + 3A) =
= 1882 + 24AB 4+ 8A? — 16B? — 24AB — 9A?=2R? — A?=1
which is what we had to prove.
In just the same way it is proved that if a number
(4/2—1)*=C—D /2 can be represented in the form +/N —

— 4/N =1 then the number (4/2 — 1)***=C" — D’ 4/2 can also
be written in that form.

By the principle of mathematical induction, it follows that the
assertion of the problem is true.

268. If (A4 B4/3)’=C -+ D+/3 then C= A%+ 3B%, D=2AB

and (A — B4/3)"= A* +3B®> — 2AB 4/3=C — D 4/3. Consequen-
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tly, if there were (A+ B4/3)°=999994 1111114/3 then we
should also have (A — B4/3)°=99999 — 111111 4/3, which is

impossible because 99999 — 111111 4/3 is less than zcro while
the square of every real number is nonnegative.

269. Let us suppose that /\3/§=p +g4/r. On raising both mem-
bers of this equality to the third power we obtain

2= p®+ 3p’q A/r + 3pg’r + g’r A/’

2=p (p*+3¢’r) + g Bp*+ ¢’r) /1

Now let us show that if 4/2=p+ ¢4/r then 4/2 is a rational
number. Indeed, if ¢ = 0 then A/2=p is a rational number. If
g # 0 and 3p? 4 ¢%r = 0 then the last equality implies

__2—p(p’+34r)
Vr = q (3p*+ ¢%r)

that is

wherice

Yy 2 —p(p®+34%)
VE=p+a=GrT

that is «\3/5 is again a rational number. Finally, if 3p? 4 ¢%r = 0
then
¢’r=-—3p°, 2=plp*+3(—3p?)]=—8p®

that is /\e/2=—2p is again a rational number.

Hence, it only remains to show that 472 is not a rational num-
ber. The proof of this proposition is well known. If we suppose
that 4/2 is equal to an irreducible fraction m/n then 2 = m3/n3,
that is m3® = 2n3. Thus, the number m® and also the number m
are even integers, and consequently the number m?® is divisible
by 8. In this case n® = m3/2 must also be even, and consequently
the number n is even, which contradicts the assumption that the
fraction m/n is irreducible. We see that the assumption that

«\3/§= p4 g+/r leadsto a contradiction.
270. Let us denote (n+ 4/n2 — 1)/2=1x; then

2 =2(n—1/n2—4)=n—'\/n2-—4
n+A/nT—4 4 2

and we see that x satisfies the equation x + 1/x =n. If x4 1/«
is equal to a whole number n then so is the number x™ 4 1/x™,
which can easily be proved by the method of mathematical induc-
tion. Indeed, if we assume that all the expressions a; == x! 4 1/x!
are whole numbers for all { <C N then ayy = x¥*+1 4 1/xN+1 s
also a whole number, which is a consequence of the following
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relation:
ana) = (xN + ';lyv‘)(x + 'l—) =(¥N+l + 'leT) + (

whence

=ay+1+ay_1

Ay+1==0aya) — ay-1
Thus, denoting x™ = y we can write the equality y + 1/y = &
where k& = an is a natural number. This equality is equivalent to
a quadratic equation in y whose solution is y== (& + /B2 — 3)/2.
Since the number x=(n+ x/n“’—4)/2 exceeds 1, we also have
xm = y > 1 whence it follows thaty =x" = A = (k + v/ i® — 4)/2

and 1/x"=(k—+/E=4)[2<1.

271. First of all we note that a real number o cannot be re-
presented in two different ways as a sum a=x-+ y4/2 where x
and y are rational numbers. For, if a=a+4+b+4/2=0a,+ b2
(where a, b, a; and b, are rational numbers) then ,\/§ = (g —
— a))/(by — b), which is only possible when @ = a,; and b; = b
because the differences a — a; and b, — b are rational numbers

and 4/2 is an irrational number. Further, using Newton's bino-
mial formula, we can write the equality indicated in the condi-
tion of the problem in the form

(X+YV2)+(Z+T+2)=5+4v2
X=x24C@2n, 2) x**2.2¢4° 4 .
Y=C(@2n, 1) x>y -+ C(2n, 3)x" -3. 2y3+
etc. From this equality it follows that
X+Z=5 and Y4+ T=14 (*)

where

Now, on multiplying the second equality (*) by 4/2 and sub-
tracting the result irom the first equality we obtain

(X—Y42)+(Z2—~TV2)=5—442
(x—y’\/§)2n+(2—t'\/§)2n=5—4«\/-2- (**)

Thus, relation (**) must necessarily hold provided that the equa-
lity indicated in the condition of the problem is fulfilled. However,
it can readily be seen that equality (**) cannot hold because its
left-hand member is positive whereas its right-hand member is
negative. It follows that the equality mdlcated in the condition of
the problem cannot hold either.

that is
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272. 1t is impossible. Indeed, suppose that we poured water £
times from the first barrel into the second barrel using the first
scoop and that we poured water from the second barrel into the
first- one k; times using the same scoop. This means that, as a

result, we poured (k, — k))A/2=Fk 4/2 litres of water from the
first barrel into the second one where the integral number £ =
=k|— k, may be nonpositive. Similarly, if we poured water from
the first barrel into the second barrel {; times using the second
scoop and if we poured water irom the second barrel into the first
one [, times using the same scoop then, as a result, we poured
(i — 1y (2 —4/2)=1. (2 — 4/2) litres of water from the first
barrel into the second barrel where [ is an integral number. The-
refore the condition of the problem reguires that the equality
k4/2+1(2—4/2)=1 should be fulfilled, that is ({ —k)+/2=
=92/ — 1 whence 4/2=(2{ — 1)/({ — k). Since 4/2 is an irratio-
nal number the last equality can only hold (for integral values of
k and l) when [ — k& =0 (that is /=4) and 2{— 1 =0, whence
{ =1/2, which is impossible because [ is an integral number.

273. First solution. In the problem it is required to find all
rational solutions (x, y) (where y=0) of the equation
3x2 — 5x 4+ 9 = 42 in the two unknowns x and y (cf. the problems
in Sec. 5 of the present book). It is evident that there exists one
solution of the form x =0, y = 3. Let us put x =x, and y =
= y; + 3; then we obtain

3xt — y? —bx, — 6y, =0

For every solution (xi, yi) different from (0,0) we have y,/x; =
= m/n where m and n are relatively prime integers (y, = x X
X {(m/n)). Consequently, we have

2
g M 2 B, M, —
3xf ——5x; —Bx — 06— x, =0

whence x; = (5n% + 6mn) /(3n* — m?) because x 5= 0. The formula
x = (5n% + 6mn) /(3n* — m?) gives the full answer to the question
stated in the problem (the solution x = 0 corresponds to n = 0).

Second solution. 1f (x, y) is a point with rational coordinates
belonging to the second-order curve y? = 3x2—5x 49 (it is a
hyperbola) then the ratio £ = (y — 3)/x is a rational number (it
can also be infinite). On the other hand, if %2 is a rational number
then the straight line y = &£x 4+ 3 intersects that curve at two
rational points: (0, 3) and ((6k+4 5)/(3 —£&%), (3k2-4 5k 4
-+ 9)/(3 — £?)). 1t follows that all the points with rational coor-
dinates belonging to the curve correspond to the values of x ex«
pressed by the formula x = (6% + 5) /(3 — £?).
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274. Let 2 4 px + g = 0 and y? + py + ¢, = 0. be, the original
and the “rounded” equations respectively where |g — q| =|g| &
=~ 0.01. On subtracting the second equation from the first one we
obtain (x* — y?)+ p(x—y)=q1—q =&, that is (x —y) (x4
+ y + p)=c¢. Let us denote as x; and y, the roots of the two
equations which are close to each other and let us denote as xy
the second root of the first of these equations; then we have
(X1 + x2) = p, and from the relation that was established above:
it follows, that

|y~ x| = lel ~ le] el

Y ! |x1+y1+pl [2x) — (%, + x2) | | %y — %o |

—let
A

which is what we intended to prove.

275. 1t is clear that if among the given numbers there dre sev~
eral integers then they can simply be discarded' because the dif-
ference between a sum of any number of rounded numbers and
the sum of the numbers themselves does not change when we add
to the original set of numbers some more whole numbers while
the sum of the numbers itself increases. Therefare if the assertion:
aof -the problem is true for non-integral numbers then it is also true
for any numbers. Now let us denote the given numbers as

ay,. s, ..., Qn, their integral parts as {ai], laz], ..., [a.] and
their fractional parts {a:;} = a;— [a;] (where i=1, 2, ..., n) as
ay, oy, ., on (cf. page 37). Let us agree to arrange the numbers

so that their fractional parts do not decrease:
O<a1<a2<...<an<l

Now let us, round the first 2 numbers a; (here 1 << i << k; tha
choice of the number £ where 0 << k£ < n will be specified later)
replacing them by the numbers [a;] which are smaller than the
numbers a; (i=1,2, .., n). As to the n — & remaining numbers.
a; (where kB << j << n), we shall replace them by the correspond-
ing greater numbers [a;] 4 1. It is clear that the error appearing
when the sum of the numbers is replaced by the sum of the cor-
respondinig rounded numbers is the greatest for the sums
ar+a;+ -+ ar and arq1 + ary2 -+ 4+ an; for the first sum

it is equal to
a; +a; + + a, < ka,
and for the second sum it is equal to
(1 —ap )+ (1 = apy0) + + (1 —a,) <(n— k) (1 — 0py)

Thus, the condition of the problem will be fulfilled if & is such
that
n—+1

kak<n+l atl

4

and (n—k)(1 — ak_ﬂ) <
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Now let & be the greatest of the whole numbers satisfying the
condition kar <<(n 4 1) /4, that is ar << (n + 1)/4% (this num-
ber £ may be equal to 0); the stipulation that & is the greatest
possible of such numbers means that if the index & is replaced by
k + 1 we obtain arqs > (n + 1)/4(k + 1). The last inequality im-
plies that

(=B (1 —ap) < (e —8) (I — g

Let us check that (n — &) (I —(n 4 1)/4(k 4+ 1)) << (n -+ 1) /4. In-
deed, this inequality is equivalent to the inequality

(h—k(tk—n+3I<(r+1)(k+1)
and the last inequality is obviously equivalent to the inequality
[n—(2k+ DF=0

which obviously holds for any n and &.

Remark. From the solution of the problem it can easily be seen that for an.
odd n =211 the estimate given in the statement of the problem cannot be
made more precise (to obtain the corresponding example we can put a, =
= a; =...= a, = 1/2; here the optimal variant occurs when [ numbers are
replaced by zeros and the other /4 1 numbers are replaced by unities or vice
versa). In case the number n == 2/ is even the quantity (n -+ 1)/4 in the condi-
tion of the problem can be decreased (why?; by what amount?).

276. It is clear that for a << 0.001 the rounded number a, cor-
responding to the number a is equal to 0, and consequently the
quotient ag/a and any decimal approximation of this quotient are
equal to 0. Therefore in what follows we shall assume that
a = 0.001. Then of course we also have ap == 0.001 whereas the
“approximation error” a = a—ay is less than 0.001. Therefore
it is clear that the fraction

agp a—a
we are interested in lies between 0 and 1: 0 << d < 1. Further,
since oo << 0.001 and ao > 0.001, it follows that o << aq, and con-
sequently o 4+ a = 2a << ag + o = a, whence o/a << 1/2; there-
fore

a
=1-2

I
d=1——>5 and d<|I (*)

This estimation of the fraction d cannot be made more precise be-
cause the ratio 6 = a/a can assume any value within the limits
0 << 6 << 1/2 (and consequently d can assume any value within
the limits 1/2 << d << 1). Indeed, if we put aq equal to 0.001, then
S = a/(a + o) = a/(0.001 + ) whence
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Such a value of o satisfies the inequality 0 << a << 0.001 for any &
(where 0 << 8 << 1/2) and the number a = 0.001 4 a corresponds
to the value d =1—2&. It is clear that if 8§ runs over all the
values between 0 and 1/2 then d assumes all the admissible values
from 1/2 to 1, that is d may assume any of the following values:
0; 0.5; 0.501; 0.502; ...; 0.999; 1.

277. Let us consider the 1001 numbers

0-0a=0, a, 2a, 3a,..., 1000a

and take the fractional part of each of these numbers (the frac-
tional part of a number is equal to the difference between the
given number and the greatest integer not exceeding that num-
ber). These fractional parts form a set of 1001 numbers not ex-
ceeding 1. Now let us divide the interval of the number axes
from 0 to 1 into 1000 equal intervals of length 1/1000 each (we
shall agree that the leit end of each interval is included into the
interval while the right end is not). Our aim is to investigate the
distribution of the points representing the above fractional parts
over these intervals. Since the number of the intervals is equal
to 1000 and the number of the points is equal to 1001, at least one
interval contains two points. This means that there exist two un-
equal numbers p and ¢ (both p and ¢ do not exceed 1000) such
that the difference between the fractional parts of the numbers po
and go. is less than 1/1000.

For definiteness, we shall assume that p > ¢. Let us consider
the number (p — ¢)a = pa — ga.. Since pa = P + d, and ga =
= Q + d; where P and Q are integers and d; and dy are the
fractional parts of pa and ga, the number (p — g)a = (P — Q)+
—+-dy — d, differs from the integer P — Q by less than 1/1000. This
means that the fraction (P — Q)/{p — ¢q) differs from a by less
than 0.001- [1/(p — 9¢)].

278. (a) If the number o is less than 1 then 4/a is also less
than 1. Now let us suppose that the decimal representation of the

number 4/a involves less than 100 consecutive nines after the

decimal point; this means that 4/a < I — (1/10)!®, On squaring
both members of the last inequality we obtain

a<l—2(T|0_)IOO+(%)2OO
Further, we have

1 \100 1 \200 1 3100
1-2(35)" + ()" <1=(%)
and therefore a << 1 —(1/10)!%, which means that the decimal

representation of the number a cannot have 100 consecutive nines
after the decimal point either.



Solutions  34%

(b) First of all we note that

0111 ... 11=4-0.9999... 9=1-(1—(5)")
100 ones 100 nines

Hence, we have to estimate the expression (4/T — (1/10)'%)/3. We
shall limit ourselves to the solution of Part (4) of Problem
278 (b) from which follow the results of the other parts of the
problem,

As is known, for any a < 1 there holds the inequality 4/T—a <
<1—a/2 because (1 —a/2)2 =1—a+a%?/4 > 1—a. There-

fore
,\/] — ()" <1—3(3)"=0999... 9995

100 nines

To make this estimation more precise we shall find two positive
numbers ¢; and ¢; such that

10 200
100 17 1 \100 1 \200
>'\/l (%) >1-3(%) ~e(w)
On squaring all the members of the inequalities
1 —%a—cla2> AVl—a> 1—%a—cga2
we obtain
147 a2+c2a —a—2a+ca*>1—a>
> 1+7a7+c§a4—-a—202a2+02a3

Now we subtract the number 1 — a from all the members and
cancel the resulting inequalities by a2

(——2c)+cla+cfa2 >0> (4 202)+c,.,a-~|—02a2
We are interested in the case when a = (1/10)1%; let us show
that for this value of a we can, for instance, put ¢, = 1/8 4-

+ a/100 = 0.125 4-(1/10)122  and ¢, =1/84 a/10 = 0.125 4
+(1/10) 1% Indeed, for any a > 0 we have

Lot (g ) () +
+(%+1:70")2"2 __50) + -
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and, on the other hand, for @ = (1/10)1%° we hav’e

71‘_2(_;_}__1%‘1)_'_(% 10 )a+(8 10 )2‘12:
=—(3-%)a+[w+(5+wa)]a <o

because the expression (1/5 — 1/8)a = (3/40) - (1/10)!% obviously
exceeds the last term of the inequality which is close to
(1/10 + 1/64) a®> = (37/320) a® = (37/320) - (1/10)"’00
Thus, we have
17 1 \0 1 \102 1 \200 S —
1—5(w) —(0125+ (w) )(w) > +/0.999 ... 99>

100 nines

> 1= ()" = (0125 + (1)) ()"
“The last inequalities can be rewritten as

0.9999 ... 99949999 ... 9998749999 ... 999 > /\/ 1 — (%0)100>

—
100 nines 99 nines 99 nines

> 0.9999 ... 99949999 ... 9998749999 ... 999

100 nines 99 nines 98 nines

-whence, on dividing by 3, we obtain the relation
A/0.1111 ... 111 ~ 0.3333 ... 33316666 ... 66624999 ... 999

100 ones 100 threes 100 sixes 98 nines

which is accurate to within 301 decimal places after the decimal
point.

279. (a) Let us denote 1.00000000004 by o and 1.00000000002
by B. Then the expressions indicated in the condition of the pro-

blem take the form (1 4+ a)/(1 +a + a?) and (1 4+8)/(1 4B+
—+ p?). Since o > B we obviously have

1 1 1 1 1 1
%#=F+‘<F+F=Ef
a2 l+a 14 p?
= () > () =T
I +oata + B+ P
e = I+1+a>1+l+ﬂ T

and, finally,
l+a _ (.(1+a+a? (I EB4BY_ 1+
1+a+a2—1' 1+a )<1' 1+p )—1+B+B2
Thus, the second of the two expressions is greater than the first
one.
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(b) Let us denote the expressions indicated in the condition of
the problem as A and B respectively. We obviously have

1 a” 1
LI : =1 —
A + l14+a+4a?+ + g™} + l+a+4+a®+ ... +a*!
an
1
=1+ 1 ]
wt st o
N a a a
and
14 !
B~ 1 1 I
ol Ty

It readily follows that 1/A > 1/B, and consequently B > A.
280. We shall proceed ifrom the formula

X—a)l—(x—al=X—x>—2a(X —x)
It implies
[(X —a)* + (X —a)* + + (X —a,)]—
—[(x — @)* + (x — a2)* + +(x —a,)f]=
=n(X?— ) —2(a+a+ + an) (X — xy
If we put x =(a;+ a2+ + a.)/n in the last expression the
resultant number will be nonnegative; indeed, we shall have
[(X—af+ (X —af+  +X—a)]—
—[x—a)P+ (xr—a) + +(x —a)]=
=n(X2— ) —2nx (X —x)=n(X®—x*—2Xx + 2% =
=n(X—xP=0
It follows that the sought-for value of x is equal to

ata+ ... +an
n

281. (a) There are only the following three essentially different

arrangements:
1°. ai, as, as, ag; in this case

D, = (a; — a9)* + (@2 — as)* + (a5 — a,)* + (as — a))*
2°. ay, a3, as, ag; in this case

Dy = (a; — a3)* + (a3 — @2)* + (a2 — ay)® + (@, — a))?
3° ay, a9, a4, as; in this case

Oy = (@ — @’ + (ag — a0)* + (as — @)’ + (a3 — a))?
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Now it is readily seen that
My — O, = — 20,04 — 20,03 + 20503 + 2010, =2(az —a)) (a5 — a)) <0
and
W3 — Oy = — 20103 — 20304 + 20505 + 22,0, = 2(a3 — a)) (@2 — a,)) <0

Consequently, the sought-for arrangement is ay, a,, as4, as.
(b) First solution. Let us consider the expression

C=(@,me) (@, =) F - (@, ) (@, T

where a;, ai,, ..., a;, are the given n numbers arranged in the
required order. Let a; anda,ﬂ (¢ << ) be some two of these

numbers: We assert that if ai, is greater (or, conversely, smaller)

Zhan i then a,_, is greater (or, respectively, smaller) than

Q lﬂ-‘- .
Inzieed, if this assertion were not true, that is if we had
(@i, — ala) (e, — a’5+|) < 0,then the permutation changing the
orderof the numbersa, ,a; a0 - a, to the opposite would
decrease the magnitude of the sum @ because the difference be-
tween the new sum @’ and the original sum @ can obviously be
written in the form

D —O=— — =
o 2a,m_la,ﬂ 2a|[ma,‘th + 2a,wlat0l + 2a,3a,ﬁ+l

=201, ) (-, = )

This assertion makes it possible to complete the solution of the
problem. Since a cyclic permutation of all the numbers (that is a
permutation under which the order of the numbers written cir-

cularly one after another is retained) does not change the magni-
tude of the sum @, we can assume that a, is the smallest of the

numbers a;, that is jj=1. From this assumpfion we can draw the
conclusion that a;, and a,, are the next two numbers following a,

in their magnitudes. Indeed, if, for instance, there were @ <a,
{B % n) then we should have (a;z—a,ﬂ) (a:, —alBH) <0, and if
there were i, <ay, (§ #2) then we should have (ai, —a,-ﬂ_l) X
X(a;n—aiﬁ)<0. Since the order of the numbers inthe sequence
Q, Qi Qi -y G, @ Can be changed to the opposite without

<hanging the sum @, we can assume that a, < i, ip=2, ip=23.

* Here we conditionally put &, =a .
n
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Further, we assert that the numbers a; and a; _, follow im
their magnitude the numbers a;, a;, and a;, which we have
already considered. Indeed, if, for instance, there were ai, > a;
(B 1, 2; n— 1, n) then we should have (a;, — a;ﬂ) (a1, — a,p_H) <0.
Besides, since there must be (ai, —ai,_ ) (ai,—ai,) >0, we see
that a, < ai,_, that is ai,=ay and ai,_,=as.

In just the same way we can show that the numbers ay,
and a;,_, follow in their magnitudes the numbers which we

have already considered ai, < ai,_, (that is i,=86, i,_o=T7).
Similarly, the numbers a;, and a;,_, follow in the same sense

the numbers considered before and a;, <a;,_ . (i5=38, i,_3=29)
etc. Finally, we arrive at the following arrangement of the
numbers:;

Q—Ay—Qg— «.. —Qup_29
a U
\aa—aﬁ—-a7— v —an_,/

/02—04—(16— N

for an even n=24

and

a, for an odd n=2k +1
\03—05—(17‘— P / P

(here the lines indicate the order in which the numbers follow one
another; for instance, in the case of an even n we have the ar-
rangement a,, as. a4, Qs, ..., @n2, Qn, Any, ..., Q7, A5, A3).

Second solution. 1f we guess in some way that the sought-for
arrangement is of the form indicated at the end of the first solu-
tion then the proof can be elaborated using the method of math-
ematical induction. Indeed, for n =4 the proof is quite simple-
(see the solution of Problem 281 (2)). Now let us suppose that
for an even n we have already proved that the sum ®, correspond--
ing to the arrangement of the numbers a; << a; << a3 << ... <<ax
written at the end of the first solution is less than the sum @z
corresponding to any other arrangement. We shall show that this.
implies that the sum ®.4; corresponding to the arrangement of
the n 4+ 1 numbers o) < as < a3 < ... < @, < auqy indicated in
the first solution is less than the sum @4, corresponding to any
other arrangement of the n 4 1 numbers. We have

Dpyy— 0= (a, — an+l)2 + (an+l - an—l)2 —(a, — an—l)2 =
— 2 —— —_— — —_— —_—
_ 2au+l 2anan+l 2an—-lan+l + 2(1”_ lan~2 (an+1 an) (an+l an—l)

On the other hand, if in the arrangement corresponding to the
sum @z, the number a,4; stands between some numbers a, and



‘846  Solutions

.ag and if @, corresponds ‘to the arrangement of the n numbers
avhich is obtained from. the arrangement of the n 4+ 1 numbers
leading. to the sum @7, by deleting the number a.4, then
Dy — O = (23 — An+1)* + (@1 — ap)’ — (@0 — ap)* =
= 2'ar21+1 - 2aaa-n+1 - 2aﬁan+l + 2aaaﬁ =
=2 (an+l — ag) (@ny1 — aﬁ) Z @0 —D,
Thus, we see that
Dyy1 — Op1 = [@n — Dp] + [(Prs1 — Pn) — (D1 — D) <O

(here the expression in the first brackets is nonpositive according
‘to the induction hypothesis, and the nonpositivity of the expres-
-sion in the second brackets has already been proved). If the sum

(b — it 3
A Ay Ay Ay As As Ap Ay s A s As
{(a) (6)
Fig. 31

D)., differs from @.y; then either ®, — D, <0 (and, conse-
quently, @p41 — DPrp1 < 0) or (Vpyy — D,) — (74 — Dp) <0 (and,
consequently, we again have @, < @p41). When n is odd the
passage from n to a4 1 is performed in an analogous manner.

Third solution. We shall also present a simple geometrical solu-
tion of the problem. Let us represent the numbers a; << ay << a3 <
<< ... << aa as the corresponding points A, Ay, 43, ..., 4, on fhe
number line. The line segments A;A;, AAs, AzA4, ..., An_dn
will be denoted as d,, dy, ds, ..., dn_y respectively. Then the sum

T= (a’l - a‘2)2 + (afz - a'a)z + + (.ain_l_ - at,,)2 +
+(ain—al|)2=A’|A%2+ AizAg3 + + Ain_lAgn-{- AinA%.

is equal to the sum of the squares of the lengths of the segments
.of the “broken line” Ay A A; ... A;_ A; As (whose all seg-
ments are in one straight line; see Fig. 31 (a)).

Since this closed broken line covers the whole line segment
AA,, each of the line segments ArA,; = d» occurs at least twice
in that broken line (it is once passed in the direction from A
to Ay and the next time in the opposite direction). Therefore,
irrespective of the order of the arrangement of the points, if we
;express the sum @ in terms of the line segments dy, dy, ..., dvy
and open the parentheses, the resultant expression must neces-



Solutions 347

sarily involve the term 242, and, consequently, it must involve all
the terms 242, 2d%, ..., 2d%_,. Further, let A, 1Ap = d,—, and
ApAgyy = di be two neighbouring line segments. It is evident that
if a segment of the broken line covering the line segment A4,y
in the direction from A to Ak starts at the point A, then the-
segment of the broken line covering ArAryy in the opposite direc-
tion cannot end at the point A.. Therefore in all the cases there
must exist a segment of the broken line which simultaneously
covers the line segments Ax—1A, and ArAry. It follows that in all
the cases the sum ® must involve the term 2d,—,d, and, conse-
quently, all the terms 2d,ds, 2dods, ..., 2dn—odn—y as well.

Now it only remains to note that in the case when the arrange-
ment of the points coincides with the one indicated at the end of
the first solution we have
O=2d24-2d}+ ... +2d2_, +2dd,+2dd, + ... +2d,_,4d,_,
(see Fig. 31b)). What has been said and the above argument
imply that in this case the sum ® assumes the smallest value.

282. (a) First of all it should be noted that we can assume
that all the numbers ay, ay, ..., an; by, by, ..., b, to be positive;
for, if otherwise, we can change the signs of the negative numbers
to the opposite; this does not change the left-hand member of the
inequality while the right-hand member can only increase.

Let us consider a broken line AgA A2 ... A, such that the pro-

jections of its segments A¢d,, A4y, ..., An_1A, on the axis Ox
are equal to ay, as, ..., a, respectively and the projections of these
segments on the axis Oy are .equal to by, by, ..., bn; let every

vertex of the broken line lie to the right of and higher than the
foregoing vertex (Fig. 32). Then Pythagoras’ theorem implies

AA =AJaT T, AA,=AlalFD} ..., A,_ A, =qla2+ D2
Adn=Aai+a+ ... +aP+OGi+b+ ... b

whence follows the inequality indicated in the problem.

The length of the broken line A¢4,4, ... A. is equal to that of
the line segment A¢A. if and only if all the segments of that
broken line are extensions of one another (that is the broken line
coincides with a straight line segment). It can easily be seen that
this is the case only when a;/b) = ag/by = ... = a,/b.. In this
case only the equality :

NEF B+ A+ B+ ... +A/a+5]=
= +at ... +alP+GBiF+o+ ... +0b)*

holds.
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(b) Let us denote by h the altitude of the pyramid and by
i, Qz, ..., Ay the sides of its base (ay + a2+ ... 4a, = P); ac-
cordingly, let by, b2, ... b, be the lengths of the perpendiculars
dropped from the foot of the altitude of the pyramid on the sides
of the base (a,b1/2 + a202/2 4 ...+ anbn/2 = S). Then the la-
teral area 3 of the pyramid is equal to

AR+ Lo, AR+ ... +sanF TR
According to the inequality established in Problem 282 (a), we
have
2% = /(a6 + (@hP + V{(aho)? + (@:h)’ + ...

cor F A(@nbaf + (a0 >
= '\/(albl Fab+ oo Fanb) (@bt ah 4 .. A gk =

— VI P
where the sign of equality appears only when ab;:ab,:...
el ba=ah i ash ... ash, that is when by = by = ... = b,
whence follows the assertion of the problem.

95

; ‘

f

=

"
%,' I, :
TA0<—a,_—; 0y l«— a, z

Flg. 32

283. Let us investigate separately the cases when n is even and
when # is odd.

1°. The number n is even. Let us construct a broken line
A AsA;s ... ApAniAnge such that the lengths of all its segments
AA,, AzAs, AsAy, ..., Any1Anye are equal to unity and the seg-
anents ‘A Ay, AsAs, AsAg, ..., AnaiApn, AngiAnse are parallel to one
another and are perpendicular to the segments AyA; Adds, ...
vy ApAny (see Fig. 33; this figure is depicted for the case n=4).
Further, let us choose a point B, on each of the line segments
AAg (i=1,2,...,n4 1) or on its extension so that the length
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of the segment BiA;y is equal to a; (here we put a4y equal to a4,
that is the point B.y; is chosen in such a way that the equality
Brp1Any2 = a, holds). We shall also agree to take the point B; to
the left of or lower than the point A, in case a; > 0 and to the
right of or higher than the point A, in case a; < 0 (in Fig. 33
wehave 0 < g, < 1; 0 <<ay; << l; a3 > 1; a, < 0). Now we draw
the broken line BBy ... Bst1. By

Pythagoras’ theorem, we have As
BiBisi =A Bifisi + Biri Al
Since BiAi1=a; and, as can Bs
easily be seen, BipAu= v
=|1— a4}, it follows that e nyd
7
BtBt+1=’\/a3+ (1—a.,)? //
Thus, the sum , s
A+ (1T —a) + Ay 2 A,
+r\/a§+(l—-a3)2+ //
i
+Va§_l+(l—an)2+ 5 ¢ 8, .
= ~ ¢ s
+AEF (= ay N
under consideration is equal to the
length of the broken line B;BsB;3. . . Fig. 33

... Bag.

It is evident that the length of the broken line ByB3B; ... Bapi
is always not less than the length of the line segment B B.y,. We
shall find the length of that segment. To this end let us consider
the right triangle B,CB,4, (see Fig. 33). We see that

BiC=Ad;+ Ahs+ .. + Adp =5

and
CBupi= Ak + AAi+ ... + A A=

(because A,B; = Any 1By =|1 — ay}). These relations imply
- 7nNe . /fn\?
BiBpy1=+/ (BICP+ (CB,41) = ’\/(%) + (%) == 22

whence follows the required inequality.

Now we can easily find in what case the sign = in this in-
equality can be replaced by the sign of equality. To this .end it is
necessary that all the points B,, Bs, ..., B, should lie on the
straight line B;Bny; (that is the point B; must coincide with the




350  Solutions

point of intersection of the straight lines B;B.y; and A;A.4,). Since
the straight lines B1Bsy, and B,C form an angle of 45° (because
B,C = CB,,,), this condition is fulfilled when

B]A2=A232=BgA4=A4B4= s =Bn_1An=Aan

that is when a;=(1 — az) =a3=(l — ay)=... =as1=(1 — an)-
Thus, for an even n the sign of equality appears when

A =a3= ... =0u_1—4a and Q=qa,= ... =an=]_a

where a is quite arbitrary.
2°, The number n is odd *. Let us put azy = @), Gnye =0y, ...
, Qon = an and consider the sum

Ala+ (1 —a2)2+va2+(1 -—-a3)2+

+’\/a2n—1 + ( a2n)2+’\/a§n (1—a)?
which is obviously equal to twice the sum
,\/af-i—(l—-a +\/a2 (1—a)*+ ...

AR F T —a P +A/F (1 —a)

{each term of the latter sum occurs twice in the former sum),
According to what has already been proved, the former sum does

not exceed 2n 1/5/2 whence it follows that
Ala+ (1 —a)? +Afad+ (1 —a)’+ ...
A (T—a Y +afa + (T —a)> M2/§

Thus, we have obtained the required inequality.
In the last inequality the sign of equality appears only when

Q== ... =ay1=l—=1l—aq= ... =1—ay,

(cf. case 1° above). Now, since a; = a.+; and n is odd, the last
equality is only possible when
1
a1=a2= PO =an=—§-
284. First solution. Both members of the equality are positive,
and therefore, on squaring them, we obtain

I—x+ 1=+ 24/(1 = £]) (1 =) <4 — (5 + 25,5, + 53)

* Let the reader consider as an example the case n =3 to find why
‘the proof presented above for an even n cannot be applied to the case of
an odd n.



Solutions 3851

that is

24/(1—x) (1 —x2) <2 — 2xx,

/\/(1 -y (1 =) <1 —xx,

Now we again square both members to obtain

whernce

2 w2 ] 4242 — 242
—x—xl - xiy << — 20 x, + X3x2

On transposing all the terms to the right we derive the in-
equality
0 << (%) — xp)?

The last inequality is quite evident; the equality sign appears
in it only for x; = x». It follows that the original inequality always
holds and that it turns into
equality only when x; = x,.

Second solution. Let us con-
sider a geometrical solution of
the problem (analogous solu-
tions can be constructed for any
more complicated problems).
Let us consider a rectangular
Cartesian coordinate system in
the plane (see Fig. 34) and
construct a circle of unit radius
with centre at the origin. The
coordinates x and y of the points
of the circle are connected by
the relation

P4+ yr=1

Now let us mark on the
x-axis two points M; and M,
with abscissas x; and xp; since |x;]<< 1 and |x2]<C 1, both points
lie inside the unit circle or on its boundary. The perpendiculars to
the axis of abscissas drawn through these points intersect the upper
semi-circle at points N; and N, (see Fig. 34). We obviously
have M\N, = ,/T= 22 and MyN,= 4/1 — i Since the number

(x1+x2) /2 is equal to the abscissa of the midpoint M of the line
segment M;Ms, it follows that the quantity 4/1 — [(x; + x)/2F is

Fig. 34

* This is quite evident when x; and x, are positive. We can easily verify
that the same property remains valid for any signs of x; and x; as well. (It
should be noted however that it is sufficient to prove the inequality indicated
in the condition of the problem for positive values of x, and x, because if x,
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equal to the length of the line segment MN where N is the point
of intersection of the circle with the perpendicular to the axis of
abscissas drawn through the point M. Further, the sum MN, 4
+ MyN; equals twice the length of the midline N'M of the trape-
zoid MN\N,M,, that is it is smaller than twice the length of the

zj

Fig. 35 Fig. 36

line segment MN. What has been said proves the required in-
equality; as is seen from this proof the inequality turns into
equality only when the points M; and M, coincide, that is when
Xy = Xa.

Remark. The method used in lhe the second solution of Problem 284 makes
it possible to derive many remarkable inequalities. For instance, let us consider
a sphere of unit radius with centre at the origin (see Fig. 35). Let M; and M,
be two arbitrary points in the plane Oxy which lie inside the sphere or on its
boundary and let N, and N: be the points of intersection of the sphere with the
perpendiculars to the plane Oxy drawn through the points M; and M, Further,
Jet N and N’ be the points of intersection of the perpendicular to the prane Oxy
passing through the midpoint M of the line segment M;M; with the sphere and
with the line segment N,N, respectively. On denoting the coordinates of the

or x; (or both) is nonpositive we ean replace the numbers by their absolute
values without changing the left-hand member of the inequality while the right-
hand member decreases after this replacement).
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points M; and M, as (x1, s} and (x3 y:) respectively we can write
M1N1=’\/1 — % — v M2N2=’\/1 — x2— 15,
MN = ,\/1 - (—’“—"g—’-‘l)z - (—y‘—éfﬂ)z and MN’ = % (MN, + MyNy)

Now, since MN’ << MN, it follows that

/\/1—xf—yf+4/1—x§—y§<2/\/l—(x'—;xz)z—(yl-;yzy *

provided that all the radicands are positive; the sign of equality appears in (*)
only in the case when x, = x; and y, == y, that is when the points M, and M.
coincide,. '

Fig. 37

Similarly, on drawing the perpendiculars to the plane Oxy through the
points M;, My and M; and through the point M of intersection of the medians
of the triangle M;M;Ms (see Fig. 36), we arrive at the inequality

AT=F =B+l =2 — g+ a1 =22 —§i<

<3/\/1_(x1+»;2+x3)2_(!/1+!:/32+!/3)2 (**)

which means that the length of the line segment MN’ does not exceed that of
the line segment MN. Inequality (**) also holds in all the cases when all the
radicands are positive; the sign of equality appears in (**) only when x, =
= Xy = x3 and y, = y; = ys, that is when the points M,, M, and M; coincide.

Now let us replace the sphere by the cone whose vertex coincides with the
origin and whose axis is Oz, the apex angle of the cone being equal to 90°

12 —60
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(see Fig. 37). Using the same method we obtain the inequality
ANE+ RS+ G+ >

>3/\/( lcx+);2+xa)2+(y1+!;2+y3)2 (¥*%)

which holds for any xi, xs, x3; y1, y2, ys; the sign of equality appears in (***)
only when x,/y; = %a/ys = xs/ys, that is when the points N,, N, and N; lie on
one elemeni of the cone.

It should be noted that purely algebraic proofs of inequalities (*), (**) and
(***) are extremely complicated.

285. Since sin cos x = — cos (/2 + cos x), there holds the re-
lation

. . . 19
€OS siil x — sin cos x = cos sin x - cos (7 + cos x) =

%-}-cosx—{—sinx —T2t—+cosx~—sinx
==2cos 5 cos 5
Further,
| cos x + sinx |=4/cos?2x + 2 cos xsinx -- sin x =
=4/l Fsin2x < /2

(we have |cosx + sin x]=4/2 only when sin 2x = 1), and sim-

ilarly

{ cos x — sin x | = 4/cos? x — 2 cos x sin x + sin x = B
=4/1 —sin 2x << /2

(we have |cos x — sinx|[=4/2 only when sin 2x = — 1). Since
the number n/2 =~ 3.14/2 = 1.57 is greater than the number
4/2 2~ 1.41, it follows that

—g—+cosx+sinx -1+cosx—sinx

T n 2
- > 3 >0 and - > 5 >0

Consequently, both expressions cos (/2 + cos x + sin x)/2 and
cos (n/2 4 cos x —sin x) /2 are always positive. Thus, the dif-
ference cos sin x — sin cos x is always positive, that is the expres-
sion cos sin x is greater than sin cos x for any x.

286. (a) Let us denote logon = a and logsm = b. From the
equalities 22 = 5 and 5% = n we derive ¥/ =2, 5!/ =5 and
sil/e.ql/b = 2.5 =10, that is =n!/e+1/¢ = 10. Further, since n? =~
~ 3.142 << 10, we see that the inequality l/a 4 1/b > 2 must
hold, which is what we had to prove.

(b) Let us denote log;n = a and log,2 = b. Then 2% = 5 and
n® = 2. The second equality implies 2% = 5 whence b = 1/a.
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Now we can consecutively rewrite the given inequality in the
form

1 1
—+W>2

a+1>2

and
a4+ 1>2a

whence a2 — 2a + 1 =(a — 1)2 > 0. The last inequality is quite
obvious.

287. First solution. Under the condition § > « it is required
to prove the following inequalities.

(a) sinp—sina < p — a.

We obviously have

Bt cosBie gl g g

sinP — sina=2sin

{because for every nonzero angle x lymg in the first quadrant
there hold the inequalities sin x <<
<< x and cosx << 1 %), c
(b) tanp—tana>p—a
We obviously have N

p—a<tan(p—a)=
tanf — tana

=—l—m <taﬂ6—tana

(because for every nonzero angle
x lying in the first quadrant the
inequality tanx > x holds *). ]
Second solution. We shall limit
ourselves to Problem 286 (a) be-
cause Problem 286 (b) can be
solved quite analogously.
Let us consider unit circle with
centre at a point O (see Fig. 38)
and mark the arcs AE and AF Fig. 38
equal to « and B respectively. On
dropping {rom the points E and F the perpendiculars EM and FP
on the radius OA we can write

Saopa=

* E. g., see page 392,

12*
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and
1 1
Ssector 0E4 = 9 a, Ssector OFA = 7[3

where the letter S designates the area of a figure.
It follows that
o —sina=2 Ssegment AmE
and
f—sinf=2 Ssegment AEF
Consequently,
o—sine <pf—sinp

288. Let AE and AF be arcs of unit circle with centre at O
which are equal to o and p respectively (see again Fig. 38). Let B
and C be the points of intersection of the perpendicular to the
diameter OA drawn through the point A with the straight lines OF
and OF and let M and N be the points of intersection of the per-
pendicular dropped from the point E on the diameter OA with the
straight lines OA and OF. Then we can write

1 1
Sa oas=gtana, Sa oac=7tanf

and
1 1
Ssector 04E = 50, Ssector 04ar =+ B
2 2
Consequently,
tana SA 04B d tan § Sao04ac
== an S
a Ssectoz OAE ﬁ Ssector OAF
As is readily seen,
Sa 04B S oBC
Ssector OAE Ssector OEF
Indeed,
SA 048 Sa 048 Sa oBC SA oBC
-y 2’
Ssector OAE Sa 0EM Sgector OEF S 0EN
and

Sa a8 __ Sa osc
Spo0EM  SaoEn

The inequality Sa osc/Ssector 0£F > Sa 048/ Ssector 045  implies

Sa 0as T Sa oBc SA 04B
Ssector OAE + Ssector OEF Ssector OAE

that is
SA 0AC SA OAB
Ssecto" CAF Ssector QAE

which is what we intended to prove.
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289. Let
arcsincosarcsinx=a

The angle o lies within the limits 0<< o << m/2 since 0
<C cos arcsin x << 1 (because — n/2 << arcsin x << n/2). Further,
we have sin o = cos arcsin x, and consequently

arcsinx=i(%—a) and x=sin[-_l~_ (%—a)]=icosa

Similarly, let arccos sin arccos x ==§; then 0=<<p << n/2 (be-
cause 0 < sin arccos x << 1 since 0 << arccos x <K m) and cos f =
= sin arccos x; consequently

arccosx=—72‘—$[3 and x=cos (% $[3) =4 sinfP
Now, from the relation cos o = sin p = == x we conclude that

. . . I
a 4 B==arcsin cosarcsinx 4 arccos sinarccos x = -

290. Let us suppose that the sum
€05 32x + as; cos 31x + asy cos 30x + a9 cos29x +- ...
ee. Fagcos2x-a;cosx  (*)

assumes only positive values for all x. On replacing x by x + =«
in this sum we arrive at the expression

€08 32 (x + m) + as; cos 31 (x + x) + asg cos 30 (x + =) 4+
4 @yc0829(x +m)+ ... +ascos2(x+n) -+
+ a; cos (x 4 ) = cos 32x — ay; cos 31 x -+ ayy cos 30x —
— ayc0529x -+ ... +ay,c082x —qa cosx  (**)

which must also assume only positive values for all x. Therefore
the expression

€08 32x + azpcos 30x 4 ... -+ a,cos4dx -+ a;cos 2x

which is equal to half the sum of expressions (*) and (**) also
assumes only positive values for all x.

Now we replace x by x4 /2 in the last expression, which
results in

cos 32 (x—{—%)—l—aaocosSO (x 4 -g—)+
~} @95 COS 28 (x+—g-)+ +a4COS4(x+-g—)+

-+ ascos 2 (x -+ %) = €05 32x — a3 €038 30x |

~+ a9gc0828x — ... - a4c084x —aycos2x
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Next we consider the expression
€05 32x -+ 95 €08 28x + ap, c08 24x 4 ... 4 agcos 8x + a4 cos 4x

which is equal to half the sum of the last two expressions; this
expression must also assume only positive values for all x.

On replacing x by x 4 m/4 in the last expression and forming
half the sum of the resultant expression and the original expres-
sion we obtain the sum

c0s 32x -+ ay4 c0S 24x + a5c0s 16x + gz cos 8x

Now we replace x by x + n/8 in this sum and add the resultant
expression to the criginal one; this yields the sum

€0s 32x -} a5 €0s 16x

Finally, in just the same way we conclude that the expression
cos 32x

must alsc assume only positive values for all x. However, for
x = n/32 the last expression takes on the value —1. We have
thus arrived at a contradiction, which proves the assertion stated
in the condition of the problem.

291. We shall proceed from the half-angle formula

2 sin -g—=i A/2 —2cosa
where the sign + or —is chosen in accordance with the well-
known rule for the sign of the sine function. Using this formula
we consecutively determine the sine of the angles

045 {a + 252) - 465 (@ + g4 2920 450

a
i (a2 +——‘“42“3 T “")- 45°

Suppose that we have already determined the sine of the angle

aa (1(1(1 a.a a
2 12Ty 172 0 TR
(1+ +——=+. "“"Qk—_i—-‘)'45o
where a;, ay, @3, ..., ar assume values equal to 1 or —1. Since
aa a,a,a a,a, ... a aa, ... a,.a
2 17273 172 k 172 k7 k+1
R e b e R

— [ 90 =(

+ a,a, ... akak_H . 45°
* 211—1
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“ "

where the sign “+4” corresponds to a; = + 1 and the sign “—

corresponds to a; = — 1 and since
cos [:j: 90° =+ (a2+ a22a3 4+ ... &%) . _45°] =
— —sin (02 a22a3 . a2a ak_H) 45°

we can now determine the sine of the next angle:

a

a .. a aa, . a,a
172 k 172 “** "k7R+1
s+ + )-45°=

2k
aa .. Qa
9 = lk+l) 45°

2 sin (al

~x 4/

Now we note that since all the angles under consideration are
less than 90° in their absolute values (because even (1 4 1/2 +
+1/44 ... +1/27)-45° =90° — (1/27)90° is less than 90°) and
since the sign of these angles is determined by the sign of a,, the
square root in the last formulas should be taken with the sign plus
or minus depending on the sign of a;. In other words, we can
write

2 sin. (

a.a

a,dy ... QA e a.a
4+ l2k—l oy % kkk+l).450=

2 2
=al/\/2+25in(

Now let us use the obvious formula

a2a 3

.4+ '2’;;?1:4-1)_ 45°

2 sin a;45° = a; 4/2
which makes it possible to derive consecutively the following re-
lations;
2 sin (al + 012(12) - 45° =a1'\/2—i—a2 ’\/§

2 sin (@, + 22 2%).45°=a.«/2+a2«/2+a3 V2
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2sin (@) + 252 2100 | D) g5e

=a1W/2+a2\/2+am/2—i-a4 V2

9 sin (al_|_ a12a2 + a,09a3 o+ a1Q2a3 ... an)_45°=

4 2n—l

—aVotaNetmnet ... tav3

which is what we had to prove.
292. Let us suppose that the expansion of the given expression
in powers of x is of the form

(1—3x+3x)™M (1 +3x—3x)“=Ay+ Ax + Ax®+ ... +A,.x"

where Ao, 4, A2, ..., 4, are the unknown coefficients whose sum
we must compute and n is the degree of the polynomial on the
right-hand side (it is evident that n = 743-2 + 744.2 = 2974),
Next we put x = 1 in this equality, which results in

1743’1744=A0'FA1+A2+ ‘e "l—An

Thus, the sought-for sum is equal to unity.

293. On opening parentheses and collecting terms in the two
given expressions we obtain two polynomials in x. Now let us
replace x by —x in the given expressions. Then to the two new
expressions there correspond two new polynomials which are ob-
tained from the former polynomials by replacing x by —x. This
means that in each of the new polynomials the coefficients in even
powers of x remain the same as in the former polynomials while
the signs of the coefficients in the odd powers of x are changed to
the opposite. In particular, under this operation the coefficients in
x?° do not change. Thus, we see that the coefficients in x% in the
two former polynomials coincide with the coeificients in x2° in the
new polynomials obtained after parentheses are opened and like
terms are collected in the expressions (1 x2 4 x3)!90 and
(1 — x2 — x3) 1000,

It is clear that the first of the new polynomials has a greater
coefficient in x?° than the second. Indeed, when parentheses are
opened in the expression (1 4 x% -+ x8)10% we obtain only positive
coefficients in different powers of x, and when like terms are col-
lected the corresponding coefficients add together. As to the ex-
pression (1 — x? — x%) 1900 after parentheses are opened in it we
obtain coefficients in different powers of x whose absolute values
are the same as the absolute values of the coefficients in the first
of the new polynomials but the signs of the coeificients may be
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different; therefore the resultant coefficients appearing after like
terms are collected are less than before.

Thus, after parentheses are opened and terms are collected in
the expressions (I -4 x2 — x8)1900 and (1 — x2 4- x8) 1900 the coeffi-
cient in x% in the first of the resultant polynomials is greater than
that in the other polynomial.

294. The assertion of the problem is a direct consequence of the
following transformations:

l—x+2—x84+ ... —x9 XA+ x+ 2+ 514 ...
eee O F A =[1+ 22 .. X0 —
—x(l+ 2424 o A2 20
+x(l+x24-24 .+ 5B =
= +x2+xt 0 2 — 2 (12t L. )2

295. (a) Using the formula for the sum of a geometric pro-
gression and Newton’s binomial formula we find

(1 + x)1000+x(1 + x)999+x2(1 +x)998+ vee 51000 —

xlOOl
T — (14 %)% 1001 1001
_ I+x T bt B it S — yloor —
—_— p — — T _(l_l__x)IOOI 51001 —
14 x
=1 1001x 4+ C (1001, 2) x® 4+ C (1001, 3) x* -+ ... -+ 1001x'%®
Thus,the sought-for coefficient is equal to C (1001, 50)=W1,0.%15L“—.

(b) Let us denote the given expression as P(x). Then we can
write
1+ x)P{x)—Px)=
=1+ %2420+ 2P+ ... +999(1 + x)'% 4 1000 (1 + x)'®!] —
—[+x)+2(0Fx2+3(14+x°+ ... +1000(1 + x)1%) =
= 1000 (1 4 )% — [(14-x)+ (1 -+ (L -+ 2P + . ..+ (14000 =

— 1000 (1 + g0 — (D0

= 1000 (1 - x)!%01 —

(14 x)10" — (1 + x)

X

It follows that

1 r__
P(x)= 1000(1:— xloor (1 —!—x)”"’ch (1+ x) —

=1000[1001 +C(1001,2) x +C (1001, 3) x>+ ... + 1001x°% 4 x100] —
2 [C(1001,2) + C (1001, 3) x -+ C (1001, 4) x® + . .. + 1001x%% + x9%]
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Thus, the sought-for coefficient is equal to

1000 - 10011 1001
1000C (1001, 51) — € (1001, 52) =~z sz — zorguor =

1001! 51 050 - 1001!

= 53{- 950! [52 - 1000 — 950] = 521 9507

296. Let us first of all determine the constant term which is
obtained after parentheses are opened and like terms are collected
in the expression

(.. ((x—22—22— ... —20

k times

This term is equal to the value which the expression assumes for
x = 0, that is it is equal to

(o (=22 — 22— 22— ... — 2=
k times
= (A—2P—2P— .. —2p=
k—1 times
= (A—22— 22— ... —922= ...
k—2 times

con =((4—22—2=(4—20=14

Now let us denote by A, the coefficient in x, by B: the coeffi-
cient in x? and by Prx® the sum of the terms involving x to the
powers higher than 2. Then we can write

(..((x—2—2— ... —_2_)2=ka3+ka2—|-Akx+4

k times
On the other hand
(. ((x—22—22—22 — ... — 2=
k times
=((.. (x—22—2°2— ... —22—22=
k—1 times
=[(Pport® + Bp_18® + Ap_1x +4) — 2=
= (Ppo1X* + Bp_1x* + Ap1ix 4 2’ =
= Pioix® + 2Py 1Baoi® + (2Pp_ 1 Apoy + Bio ) &' -
+ (4Pp_1 + 2Br_1Ar—1) £ + (4Bpoy + Af-1) £ +
+ 4Ap_ix + 4={Piei’ + 2P, 1Bs-1x* +
+ (2Pe-1Ak—1 + Bi-1) % + (4Ppoy + 2Bp 1 A )] 5° +-
+ (4Bpoy + Ak-1) £ -+ 44 1x + 4
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whence
Ar=14Aeo1, Bi=Ahoi + 4B,
Since (x — 2)?2 = x? — 4x + 4, we have A; = — 4. Consequent-
ly, Ag= —~ 4.4 = — 42 A3= —43 .. and, generally, 4,= — 4*%,

Now let us compute Bk:
Br= Ajy + 4Boy = Aiey + 4 (Akmg + 4Bpy) =
= Ai-1 + 44koz + 4 (Aig + 4Be—g) =
= Ar 4+ A A+ 4 (A?e—4 + 4By_y) =
= A+ 4h - At L AT AT AT 4 4By
The substitution of
Bi=1, A=—4, A=-—4,
A= — 4, ..., Ap =—4""
into this expression yields
Bk 4‘2k 2+4 42k 1+4 4212 6+...+4k—?'42+4k—1'1=
— Zk 2+4"k—-3+42k 4+...+4k+l+4k+4k—l=
=41 +44 48+ 8+ . 474 )=
k % —1 k—1
=4k-—1 44:11 — 4 ;4
297. (a) First solution. The binomial x* — 1 is divisible by
x — 1 for any positive integer &; thereiore the division of
x+B2 O+ T+ = - D+ =1+
F =D+ =D+ =D+ —1)+6

by x — 1 leaves a remainder of 6.

Second solution. Let ¢(x) and r denote the quotient and the re-
mainder resulting from the division of x 4 x3 4 x% 4 x27 4 «8! +
+ x?¥ by x — 1. Then

4P+ F AT =g (= 1)+

The substitution of x = 1 into this equality yields r = 6.

(b) By analogy with the second solution of the foregoing prob-
lem, let us denote by g(x) the quotient resulting from the divi-
sion of the given polynomial by x2 — 1, and let rix 4 ry be the
sought-for remainder (the division of a polynomlal by a quadratic
trinomial leaves a remainder which is a binomial of the first de-
gree). Thus,

x+ 3+ 0+ T+ =qg() (=) +rix+ry
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On putting x = 1 and x = — 1 in the last equality we obtain
6=r+r,—6=—r+r, whence ry==6, ro=0

Thus, the sought-for remainder is equal to 6x.

298. Let p(x) be the unkmown polynomial and let ¢(x) and
r(x)=ax -+ b be the quotient and the sought-for remainder re-
sulting from the division of that polynomial by (x — 1) (x — 2):

pR)=x—1)(x—2qx)+ax+b (*)
By the condition of the problem, we have
p(x)=(x—1)q,(x) +2 whence p(l)=2
and
px)=(x—2)g:(x) +1 whence p(2)=1

Now we substitute x =1 and x = 2 into equality (*), which

results in

2=p(l)=a+b
and

=p(2)=2a+40b
whence

=-—1 and =3

Thus, the sought-for remainder is equal to —x 4 3.

299. The polynomial x* 4 x3 4 2x2 4 x4+ 1 can be factored as
(x2 4 1) (x2 4 x + 1). It readily follows that this polynomial is 2
divisor of the polynomial

W= 1=EF -+ )= =D+ D) E+ D =224 1.
Namely,

: x12—1
dtdt it t =gy iy =
x2—1

X —xT — x84 245 — 2 x2+ x — 1

The division of x1%! — 1 by x* 4 x% 4 2x%2 + x 4 1 is equivalent
to the division of x!%!—1 by x'2—1 and the multiplication of
the result by x® — x7 — x6 - 245 — 2x3 + x2 4 x — 1. Further, it
is evident that

21981 1

x2—1

xT—1

=x1939 _|_ x1927+ x1915_|_ x1903 + - + x19 + x7 + Py

(this can easily be shown with the aid of long division of the
polynomials arranged in descending powers of x or with the aid
of the identity x!91 — 1 = x7[(x!2) 162 — 1] 4- x — 1 and the well-
known formula for the division of the difference of two even
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powers by the difference of the bases). It follows that the sought-
for coefficient coincides with the coeificient in x'* in the product
(x1939+x1927+ e g T X —1 )X

xt—1

K=" — x4+ 265 — 234 24 x — 1)

That coefficient is obviously equal to —1.

300. From the identity indicated in the condition of the problem
it follows that the sought-for polynomial P(x)= P.(x) where n
designates the degree of the polynomial) is divisible by x, that is
P,(x)= xPs_1(x) where P,_y(x) is a polynomial of the (n — 1)th
degree. Therefore

Px—1=x—1P,_1(x—1)
and, consequently,
x(x—DP,_1(x—1)=xP(x—1)=(x—26)P(x)

It follows that P(x) is divisible by x — 1 as well, that is P,(x) =
= x(x—1)Pnyp(x) (x—1 is a divisor of the polynomial
P,y (x)=(x— 1)P,—2(x)). Therefore we have Px—1)=
=(x—1)(x —2)Ps—(x — 1) whence
(x—DE—2DPpx— )=
=(x—26) P, (x) =(x —26) x (x — 1) P, 5 ()

The last relation implies that P,(x) is divisible by x — 2 as well
(x—2 is a divisor of P,o(x)), and consequently P,(x)=
=x(x— 1) (x — 2)Pn,—3(x). On substituting this expression of
P(x) into the original relation we similarly conclude that P(x)
is divisible by x — 3 as well, that is Pa(x)=x(x — 1) (x — 2) X
X (x — 3) Pny(x), and so on.

Proceeding in this manner we finally arrive at the following ex-
pression for the polynomial P(x):

Px)=P,(x)=x(x—1)(x—2)(x—3) ... (x —25) P, _s5(x)
The substitution of this expression of the polynomial P(x) into
the given identity results in
xx—1DE—2) ... (x —26)Py_gs(x—1)=
=(x—26)x(x—1) ... (x — 25) P, _o5(x)

whence it follows that the polynomial Pn._g6(x) = Q(x) of the
(n — 26)th degree satisfies the identity

Qx—1)=Q(x) *)
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it is clear that if Q(x) = Qo(x)= ¢ (that is if Q(x) is a poly-
nomial of degree zero equal to a constant number) then relation
(*) is fulfilled. Let us show that this is the only case when it is
fulfilled. Indeed, if Q(x) = Qe(x) = aox* + ax*'+4 ... 4
—+ @r—1x + ar where £ =1 and ao %= 0 then identity (*) haﬂ ‘the
form

ao(x——l)k—l—al(x—l)k"l—l— e =gt Faxtt4 L.,

‘On equating the coefficients in x*-! on both sides we obtain, by
virtue of Newton’s binomial formula, the equality

kay+ a,=a,, that is ay=0

However, this contradicts the assumption that ao=s=0. Thus,
we have & = 0 and Q (x) = c; hence

Plx)=cx(x—1)(x—2) ... (x—25)

is a polynomial of the 26th degree.

301. (a) If all the coefficients of the polynomial P(x) are non-
negative then all the numbers s(1), s(2), s(3), ... make sense.
Let us consider a power of ten (we denote it N = 10*) such that
N is greater than all the coefficients ao, ai, a, ... of the poly-
nomial P(x). Then the number P(N)= P(10%) obviously starls
with the digits with the aid of which the coefficient ay of the poly-
nomial is written, then (possibly after a number of zeros) the
digits of a, follow; then (possibly again after a number of zeros)
the digits of a; follow etc. up to the digits of the number a..
Therefore the number S = s(10%) is equal to the sum of all digiis
of all numbers ao, ai, ..., an. As to the quantities s(10%+'),
s(107+2), ..., they are equal to the same number S, whence it
follows that the number S occurs infinitely many times in the se-
quence s(l) s(2), .

(b) It is clear that if the leading coefficient ao of the polyno-
mial P(x) is negative then only a finite number of expressions
s(1), s(2), s(3), ... make sense (because in this case for all suffi-
ciently large values of x the sign of the polynomial P(x) coincides
with that of its leading coefficient ao; for instance, this follows

from the relationlim P (x)/aex” = 1). Thus, it only remains to con-
X—>» oo

sider the case q¢>0. We shall show that if ao>0 then there is a
number M >0 such that all coefficients of the polynomial P(x)==
= P(x-}- M) are positive. This will imply that the sequence

§(1), 5(2), s(3), ... of the sums of the digits of the numbers
P(1), P(2), P(3), ... contains infinitely many equal numbers and,
since we obv1ously have §(1) =s(M+ 1), §(2) = s(M + 2),

§(3)=s(M <+ 3), ..., the sequence s(1), s(2), s(3), ... must also

contain infinitely many equal numbers.
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Thus, it is sufficient to prove the auxiliary assertion stated:
above. We have

Px)=P(x+ M=
=ay(x + M) +a, (c+ M +ay(x + M+
oo Fag (xF+M Ffa,=apxt + axt a2 ...+ a3, x+a..

and therefore, by Newton's binomial formula,
Gi=ay-Cln, M ' +a-Cln—1, )M "4 ... +aq

where i =0, 1, 2, ..., n. Hence, a; has the form of a polynomial
of the (n— t)th degree in the variable M with leading coefﬁc1ent.
ao-C{n,i)>0. Therefore all the numbers a; (where i=1,2,...;
it should be noted that @ = a¢ > 0) are positive for sufﬁcxenhy
large M, which we had to prove.

302. Let ao and by be the constant terms of the polynomials.
f(x) and g(y) (that is f(x)= a0+ ax+ ...+ a.x® and g(y)=

bo+ by + ...+ bmy™). Let us put the variable x equal to &
in the 1dent1ty 200 2°°+ I = f(x)g(y). This yields acg(y)=1,
that is g(y) = l/ao, thus, g(y) is equal to 1/ay for all y, which
means that g(y) is a constant, that is a polynomial of degree zero.
The relation f(x)=1/b, is proved similarly; therefore [(x)g(y)=
= 1/aghy 5= x>y + 1. We have arrived at a contradiction,
which proves the assertion of the problem.

303. Since the (quadratic) equation p(x)=ax?4 bx + ¢ = »
has no real roots, the quadratic trinomial p(x)— x = ax? -
-+ (b — 1)x+4 ¢ assumes values of one sign for all x, say
p(x)—x > 0 for all x. Then we have p(p(x5))— p(x0) > 0 for
any x = xo, that is p(p(x0)) > p(xo). By the hypothesis, p(x¢)—
— xo > 0, that is p(x¢) > xo, and hence p(p(xo)) > xo; thereiore
xo cannot be a root of the 4th-degree equation p(p(x))= «x.

304. Let us assume that a = 0 (if otherwise, we can replace
the polynomial p(x) by the polynomial —p(x) = —ax? —bx—¢
satisfying the same conditions). We shall also assume that b = 0
(if otherwise, we can replace p(x) by p(—x)= ax?— bx <4 c).
Now we substitute the values x =1, x = 0 and x = — | into the
inequality |p(x) |=|ax? + bx + ¢| << 1, which results in

la+b+¢cl<I1, |eI<1 and Ja—b4c|< 1,
that is [c|<<] and |a+b]<<2, {a—b|KL2
Further, if ¢ =0 then 0 <<cex2 << ¢ for |x|<<1; for |x|<< 1 we

also have —b << bx << b. This means that for these values of ¢
there hold the relations

pr(x)=c*+bx+a<c+b+axl
and py(x)=cx’+bx+a=204+(—b)+a=a—b>=>—2
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whence it follows that |p (x)]|<C2. Similarly, if ¢ << 0 and ¢ <<
<< ¢x?2 << 0 (and, as before, —b << bx =< b) then

prix)=c®+bx+a<0+b+ta=a+5b<K2
and p(x)=c®+bx+a=c+(—b+ta=a—b+c>=—1

whence it follows that |p,;(x)]|<< 2 in this case as well.

305. We shall exclude the case a = 0 which is of no interest
because for a = 0 each of the three given equations (1), (2) aud
(3) is of the first degree and has a single root, all the equations
coinciding (here we have x;= x; = x3). We shall also exclude the
case ¢ = 0 when the three given equations have the roots —b/a
and 0, b/a and 0, —2b/a and 0 respectively because in this case
the root x3 = 0 of equation (3) lies between any root of equation
(1) and any root of equation (2).

Further, if ax}~+ bx, 4+ ¢=0 then
%x’f—{— bx, + ¢ == (ax} + bx, + c)——%x}’=—?x?
Similarly, if —ax(+ bxz4-¢ =0 then
%xg + bx, + c = —ax]+ bx, + c—i——g-ax‘;-——-—g-axg

Consequently the expressions (a/2) x] + bx, + ¢ = — (1/2)ax? and
(a/2) x2 + bx, + ¢ =(3/2) ax] are of different signs. This means that
the points (x;, f(x1)) and (x, f(xg)) belonging to the parabola
y = [(x) = (a/2)x* -t bx + c lie on different sides from the x-axis,
whence it follows that between them there is an intermediate
point (xs, 0) at which the parabola intersects the x-axis; the num-
ber x3 is the sought-for root of equation (3).
306. Since « and B are the roots of the equation

24 px+qg=0
we have
(x—0)(x—P)=x"+px+gqg
Consequently
@—VE—v@—8B—08=I[v—ao)(vy—PBI6—a) @ —p]=

=W+ py+4) (® 4 pd+q)
But we have
Yy+0=—F and v6=Q
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and therefore
@—VE—Ve—08B—0)={+pv+49 & +pd+g) =
= v’ + pv? -+ qv* + pvd® + p*vd + pav + ¢8* + pgd + ¢* =
= (v0)> + pyd (v + 8) + q[(v + 8)> — 2v8] + p*vd + pg (v + 8) 4- ¢*=
=Q —pPQ+q(P*—2Q) +pQ—pgP + ¢*=
=Q+¢@—pPQR+ 9+ P+ pQ—29Q
307. First solution. Let us find the coefficient a from the second

equation and substitute it into the first equation. Then we conse-
cutively obtain

a=—(x*+x)
2= +xx41=0
P¥—1=0
x—1D(x*+x+1)=0
whence
X =1, x2vq=_li—2“/§
Since a = —(x2 4 x), it follows that a; = — 2, ay3 = 1.

Second solution. Proceeding from the result of Problem 306, we
can assert that for the given equations to possess at least one
common root it is necessary and sufficient that the expression

@+l—a-la+)+14+ad—2%=a—3a+2=
=@—1)@+a—2)=(@—1)?2a+2)

turn into zero.
From this relation we find

a=-=—2, a3=1
308. (a) Let (x—a)(x—10)4+ 1 =(x+b)(x 4+ ¢). Putting
x = — b in both members of this equality we obtain

(—b—a)(=b—10)+1=(=b+0(—-b+c)=0

It follows that
b+ad4+10)=—1

Since a and b are integers, the sums b 4 a and b 4 10 are also
integral numbers. The number —1 can be expressed as a product
of two integers in only one way, namely —~1 = 1. (—1), and there-
fore only the following two possibilities can take place here:

(1) 4+ 10=1, that is b = --9;then b +a=—94 a= —1,
whernce a = 8; here we have

(x—8)(x — 10) + | = (x — 9)2
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(2) b+ 10=—1, that is b = —11; then b+a=—11 +
-+ a = 1, whence a = 12; here we have

(x—12)(x—10)+ 1 =(x — 11)

(b) Since a polynomial of the fourth degree can be expressed
either as a product of a polynomial of the first degree by a poly-
nomial of the third degree or as a product of two polynomials of
the second degree, we have to consider separately the following
two cases:

A xx—ax—=bx—c)+1=x+p(F*+gl+rx+s) ()

(the coefficient in x in the first factor on the right-hand side of this
equality and the coefficient in x® in the second factor are both
equal either to 1 or to —1 because the coeificient in x* in the pro-
duct of these factors must be equal to the coefficient in x* in
the expression x(x—a)(x—b)(x —c¢)+ 1, that is to 1, and the
equality x(x —a) (x — b) (x —¢)+ 1 =(—x + p1) (—x* + qix* +
rix + sy) can be brought to form (*) by multiplying both factors
on its right-hand side by —1).

On puttmg in succession x =0, x =a, x =50 and x =c¢ in
equality (*) and taking into account that 1 can be factored only
in the two ways 1 = 1:1 and | = (—1)-(—1) we conclude that
the four different numbers 0+ p=p,a+p, b+ pandc+p (w
remind the reader that the numbers 0, a, b and ¢ are all diﬁerent)
can assume only the two values -1 and —1, which is impossible.

B) sxx—ax—0kx—0+1=E+px+q*+rx+s)

As above, from this equality we conclude that for x = 0, x = a,
x = b and x = ¢ both polynomials x2 4 px -4 and x2+4-rx 4 s
assume the value 1 or -—I. Further, the quadratic trinomial
x%2 + px + g cannot assume one and the same value o for threc
distinct values of x (because, if otherwise, the quadratic equation
x2 4+ px + g — a = 0 should have three distinct roots), whence it
follows that this trinomial must assume the value 1 for some
two of the four values x =0, x =4a, x =10 and x = ¢ and the
value —1 for the other two values of x. Let us suppose that
024+ p-0+¢g=4¢g=1, and let x = a be another value of x for
which this trinomial takes on the same value 1. Then for x = b
and x = ¢ the trinomial takes on the value —1. Thus, we have

a24+pat+l1=1, V+ppb+1=—1, A+pc+1=-—1

The equality a* -+ pa = a{a + p)= 0 implies a-+ p = 0, that
is p == — a (because, by the hypothesis, a = 0). Thus, the last
two equalities take the form

B—ab=0b(b—a)=—2 and ¢*—ac=c(c—a)=—2
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On subtracting the second of these equalities from the first we
obtain

B—ab—c?+ac=0G—c)(b+c)—alb—c)=0b—c)(b+c—a)=0

whence, since b = ¢, it follows that 6 +¢c—a =0, a =56+,
b —a=—c and ¢ —a = —b. Now, from the equality

b(b—a)=—bc=—2
we find the following values of 6, ¢ and a:
1N b=1, ¢=2, a=b+c=3

In this case we have

xx—a)x—b(x—e)+1=x(x—3)x—DNx—2)+ 1=
=(x?—3x+ 12

2 b=—1, ¢=—2, a=b+c=-—3

In this case we have

sx—a)x—bx—0)+1l=xx+HJx+ D +2)+ 1=
= (£" + 3¢ + 1)

Similarly, if the trinomial x? 4 px 4 ¢ assumes the value —I1
for x =0 and x = a and the value 41 for x =6 and x = ¢,
then

g=—1, ad+pa—1l=—1, P+pb—1=1, A+pc—1=1
whence

p=—a, b(b—a)=clc—a)=2, ®—ab—c*+ac=0
that is

b—c)b+c—a)=0, a=b+c¢, b—a=—c¢, —bc=2

We thus obtain two more systems of possible values of a, 6
and c:
B b6=2 c=—1, a=bt+c=1

In this case we have
xx—a)x—b(x—0c)=x(x—Dx—2x+ 1)+ 1=>x2—x—1)
4 b=1, ¢=—2, a=b+c=—1

In this case we have
Ax—a)x—0b(x—c)=x(x+ Dx—DHx+2D+1=024+x—1)2

Remark. Another solution of this problem is given at the end of the solution
of Problem 309 (b).
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309. (a) Let us suppose that

k—a)x—a)(x—ag) ... x—a)—1=px) g

where p(x) and ¢g(x) are polynomials with integral coeificients,
the sum of the degrees of p(x) and ¢(x) being equal to n. We can
assume that the leading coefficients of both polynomials are equal
to 1 (cf. the solution of the foregoing problem). On substituting
the values x = a;, x = ag, x =@, ..., x = a, into this equality
and taking into account that —1 can be expressed as a product
of integral numbers in the only way —1 = 1. (—1) we conclude
that either p(x) =1 and ¢g(x) = —1 or p(x) = -~1 and ¢(x) =1
for each of these n values of x. Thus, the sum p(x)- g(x) is equal
to zero for xy = a;, xo = ay, ..., X, = a,. Hence, x; = a;, xy =
= ay, ..., Xn = @, are roots of the equation p(x)+ g(x)= 0; it
follows that the polynomial p(x)-+ g(x) is divisible by each of the
binomials x —a;, x —ay, ..., x — a,, and consequently it is di-
visible by the product (x —a;) (x— a2) ... (x — a,). Further, the
degree of the equation p(x)-+ ¢(x) = 0 coincides with the greatest
of the degrees of the polynomials p(x) and ¢(x); this degree is
smaller than n (n is equal to the degree of the expression
(x—a)(x—ag) ... (x—as)—1). It follows that the polyno-
mial p(x)+ g(x) cannot be divisible by the product (x — a;) X
X (x—ag) ... (x—ay), and consequently the factorization whose
existence we have supposed is impossible. '
(b) Let us suppose that

(x—a)(x—a)(x—ay) ... x—a)+1=p)q)
where p(x) and g(x) are polynomials with integral coeificients
whose leading coefficients are equal to 1. The substitution of the
values x==a;, x==0as, X =240, ..., X==a, into this equality
shows that

either p(x)=1, qx)=1 or px)=—1, ¢gx)=—1

for each of these n values of x.

Thus, the difference p(x)— ¢(x) turns into zero for n different
values of x; it follows that, on the one hand, p(x)— ¢(x) = 0, that
is p(x)== g(x) (ci. the solution of Problem 309 (a)), and, on the
other hand, the number n is even: n = 2k where & is equal to the
coinciding degrees of the polynomials p(x) and g(x) (we have
found that p(x)= g(x)). Now let us rewrite the above equalily
in the form

(x—a)(x—a) (x —ag) ... (x—a)=[p (WP —1
or, equiyalently, -
(x—a)(x—a) (x—as) ... (x—as)=1Ip(x)+ 1{px) — 1]
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We see that the product of the two polynomials p(x)+4+ 1 and
p(x)— 1 turns into zero for x = a;, x = as, x = a;, ..., x = Q.
Consequently, for each of these 2%k values of x at least one of the
factors on the right-hand side turns into zero. This means that
p(x)+ 1 or p(x)— 1 is divisible by x — ay, p(x)4+ 1 or p(x)— 1
is divisible by x — a, etc. Since a polynomial of the kth degree
cannot be divisible by a product of more than & different binomials
of the form x — a; and since the divisibility of a polynomial of
the kth degree with leading coefficient 1 by a product of & dif-
ferent binomials of the form x — a; implies that the polynomial is
equal to that product, it follows that the polynomial p(x)+ 1 is
equal to a product of some k& of the 2k factors on the left-hand
side of the last equality while the polynomial p(x)— 1 is equal to
the product of the other & factors.

For definiteness, let us suppose that

px)+l=x—a)lx—as) ... (x—ay_)
and

pr) —l=(x—a)(x—a) ... (x—an)

The subtraction of the second of these equalities from the first
orne yields

2=(—a)(x—ag) ... (x—an_1)—(x—a) (x—ay) ... (x—aw)

On substituting one of the values of x which we are consider-
ing, say x = a,, into the last relation we arrive at a factorization
of the number 2 into % integral factors:

2=(ay—a)(as—as) ... (@2 — ags_y)

Since the number 2 cannot be expressed as a product of more
than three different integral factors, it immediately follows that
k << 3. It is evident that the case £ = 3 is impossible. Indeed, the-
number 2 can be expressed as a product of three different integral
factors in only one way: 2 =1-(—1)-(—2). Let us suppose that
k=3 and that a; << az<< a;. Then 2={(a,— a1) (a2— a3) (a2— as)
where a; — ay > as — a3 > a; — as, and consequently a; — a;=
=1, as — az=—1 and a; — az=—2. The substitution of x=a,.
into the formula

2=(x—a)) (x — as) (x — a5) — (x — ax) (x — ay) (x — a¢)

results in another factorization of the number 2 into three different
integral factors: 2 = (as— a)) (as — a3) (as — as) where again
a;— a; > a,— az > a4 — as. It follows that ay—ay =1, a,—
— a3 = — 1 and a4 — a5 = — 2, and hence a4, = a,, which contra-
dicts the condition of the problem.

Thus, there are only two possible cases here: £ = 2 and & = 1.
Let us consider them separately.
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1°. Ilf £ =1 then
2=(x—a)—(x—ay)

whence a; = a; + 2. Denoting a, simply as a we obtain
x—a)x—a)tl=k—ax—a—2)+1l=(x—a—1)

{cf. the solution of Problem 308 (a)).
2°. If k=2 then

2= (x — a)(x — as) — (x — a3) (x — ay)

For definiteness, let a; << a3 and ay, << a4. The substitution of
x == as and x = q, into the last equality results in

2=(az—a)(@—as), @m—a;>a—a
and
2=(ay—a)(@—as), a—a >a—a

The number 2 can be expressed as a product of two factors
written in a decreasing order only in two ways: 2 = 2.1 or 2 =
= (—1)-(—2). Besides, we have a; — a << ay — a;, and there-
fore

02_‘(11:_1, a2—a3=—2
and
a4_a[=2, a4—a3=l

Now, denoting a; as a, we obtain

aw=a—1, a=a+1, ag=a-+2
and
(x—a)(x —a) (x—ag)(x—a)+ 1=
={xr—ax—a+l)x—a—1)x—a—2)+ 1=
=[*—@a—-Dx+a’+a— 1]

(cf. the solution of Problem 308 (b)).
310. By analogy with the solution of the foregoing problem, we
conclude that from the equality

kx—aPx—af(x—a) ... x—a)+1=pxqglk) (¥

where p(x) and g(x) are some polynomials with integral coeffi-
cients (whose leading coefficients are equal to 1) it follows that
either p(x)=1 and g(x)=1 or p(x)=—1 and g(x)= — 1 for
each of the values x =ay, x =as, x =as, ..., x = a.. Let us
show that the polynomial p(x) and also the polynomial g(x) are
either equal to 1 for all the values x =a;, x =a3, ..., x = u,
or are equal to —1 for all these values of x.



Solutions 373

Indeed, if, for instance, the polynomial p(x) took on the value I
for x = a; and the value —1 for x = a; then it would turn into
zero for an intermediate value of x lying between a; and a; (if the
point of the graph of the function y = p(x) corresponding to
x = a; lies above the x-axis and the point of the graph correspond-
ing to x = a; lies below that axis then the continuous curve
4 = p(x) must intersect the x-axis at a point lying somewhere
bctween x = a; and x = q;), which is impossible because the
left-hand side of equality (*) is always greater than or equal to i
and therefore it cannot turn into zero.

Now let us suppose that both p(x) and ¢(x) assume the value 1

for x=a),, x=a,, ..., x==a, In this case both p(x)— I,
g(x)— 1 turn into zero for x = a;, x = a,, ..., x = a,, and con-
sequently p(x)— 1 and ¢(x)— 1 are divisible by the product
(x—a)(x—ay) ... (x —a,). Since the sum of the degrees of

the polynomials p(x) and ¢(x) is equal to the degree of the ex-
pression (x — a;)2(x — a2)?... (x — a.)? 4 1, that is to 2n, we
have p(x)— 1l =(x—a)) ... (x—a,) and g(x)— 1 =(x—a;) ...
... (x—a,) (cf. the solution of the foregoing problem).

Thus, we arrive at the equality

k—a)f(x—a) ... x—a,)+1l=pKx)qg(x)=
=[x—a)... x—a)+1][(x—a) ... x—a)+ 1=

=kx—afx—a)f...(x—a)+2(x—a)(x—ay)...(x—a,)+ |
whence follows the equality
x—a)x—ay) ... (x—a,)=0

which is impossible. In the same way we can prove that p(x) and
g(x) cannot simultaneously assume the value —1 at the points
xX=a, Xx=4ay, ..., X =a, (in this case the assumption that
p(x)=gqg(x)=—1for x=a, x=1as, ..., x = a, would imply
(x—a)(x—ar) ... (x—ax)— 1 = p(x)=q(x)).

Thus, we see that the expression

(x—a)f(xr—a) ... (x—a,)+1

cannot be expressed as a product of two polynomials with integral
coefficients.

311. Let the polynomial P(x) take on the value 7 at the points
x=a x=0b, x=c and x = d. Then a, b, ¢ and d are four in-
tegral roots of the equation P(x)— 7 = 0. This means that the
polynomial P(x) —7 is divisible by x—a, x—¥b, x—c¢ and
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x—d¥*, that is
P) —T=(x—a)(x—>b)(x—c)(x —d)p(x)

where p(x) may be equal to 1.

Now let us suppose that the polynomial P(x) assumes the value
14 for an integral value x = A. On substituting x = A into the
ast equality we obtain

T=[A—a)(A—=b0(A—c)(A—d)p(A)

-which is impossible because the integral numbers 4 —a, A — b,
A—c¢ and A—d are all distinct and the number 7 cannot bhe
factored into five integers among which at least four are different.

312. If a polynomial P(x) of the seventh degree is expressed as
a product of two polynomials p(x) and g(x) with integral coeffi-
cients then the degree of at least one of the factors p(x) and ¢(x)
does not exceed 3; let us suppose p(x) is that factor of a degree
not higher than 3. If P(x) assumes the values + 1 for seven in-
tegral values of x then for the same values of x the polynomial
p(x) also assumes the values +1 (because p(x)g(x)= P(x)).
Among the seven integral values of x for which p(x) assumes the
values =+1 there are four values for which p(x) is equal to I or
four values for which p(x) is equal to —1. In the first case the
third-degree equation p(x) — 1 =0 possesses four roots and in
the second case the equation p(x)+ 1 = 0 possesses four roots.
Neither of these cases can take place; for instance, in the first
case the polynomial p(x)= 1 must be divisible by a polynomial
of the fourth degree (cf. the solution of Problem 309 (a)); this
contradiction proves the assertion of the problem.

313. Let p and g be two integral numbers simultaneously even
or odd. Then the difference P(p)— P(q) is even. Indeed, the ex-
pression

P(p)—P@=a@"—q¢)+a ("' —¢ )+ ...
et (PP — )+ ani(p—9)
is divisible by the even number p
In particular, the difference P(p)— P(0) is even for an even p.
By the condition of the problem, the number P(0) is odd, and

consequently P(p) is also odd; therefore P(p) = 0. Similarly, for
an odd p the difference P(p)— P(1) is even; since by the condi«

* If we suppose that the division of P(x) —7 by x—a leaves a remain-
der r, that is
P)—T=(x—0a)Q(x)+r
then the substitution of x = a into this equality results in 7—7 =0+,

whence r = 0, and consequently P(x) —7 is equal to (x—a)Q(x) and is
divisible by (x —a).
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tion of the problem, P(1) is odd, it follows, as above, that
P(p)+# 0.

Consequently, P(x) cannot turn into zero for any integral (even
or odd) value of x, that is the polynomial P(x) possesses no in-
tegral roots.

314. Let us suppose that the equation P(x)== 0 possesses a ra-
tional root x = &/I: P(k/l)= 0. Let us expand the polynomial
P(x) in powers of x — p, that is let us write it in the form

PR)=colx—p)+ei(x—p)" ' +
+e—p)" "+ oo Feax—pte,

where ¢y, ¢y, €3, ..., ¢, are some integral numbers which can
easily be found when the coefficients ao, a1, ..., a, are known
(the number ¢, is equal to the leading coefficient ap of the poly-
nomial P{x), the number ¢, is equal to the leading coefficient of
the polynomial P(x)— co(x — p)* of the (n— 1)th degree, the
number ¢z is equal to the leading coefficient of the polynomial
P(x)—co(x — p)*—ci(x — p)*! of the (n— 2)th degree etc.).
On substituting x = p into the last expression of P(x) we obtain
¢ = P(p)= = 1.

The substitution of x = &/! into the same expression and the
multiplication of the result by I# yields

P () =colk—pl)" el (e — pI)* ™' +

Fal (k—pl)" 4 o o' (k= p) - eul" =0
whence it follows that if P(k//) = 0 then the expression

cpl® + " n—1
= e — ™ —

—ol(k—pl)" P — .. —u "Rk — pl) — cu M

is an integral number. Since p! is divisible by / and % is relatively
prime to [ (because k/! is an irreducible fraction), the number
k — pl is relatively prime to /, and consequently & — pl is relali-
vely prime to [* as well. It follows that -+ [*/(k — pl) can be an
integral number only when k— pl == =& 1.

In just the same way we can also prove that 2 — gl = 1.

Now we subtract the equality # — pl = =1 from the equality
k— gl = 41 and obtain

(p—q)l=0 or (p—gl==:2

Further, (p— ¢)i >0 because p>gq and [ >0, and conse-
quently (p — q)l=2,k—pl=—1 and k— gl = 1.
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Thus, if p — ¢ > 2, the equation P(x) = 0 cannot have rational
roots. In case p—¢g =2 or p—q =1 a rational root k// may
exist. In this case the addition of the equalities

k—pl=—1 and k—gqi=1
yields

N[k-

p+q

2k —(p+q)l=0 whence 5

which is what we had to prove.
315. (a) Let us suppose that the given polynomial can be ex-
pressed as a product of two polynomials with integral coefficients:

X Q)P0 A4x28 292042 4 2222 =
=(an%" + @ 1X""' F anox" 7+ ...+ a) (bt + by rx™ ! -
Fbm_ox™ 2+ .. 4 by)

where m 4+ n = 2222, Then aoby = 2222, and consequently one of
the two integral numbers ay and by is even and the other is odd.
Let us suppose that ao is an even number and by is an odd num-
ber. We must show that in this case all the coefficients of the po-
lynomial anx® + @n—1x"' 4+ ... 4+ ao must be even. Let ap be the
first (counting from right o left) odd coefficient of that polyno-
mial. After the parentheses are opened in the product

(@nx" + an_ 1 x" ' oo ) (bpx™ by x4 L+ by)
the coefficient in x* is equal to
arbo + ap_1br -+ @p_oba + ... -+ agby (*)

(in case £ > m this sum ends with the term ax_mbm). This coef-
ficient is equal to the corresponding coefficient in x* of the original
polynomial, that is, it is equal to zero when % is odd and is an
evenn number when % is even (because all the coefficients of the
polynomial indicated in the condition of the problem, except the
first one, are even and k <C n < 2222). By the hypothesis, all the
numbers as—1, @r—g, Qr-3, ..., Ao are even, and, consequently, in
sum (*), all the terms except the first one, are even; therefore the
product agby must also be even, which is impossible since the
numbers a, and by are odd. '

Thus, we see thal all the coefficients of the polynomial
anx" + An_px®V 4~ ... 4 ao must be even, which contradicts the
fact that the product a.bm is equal to unity. Consequently, the as-
sumption that the given polynomial can be expressed as a product
of two polynomials with integral coelficients is false.
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(b) Let us put x = y + 1. Then we have
x250+x249+x248+.“+x+1=
=@+ D+y+D"+ ... F+ D+ 1=
S 1
= y?0 4 251429 + C (251, 2) y#8+ C (251, 3) y*" + ...
... LC (251, 2}y 25F

Further, taking into account that all the coefficients of the re-
sultant polynomial, except the first one, are divisible by the prime
number 251 (because C(251, k) = [251-250-249 ... (251 —k +
+1)]/(1-2-3 ... k)) and that the constant term of the poly-
nomial is equal to 251 and is not divisible by 2512, we can repeat
almost literally the argument used in the solution of Problem
315 (a) (the only distinction is that instead of the divisibility of
the coefficients by 2 we should analyze the divisibility by 251). In
this way we prove that if the given polynomial could be factored
into two polynomials with integral coefficients then all the coef-
ficients of one of the polynomials would be divisible by 251, which
is impossible because the leading coefficient of the original poly-
nomial is equal to 1.

316. Let us write the given polynomials as

A=a,+tax+ax®+ ... +ax"

B=b0—|—b1x—}—b2x2+ .o +bmxm

By the condition of the problem, not all coeificients of the pro-
duct AB are divisible by 4, and therefore it i3 impossible for all
the coefficients of the two polynomials to be cven. Conscquently,.
some coefficients of at least one of them, say of B, are odd. Let us
suppose that some of the coefficients of the polynomial A are alse
odd. We shall consider the first of such coefficients (the one hav-
ing the smallest index); let as be that coefficient. Further, let the
first odd coefficient of the polynomial B be b,. We shall consider
the coefficient in x*+¢ in the product of the polynomials A and A.
The term x*+¢ in the product is formed of the products of those
powers of x in A and B the sum of whose exponents is equal i
£ -} s. Consequently, this coefficient is equal to

Qbpis + Qbprs—1 T+ oo+ A 1bpyr F Asbe + Asr1bp_ 1+ oo a5kl

All products in this sum which precede the term as&; are even
because such are the numbers ao, @y, ..., as—1. All products fol-
lowing asb, are also even because bx—y, be—y, ..., by are even num--
bers. As to the product asbe, it is an odd number because such are
the numbers o, and b,. Consequently, the whole sum is odd, which:

and
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contradicts the fact that all coefficients in the product are even.
We see that the assumption that some of the coefficients of the
polynomial A are odd is false, and therefore all coefficients of A
are even numbers, which is what we intended to prove.

317. Let us prove that for any rational nonintegral value of x
‘the polynomial P(x) cannot assume an integral value, and hence
it cannot be equal to zero since zero is an integral number.

Let x = p/q where p and g are relatively prime. Then

Px)=x"+ax*"'4ax" 2+ ... +a,_1x+a,=

n n—1 n—2
=F p ; p . b —
_qn+al qn_l +a20n—2 " oo +an—lq+an——
P tap" g4 a2+ ... +an—ipg" " +ang”
= = —
_ P+ g@p" a4 . 4 an-1pg" "%+ ang""")

g™

The number p*, like the number p, is relatively prime to ¢; con-
:sequently, the number p" 4 g(aip™'+ ...+ a.g™") is also re-
latively prime to ¢ and hence to ¢* as well. Therefore the right-
most fraction in the last relation is irreducible and therefore it
cannot be equal to an integral number.

318. Let N be an integral number and let P(N¥N)= M. The ex-
Ppression

P (N -+ kM) — P (N)=a,[(N + &M)" — N*"] +
+a [V 4+ M) — NI+ L. au (N + kM) — N]

is divisible by M for any integral & (because (N 4 EM)! — N* is
divisible by (N + #M)— N = kM) and hence by M as well; con-
sequently, P(N + kM) is divisible by M for any integral 4.

Therefore if we prove that among the values P(N -+ &M)
(=0, 1, 2, ...) there are numbers different from M, this will
imply that not all these values are prime numbers. To prove what
‘has been said we take into account that for any A the polynomial
P(x) of the nth degree assumes the value equal to A for not more
than n different values of x (because the equation P(x)— A =0
of the nth degree cannot have more than » roots). Thus, among
the 2n 4 1 first values P(N + EM) (=0, 1, 2, ..., 2n) there is
at least one different from M and from —M.

319. First of all it should be noted that every polynomial P(x)
of the nth degree can be represénted as a linear combination of
the polynomials

Py(x)=1, Pi(x)=1x,
— —9) ... (x—n41
o P S Bt

x(x—1)
1:2

Py(x) =
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with some coefficients, that is
Px)=0,Pn(x)+bp 1Poy(x)+ ... +bP (x)+ boPy (x)

To prove this property we take into account that if the number b,
is such that b./n! is equal to the leading coefficient of the poly-
nomial P(x) then P(x) and b.P.(x) have equal coefficients in x,
if b, is such that b,—,/(n — 1)! is equal {o the leading coefficient
of P(x)— b,P,(x) then the coeificient in x" and the coefficient in
x"=1 of the polynomial P(x) coincide with those of the polynomial
boPr(x) 4 buc1Proy(x), if bno—y is such that b, o/(n — 2)! is equal
to the leading coeificient of the polynomial P(x) — b,Pn(x) —
— bp1Pr_(x) then P(x) and baPp(x)+ by Pry(x) + bp—aPns(x)
have the same coefficients in x?, in x*! and in x*2? etc. This
means that the coefficients b,, bn_y, ..., b1, by can be choserni so
that the polynomials P(x) and b6.Pu(x)+ baeyPry(x)+ .. +
+ b1P(x) 4 boPo(x) coincide completely.

Now let P(x) be a polynomial of the nth degree such that
P(0), P(1), , P(n) are integral numbers. Accordmg to what
has been proved this polynomial can be represented in the form

P (x) = boPo (x) -+ b1 Py (x) + boPo(x) + ... 4 b,P, (x)
Now we note that
P (0)=P(0)= ... =P,(0)=
=P ()=Ps(l)= ... =P, (1)=P;(2)= ... =P, ()= ...
=P, n—2)=P,(n—2)=P,(n—1)=0
and
Py(0)=P ()=Py(2)= ... =P, (n—1)=P,(n)=1
Therefore
P (0)y = byP, (0) whence by= P(0)
P (1)=byPy (1) -+ b;P, (1) whence b= P (l)— byPy(1)
P (2) = boPy (2) + b1P, (2) + P4 (2)
whence by =P (2) — byPy (2) — b, P, (2)
P(n)="0oPy(n) +b,P(n)+ ... + by 1Pp_y(n) + b,P,(n)
whence
by=P (1) — boPo(n) —bP () — ... —b,_1Pr_y(n)
Thus, all the coefficients bo, by, &g, ..., b, are integral numbers.

320. (a) From the solution of Problem 319 it follows that a pot
lynomial of the indicated kind can be written as a linear combina-
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tion of the polynomials Po(x), Py(x), ...," P.(x) with integral
coefficients. This property and the fact that the polynomials
Po(x), Pi(x), ..., P.(x) take on integral values for every inte-

gral x (see Problem 75 (a)) imply the assertion stated in the con-
dition of the problem.

(b) If a polynomial P(x)= anx"+ @n_1x" '+ Qn_gx" 2+,

+ ayx + ao assumes integral values for x =%, R+ 1, &+ 2

, k 4+ n then the polynomial Q(x)= P(x + £) = an(x + k) +-
+ a,,_l (x+ &)1 4 ...+ ai(x + k)4 ap assumes integral values
for x=0, 1, 2, 3, ..., n. By virtue of the solution of Problem
320 (a), it follows that Q(x) assumes integral values for all in-
tegral x, whence we conclude that the pelynomial P(x) ==Q(x — &)
also assumes integral values for all integral x.

(c) Let a polynomial P(x)= a,x® + ap_1x> '+ ...+ ax + ao
assume integral vajues for x =0, 1, 4, 9, ..., n% Then the poly-
nomial Q(x)= P{s%)= a,(¥*)" + ap— ) (X3 "1+ ...+ ax2 - ag of
the 2nth degree assumes integral values for the 2n -+ 1 consecu-
tive integral values x =—n, —(n—1), —(n—2), ..., —1,
6, 1, ..., n— 1, n. Indeed, we obviously have Q(0)= P(0),
C)=Q(—1)=P(1), Q(2)=Q(—2)=P(4), QB)=Q(=3)=
=P(9), ..., Q(n)= Q(—n)= P(n? and, according to the con-
dition of the problem, all these numbers are integral. Consequ-
ently, by virtue of the solution of Problem 320 (b), the polynomial
Q(x) assumes integral values for all integral values of x. This
means that the expression P (4%2) =@Q (%) is an integral number for
any integral &.

As an example, we can take the polynomial P(x)= x(x — 1) /12
for which

2(x=—1 x2(x—1)(x+l)=

Q(x)=P(x2)= 12 - = 12
_2(x+2)(x+1)x(x—l) (x+DHx(x—1
— 1.2-3°4 - 1-2-3

321. (a) Using De Moivre’s formula and Newton’s binomial for-
mula we write
cos ba + i sin ba = (cosa + i sin @)’ =
==cos%a 4 5 cos*ai sina + 10 cosda (i sin a)? +
—+ 10 cos?a (i sin a)® 4+ 5 cos a (i sin a)! + (i sin @)’ =
= (cos®a — 10 cos?a sin®a + 5 cos a sin*a) +
+ i (5 cos*asina — 10 cos?a sin®a -+ sin%a)

©On equating the real and the imaginary parts on the left-hand and
right-hand sides we derive the required formulas.
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(b) By analogy with the solution of Problem 321 (a), we have
€0s aa + i sin na = (cos a 4 i sin a)® =
=cos”a + C{n, l)cos"~laisina -+ C(n, 2) cos"%a (i sin a)’ +
+ C(n, 3)cos*3q(isina)® 4 C(n, 4)cos"*a{isina) 4 ... =
= (cos”a — C(n, 2)cos"2asina + C(n, 4)cos"tasinta — ...)+
4-i(C(n, )cos*~tasina—C{n, 3)cos"~3asinfa4 ...)
whence follow the required formulas.

322. According to the formulas derived in the solution of Pro-
blem 321 (b), we have

sinba _ 6cosPasina—20cos® asina -6 cosasin®a
cos ba cosb a — 15 cos* . sin? a 4 15 cos? a sin* o — sin a

tan 6o =

The division of the numerator and the denominator of the last
fraction by cos® a yields the required formula:

6tana —20tan® a4 6 tana
1 — 15tan?a + 15 tan*a — tan® a

tan 6o =

323. Let us rewrite the equation x -+ 1/x = 2 cos o in the form

X4+ 1=2xcosa
that is _
x*—2xcosa+1=0
It follows that

x=—cosa= 4/cos?a — | =cosa=isina
whence we find

x" = cos na == i sin na

and
1 i

—_ = —— = na F i si
x" cos na == i sin na Cos na + nna

On performing the addition we obtain
x" + % = 2 cos na
324. Let us consider the sum

[cos @ 4+ i sin @] + [cos (¢ - o) + i sin (@ + o)] +
+[cos(p + 2a) + isin(p 4 2a)] + ... 4 [cos (¢ + na) + isin(p + na)

The problem reduces to the computation of the real and the
imaginary part of this sum. Denoting cosg 4-ising as a and
cos o 4 isina as x and using the formula for .the multiplication
of complex numbers and De Moivre’s formula we find that this
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sum is equal to
axn+l —a

atax-tax*+ ... —+-ax”=—x—_l—-=

o .. cos(n+1Na+isin(a+Ha—1
= (cos ¢ +ising) cosa -+ isina—1 o
_ . . [cos(n+l)a—l)+zsm(n+1)a]

= (cos @ +-isin ?) [(cosa — 1)+ isina]

n+41 n+l n-+-1
—g ¢

— 25sin? a + 2i sin ——— a cos
= (cos ¢ + i sin @) m FE— =
— 2sin? 5 -+ 2isin— cos

2
2isinn—;la[cosn+1 [ si n+la]

o ) o+ isin 2
= (cos @ -} i sin @) [

, . Qa
2i sin —

a ,.a
D) cos—2-+tsm—2—]

=——="—(cos ¢ -] i sin @) X

. a
sin —
a) (cos e isin 1)
2 2) __

2

(cosn_gl a+isinn+

X

cos? & +sm2
sin ntl o
—_——Q(l—[cos (q>+ %a)—{—isin (q)—l—%a)]

sin —
2

(in the last transformation we have again used the multiplication
formula for complex numbers and the fact that cosa/2 —
—isina/2 = cos(—a/2)+ isin(—a/2)). From this expression
readily follow the required formulas.

325. Using the formula cos?x = (1 -+ cos 2x)/2 and the result
of the foregoing problem we derive

cos?a 4 cos?2a -+ ... + cos’na=
=—;—[cos2a+cos4a+ ... +cos2na+4n]l=

1

= 2 [ sina
Since sin2 x = 1 — cos? x, it follows that

sin?a + sin?20+ ... + sin*na=
sin (n + 1) a cos na _ n—1 _n4+1 sin (#n + 1) @ cos na

2sina 2 2 2sina

sin(n+1)acosna l]_l_%:sin(n—}-l)acosna + n—1

2sina 2
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326. It is required to compute the real and the imaginary part
of the sum
(cosa +isina)+ C(n, 1)(cos 2a 4 i sin 2a) +
+C(n, 2)(cos3a+isin3a)+ ... +(cos(n+ 1)a+isin(n-+ 1)a)

Let us denote cosa + isine by x; the application of De
Moivre’s formula and Newton’s binomial formula makes it pos-
sible to transform this sum as follows:

x+Cn Dx24+Cn, D+ ... +xt'=x(x+1)'=

= (cosa -+ isina)(cosa+ 14 isina)*=

n
= (cos a4 { sin a) (2 cos? %—l— 2i{ cos % sin %) =

= 2" cos"%—(cosa—l—isin a)(cos—”2i+isinn—;) =
n+42
2

= 2" cos”® coS ’oz—{—isin”;"2 a)

2

From the last expression we conclude that
cosa-+C(n, 1)cos2a+C(n, 2)cos3a+ ...

. +cos(n+1)a=2"cos" —cos ;‘2 o

and
sina+C(n, 1)sin2a+C(n, 2)sin3a-4 ...

. +sin(n+ 1)a=2”cos"—;—sin "_;2 a

327. We shall make use of the formula
sin A sin B = [cos (4 — B) — cos (4 + B)]
which makes it possible to write the given sum in the form

1—-[cos (m —m) =z -+ cos 2(m—n)n -I—cos—-——:)'(m"'n)ﬂ 34 ...

2 P 4 P
p—1l)(m—nun (m4nn
. -+cos - ] 2[cos——p~—+
+c082(m+n)n+cos3(m:—n)n+ vv. +cos (p—l);m-l-n)n]
Further, the sum
2kt 3kn (p—1) kn

cos—+cos—+cos—+ . +cos >

13 —~60
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is equal to p — 1 if & is divisible by 2p (in this case every fterm of
the sum is equal to 1). If % is not divisible by 2p, then, by virtue
of the result of Problem 324, this sum is equal to

sin pka cos (p—1) kn cos (k—n- —ﬂ)
2 2 —j=sink%. 2l _ =
sin—kﬁ- 2 sinﬂ
2p 2p

_{0 for odd &
" |—1 for even &

1t should also be noted that both numbers m 4 n and m — n are
simultaneously even or odd; in particular, if m 4+ n and m —n
are divisible by 2p then both these numbers are even, whence
follows the equality indicated in the condition of the problem.
328. Let us consider the equation x2+! — 1 = 0; its roots are

1, cos =2 4 sin 2% cos = i sin —%
! 2n +1 on-41"7 2n 41 2n+1" °°°
cos =P _ 1 jsin 210
0 2n+ 1 2n + 1

Since the coefficient in x?* in the equation is equal to zero, the
sum of all these roots is equal to zero:

2 4 4
[l—l—cos an_l <+ cos 2n-J|I—1 + ... +cos 2n’f1]+

T . 257 . 47 . 4dnn
+z[s1r1 o1 —I—sm—Qm—!— —I—smm]=0

Consequently, each of the expressions in the brackets is equal to
zero, whence, in particular,

2n 4n 4nm
COSW-{-COSW_{_—I—F e +COS m 1 == —]

Further, we have
21 4dnm 4n (4n —2) n

COSmFT — St OSTFT = ST
etc., and hence
2n 4n 2nn
Q[COSW'FCOSW'*' +COSW]_—1
that is
2n 4n 2nn 1
COSW-I-COSW-{- ...+COS on T 1 =7

Remark. This problem can also be solved on the basis of the formulas of
Problem 324,
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329. (a) By virtue of the result of Problem 32t (b), we have
sin(2n+ )a=C@2n+1, 1)(1— sin*a)*sina —
—C@n+1,3) (1 —sin*a)* 'sina4 ... + (= 1)*sin®*'a

It follows that the numbers 0, sinw/(2n 4 1), sin 2n/(2n + 1),...
...,sinnn/(2n 4 1),

. n . fad . 2n
Sm(_2n+l)—_sm2n+l’sm(_2/z+l)—
= — sin——2_ sin (— 1 )-
= 1 1)
= — sin o
_ S 2n+1

are the roots of the equation

Cen+1,)(1—s)x—Cen+1,3)(1=2)"+ ...

co (=DM =0
of the (2n + 1)th degree.
Consequently, the numbers sin? 5/ (2n + 1), sin?2x/(2n 4+ 1), ...
..., sin? nx/(2n 4 1) are the roots of the equation
C@n+1,1)1—x)"—-C@2n+1,3)(1—x)""x4+ ... +(— 1)s"=0

of the nth degree.

(b) Let us replace n by 2n 4+ 1 in the formula established in
the solution of Problem 321 (b) and write this formula in the
form

sin(2n+ 1)a=sin""a (C (2n-+1, 1) cot™ a—C (2n+1, 3) cot™ 2 a+
+C@n+1,5) cot a—...)

It follows that for oo = n/(2n 4 1}, 2n/(2n + 1), 3/ (2n + 1), ...
..., nt/(2n 4 1) there holds the equality

C(2n+1,1)cot™a—C (2n+1,3) cot™ 2o +
+C@n+1,5cot™ a—...=0

It follows that the numbers cot?sn/(2n + 1), cot?2n/(2n 4+ 1), ...
..., cot2nn/(2n + 1) are the roots of the equation

Cn+1L,0)x"—C@n+1,3)x"'+C@n+1,5)x"2— ... =0

of the nth degree.
330. (a) The sum of the roots of the equation

n C(@2n41,3) n—1+C(2n+1,5) n—-2

Y T Tent+nLn” cCentL”

13*
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of the nth degree (see the solution of Problem 229 (b)) is equal
to minus the coefﬁcient in xm1, that is

2__ % 2 2
cot® 5o+ cot 2n+1 + ot o=t 2n+1 t+ .
g mx _ C(@r+1,3)  n@n-—1)
+ =+ cot n+1 . Cen+L,D) 3

(b) Since csc? o = cot? @ + 1, the formula of Problem 330 (a)
implies

g T 2 2m v s 3m
csc 2n_l_l—l—csc 2n_i_l-{-csc ST 4 ...

9 NN ___n(Qn—l) 2n(n+1)

.+ csc 1 3 +n —5—

331. (a) First solution. The numbers sin?n/(2n 4 1),
sin? 2/ (2n + 1), ..., sin® nx/(2n 4 1) are the roots of the equa-

tion of the nth degree obtained in the solution of Problem 329 (a).
In this equation the leading coefficient (the coeificient in x*) is
equal to (—1)* [CCn+ 1, 1)+ C(2n+1,3)+ ... 4+ C(2n 41,
2n — 1)+ 1]. The sum in the square brackets equals half the
total sum of the binomial coefficients 1 + ci2n+1, D+
+C@2n+1, 2)+...4+C@2n+1, 20)+ 1; as is known, the lat-
ter sum is equal to (1 4 1)2#+! = 2241, Consequently the coeffi-
cient in x” of this equation is equal to (-—1)"227 Further, the con-
stant term of the equation is equal to C(2n + 1, 1)= 2n -+ 1. The
product of the roots of an equation of the nth degree becomes
equal to the constant term of the equation after the equation is
brought to the form in which the leading coefficient is equal to
unity times (—1)". Hence this product is equal to the constant
term 2n + 1 multiplied by (—1)” and divided by the above lead-
ing coefficient, whence

1Vt oin2 15 s 9 In s 2 nn _ n 2n+1
(— 1)"sin g TSI g - e SIN g =(—1)"—=m—
and, consequently,
. om . 9 .onm_ AAn 1
sing rysing =y .. silg g ==
It can similarly be proved that
25 . (n—=Dm 1/n_
sin -2—”- sin %n o0 SIN on = gn=1
Second solution. The roots of the equation x2* — 1 = 0 are
1, —1, cos-;i+isini, cosE‘—+isin2—“.

2n—1a=n

3n . . 3n 1)
cos—n-+tsm—n—,...,cos——————+zsm——)—
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Therefore
zn_1=(x—1)(x+1)(x—cos%—isin%)>(
X(x—cos %‘——isin%—)...(x—cos(”——np—n-—isin Q'lnl)—“—) e
X(x—cos——(n'*'nl)“ —isin———("tl)n)x
. )((x—cos_____(g”';l)TB —isin (Qn—n-l)n)

Further, since cos(2n — k)n/n = cos kn/n and sin(2n — k)a/n=
== — sin kn/n, it follows that

., . T 2n — 1
(x—cos—n-——tsm——)(x-—-cos(—n—lj—t—
n n n

ian =N __ o o
L sin ——0—— )—-x 2xcosn—i-l

. s 2n — 2
(x—cos—?——-zsm-g;i) (x-—COSM—

. . (2n—2
-—zsm(Ln—)—n—):x?—Qxcos—iﬁ-i-l

n—1mxn . . (n—Dmn
(x——cos—————tsm———n——)x

n
X(x—cos(n——:l)i—isin—(ﬁ%)—n)= 2xcos( 1)ﬂ+l

Therefore the factorization of the polynomial x2» —1 can be
rewritten thus:

22—l = (% - 1)(x2—2xcosi+ 1)(x2—2xc032—“+ 1)><...

X(x2 9x cos A= E 1)“ + l)
It follows that
e A ¥ SR SRR E R R T
=(x2—2xcos%+ 1) (x2 2xcos————|— 1) X .
x(x2—2xcos l)ﬂ+l)

Putting x=1 here and using the relation 2—2cosa =
= 4 sin? a/2 we obtain
2 20 . 2{(n—1Nax

n-—1
n=4""'sin’ 2 sin 5 -+ Sin %
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whence it follows that

no. 2r . (p=Nn _ 4/n
on S Gy e SN Toan-d

sin

It can similarly be proved that

. n . o .oonn A2+ 1
sm2n+lsm2n+l...sm2n+l— on

(b) The required result can be obtained by complete analogy
with the first and the second solutions of Problem 331 (a);
however we shall not repeat the course of these solutions. Let us
derive the required formulas directly from the formulas of Pro-
blem 331 (a).

Since
sin —=%—— = sin 2nm sin T e (2n—=2)m
a1 nt 1’ k1 ST
. 5n. . (@Cn—4)n
sin 5= sin ~———— ...
we have
Sin—=22— sin o2 sin 2 sin =220 —
2n -+ 1 n 41 on+1 **° 2n1
e . 2n . 3m . A ¥
= sin w7 sin 5 sin gm0 L sin g e = =

(see Problem 331(a)). On performing the termwise division of

. n . 2n . an A2 41
the last formula by sin T S0 St ¢ SID kT — 2"
and using the relations
. 2 . 4 n . 47
sin 5= = 2 sin 1 cos mr1 ST =
oo 2% 2n s 2am o nm nw
=2 sin | cos 2n_l_l,...,smm‘_*_1 = 2sin 51 cos e
we obtain
n 2n 3n nm 1
S TS TS T - ST =27
Similarly,
1A 2 (n—On ( T . 2. . (n—Dn
(cos 9 COS 5~ v\ COS —% ) sin%sm2—n-...sm——2n—-)=
. W . 2; . (n—1=xn
= sin = sin— ... sin ——
an-l n n n
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Since sinn/n = sin(n — 1)n/n, sin2n/n = sin(n — 2)n/n,
, sinm/2 = 1, we have
(n—Dn

... 2% .
sSin — s8in — ., ., Sl ————— =
n n n

—(' T sin 2n sin—k—n-2——
=\ S g EFI1 0" 9% + 1

(“/2’“”)_ " for an odd n =2k + 1

2k 2}1-1
and
co B L 27 (n—1n
smnsm P ..Sll’l——
2n . (k—l)n)‘-’_
-—(S]I'l sin 2k .o SIN —————2k =

2 n
=(F) =-—— for an even n=2k

2n—l

(see Problem 331 (a)). It follows that

n

2n (n—=1mn 1 2n7l A

cos 2” cos Sttt cos on == 2n—l '\/n 2n 1
2!1 l

Remark. On dividing the formulas of Problems 331 (a) and (b) by each
other we oblain

1 2n
tan2n+ltan2n+l...ta 2n+1 »\/2n+l

and
1 27 ¢ n—Dn —
tan on tan O v tan T

It should be noted that the second of these relations is quite ev1dent because
tan kn/2n tan (n— k)n/2n = tan kn/2n cot kn/2n =1 for k=1,2, ..., n—1
and tan n/4 = 1. From this relation and from the second formula of Problem
331 (a) we can derive in a simple manner the formula cos m/2n cos2n/2n ...

Vn
2”-]'

These formulas can also be obtained by analogy with the first solution of
Problem 331 (a).

332. Let us show that for any positive angle o smaller than a/2
we have

.cos(n—1)m/2n=

sina < a<tana
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To this end we consider Fig. 39 from which it is seen that
Saaos =% sina

a

| =

Ssector AQOB =

1
Sazoc= 5 tana

(in Fig. 39 it is meant that the radius of the circle is equal to
unity and the angles are measured in radians). Since Sjaos <<
< Ssector 408 << Saaoc we conclude that sine < a << tana.

The inequalities sin o << a << tan o imply cot @ << 1/ << csc @
Therefore from the formulas of Problems 330 (a) and (b) it fol-
lows that
nn—1)

—— =

—an2_ T 9 2m
= cot o 1 —+ cot 2n+l+

+cot22 +1+ —I—co'[22 +1<
(2n+l)+(2n+l)+
+(2n+1)+ +(2n+1)<

2 T
< ese? g +osc? 2n+1 +
3n

2
+CSC 2n+1+...
R nm 2n(n -+ 1)
Fig. 39 . -+ csc? T 3

On dividing all the members of the last inequalities by
(21 4 1)%/n® we obtain
2n 2n—1 =n?

2n 41 2n 41 6
2
=(1 ) (1 —57) S <l g+ ..

2n 2n+2 m?
'+712—<2n+l mEl 6

'=(1 2n+1)(1+2n+1)

which is what we had to prove.
333. (a) Let us suppose that M is a point on an arc A4, of

the circle depicted in Fig. 40. We shall denote the arc MA, by «;
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then the arcs MA,, MAs, ..., MA, are equal to
a —|—QT“, a -I—%, cee, oz-l--—2(n—l)ﬂ

n
respectively. The length of the chord AB of a circle of radius R
is equal to 2R sin AB/2 (this can readily be seen from the isosceles

Fig. 40 Fig. 41

triangle AOB where O is the centre of the circle). It follows that
the sum we are interested in is equal to

i s (§+2) 4 s (§4-2) 4 ..
. o (n—D=n
oot sm"’(5+—n—)]
Now let us compute the expression in the square brackets. Using

the well-known formula sin? x = (1 — cos 2x)/2 we find that this
expression is equal to

S=5 —[cosa+cos (@ +22) +cos (o +2) + ...
...+cos(a+2(n——l)n-)]

n

By the formula of Problem 324, we have
25

cosa+cos(a+———)+...—|—cos(a—|—3-(i'—'-l)—“)=

n n

_ sin 5 cos (a+-(n——:nl£)

. T
sin —
n

=0

and, consequently, S = n/2, whence follows the assertion stated
in the condition of the problem.
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Remark. The assertion of the problem is quite evident for an even n = 2m
(see Fig. 41) because, by Pythagoras’ theorem, we have

MAT + MAG, = MAT+ MAL = ... = MA, + MAS, = 4R

(b) Let A;B), A2By, ..., AnB, (see Fig. 42(a)) be the perpen-
diculars dropped from the points A;, A, ..., A, on the straight
line OM. Then, according to the well-known theorem of plane

geometry, we have
MAL =MO*+ 04 —2MO - OB, =1+ R*— 21 - OB,

where the line segment OB, (=11, 2, ..., n) is taken with the
sign “+4” or “—" depending on whether the point B, lies on the

Fig. 42

ray OM or on its extension to the left of the point O. Conse-
quently,

MAT+ MAS+ ... +MAL =
=n(*+R?)—2[(0OB;+ OB+ ... + OB))
Let ZMOA| = a then
OB;= 0OA,cos £ AJOM=Rcosa, OBy;=Rcos (a + —2;— ,
0By = R cos (a +2), .., 0B, =R cos (o +2—"’%)“)
Since in the solution of Problem 333 (a) it was shown that

cos a -4 cos (a-I—ZT“)—I- -]—cos(a+2(irt———l-)-5)=0
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we have OB+ 0By <+ ...+ OB, = 0, whence follows the asser-
tion of the problem.

Remark. For an even n = 2m (see Fig. 42(b)) the assertion of the prob-
lem can be proved purely geometrically because in this case

OB[ + OBm+1 = OBZ + OBm+2 = OBm + OBgm=0

(c) Let us consider Fig. 43 where M, is the projection of the
point M on the plane in which the n-gon 44, ... A,1A, lies.
Then we have MAZ =M A2 + MM:

(=1, 2, ..., n), and consequently

MA 4+ MAL ...+ MAL =
=MA+ MA+ ...
oo MUAL MM

By Problem 333 (b), we have
MA + MA, + ... 4+ MA =
=n(R°+0M), and B=0OM?=
= OM; + M,M?, whence follows the
assertion of the problem.

334. (a) The assertion stated in
this problem is a direct consequence
of the theorem proved in the solution
of Problem 333 (a) because for an
even n the vertices of the n-gon
having even indices and those with
odd indices are themselves the vertices of the corresponding re-
gular n/2-gons inscribed in the circle.

(b) Let n = 2m + 1. From the solution of Problem 333 (a) it
is readily seen that it suffices to show that the sums

. a s . "] 4m
S,=sm5—l—sm(—g—+—2m211 )+31n(5+———2m+1 )—I—

2mn

. a
cee +sm ('5+-m—1—

and
. o 7 : a 31
SQ=SIH(?+W)+SIH('§‘+W)+... ( )
. "] 2m — 1) st
... =+ sin (?+__2m+l )
are equal. To this end we note that, according to Problem 324,

we have

. (m4+ 1w | a ma
S T 1 SI“(2"‘2m+1

S]=

sin—l—
2m+1
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and (
m—1)n
s " om +IS‘"(2 2m+1 METES )—S
2 = n =
N S 1

Thus, the theorem has been proved.

335. (a) By virtue of Problem 333 (a), the sum of the squares
of the distances from a point on the circle circumscribed about a
regular n-gon to all its vertices is equal to 2nR2 Assuming that
M coincides with A; we conclude that the sum of the squares of
all the sides and diagonals of the n-gon issued from one vertex
is equal to 2nR2 The multiplication of this sum by s results in
twice the sum of the squares of all the sides and diagonals of the
n-gon (since every side and every diagonal has two end points, it
is involved twice in that sum). It follows that the sought-for sum
is equal to (n/2) -2nR? = n?R2

(b) The sum of all the sides and diagonals issued from one
vertex A; of a regular n-gon is equal to

2R[sin%+sin2n—n+ +sm l)n]

n—N=z

. sin —sin
2 2n

=2R

11
o 2R cot 5
2n
(cf. Problem 334 (b)). On multiplying this sum by n and taking
half that product we obtain the required result Rn cot nn/2n.
(c¢) The product of all the sides and diagonals issuing from one
vertex of a regular n-gon inscribed in a circle of radius R is ob-
viously equal to

n=1nn—-1 _. 11 . 21 . (ﬂ'—l)n n—1pn—1 n

2" R" sin—sin— ... sin ———=2""R =
(cf. Problem 331 (a)). On raising this product to the nth power
and extracting the square root of the result we obtain the required
expression.

336. Let us compute the sum of the 50th powers of all the sides
and diagonals issued from one vertex A, of a regular 100-gon
inscribed in a circle of radius R. The problem reduces to the de-
termination of the sum

. @ \50 . 995t
2= (2R Sin “166) + (2R st 100) +oet (2R sin Jog
(cf. the solution of Problem 333 (a)). Thus, we have to add toge-
ther the 50th powers of the sines of the angles n/100, 21/100, ...
, 9971/100.°
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We have

((cosa+isina)-—- (cos o — isina) \50
2 -

sin®q
1 \50
(" - ':?) L (. 1\®
= — 950 = T %50 )

where x denotes cosa -+ isina (if x=cosa 4-isina then 1/x=
= cos o — i sin a). Consequently,

sin® o = o5 (% — C (50, 1)x49—1-+C(50 9x® 4 ...
. +C 50, 24)x26L—C(50 25) x® —z + C (50, 26) x5

. +C (50, 48) x2

& — C (50, 49)x-)—c4—9+?;7)=

=— o [(x®+ ) —C 60, 1) (2% + 25 ) +
+C(50,9) (54 5) — ... +C(50,24) (#* + 5r) — C (50, 25)| =
— — 57 (2 cos 50a — 2C (50, 1) cos 48a -+ 2C (50, 2) cos 46 — . ..
. +2C (50, 24) cos 2a + C (50, 25))

(here we have used the relation x* -+ x—lk- = (cos ka + i sin ka) +

- (cos ka — i sin ko) = 2 cos ka).
Thus, the sum X can be rewritten in the following way:

99
E = — R% [2 (cos 50— 100 + cos 50 2% 100 + ... 40850 —— 102
997t
—2C(50, 1) ((cos 48 5 + cos 48 -+ ... —I—cos48—1—®—)+

+2C (50, 2) (cos 46 <% + c0S 46 e+ ... + c0s 46 Jon) —

99
++2C (50, 24) (cos 2 {55-Hc0s 2 75 +. . .+cos 257 ) —99C (50, 25)|=

= — R®[2s; — 2C (50, 1) s, + 2C (50, 2) 55 —
. +2C (50, 24) 535 — 99C (50, 25)]

where the Iétters Sy, S2, «.., Sg5 designate the sums in the paren-
theses, The formulas of Problem 324 readily imply that s;=s;=,,,
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... = 895 = — 1. Consequently,
D =R%(2—2C (50, 1) 4 2C (50, 2)—. . . +2C (50, 24)-+-99C (50, 25) =
=R (1 —-C (50, 1)+ C (50, 2) —C (B0, 3)+ ...
... 4+ C (50, 24) — C (50, 25) 4+ C(50, 26) — ...
... 4 C (50, 48) — C (50, 49) 4 1 4 100C (50, 25)) =
= R[(1 — 1)%% 4 100C (50, 25)] = 100C (50, 25) R%®

It readily follows that the sum of the 50th powers of all the
sides and all the diagonals of the 100-gon is equal to

100 ) 5 5000 - 50t
. . 2 1 S, 1
337. Since| z|=| 2 |=| —z|=| —zland |2 + 5| =2 + |~
-———I—z—%':’—é—%\, it is sufficient to consider only one of

the numbers, 2, 2, —z and —2Z, namely the one lying in the first
quadrant. When |z| assumes its maximum possible value the ex-
pression |l/z|=1/|z| assumes the minimum value. Therefore it
suffices to find those 2 whose modulus assumes the greatest
possible value under the assumption that |z| = |1/z|. Let the
argument of the number 2z be
¢ (0<To=<n/2; (see Fig. 44).
Since |z+ 1/z]=a we can write
the relation

a2=r2+—r12——2c032q>==

=f2+—,12———2+4cos2q>=
=(r—%)2+4cos2cp

Fig. 44 where r denotes |z|. By the hy-

pothesis, we have r=1/r, and

therefore when r increases the difference r — 1/r decreases and

vice versa. Further, we have (r—1/r)2=0a%—4cos?p << a? for

@ =m/2 we obtain (r—1/r)¥=a? and in this case r—1/r=ua
and r=(a + 4/a? T 4)/2.

It follows that the greatest value |z|=(a -+ 4/a®+ 4)/2 is

attained for z2=1i(a+ 4/a®+ 4)/2 and the smallest value |z|=

= (v/a"F 4—a)[2 for z=—i(4/a®+4—a)/2.
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338. It is clear that the complex numbers 1=14i{.0=
= c0s 0° +isin0° (—14i4/3)/2 =cos120° + isin 120° and

(— 1 — i4/3)/2= cos(— 120°) + isin(— 120°) are such that
the arguments of every two of them differ by exactly 120° and the
sum of the three numbers is equal to zero. This means that the
angle of 120° mentioned in the condition of the problem cannot
be replaced by a greater one.

Now let |8;— 0;] << 120° where i, j=1, 2, ..., n and {54
(here 8y, 8, ..., 8, are the arguments of the given complex num-
bers; it is evident that if one of these numbers is equal to zero
and therefore possesses no definite
argument it can simply be discar-
ded). We shall prove that in this
case the equality 21+ 2.4...+
+2,=0 cannot be fulfilled. In-
deed, from the hypothesis we have
stated it follows that the points A,
A, ..., As in the complex plane
with polar coordinates (ry, 61),
(re, 02), ..., (rn, 02) representing
the complex numbers 2y, 23, ..., 2,
lie within an angle £ POQ boun-
ded by two rays 6 =0, and 6 =48,
this angle being smaller than S~o
120°. Here A, and A, are the N
“extremne” points which correspond AN P
to the numbers 2 and z; with the :
“extreme” values of the argument Fig. 45
(see Fig. 45). lLet the ray OR
corresponding to a value 6 =6, of
the polar angle be the bisector of the angle ZPOQ and let
2o==c0s0g+isinBy be a complex number of unit modulus
represented by a point A, lying on that ray. Since the num-
bers 2{ = (21/2) [r; cos (8 — By) 4- i sin (8 — Bp)], 22 =2y/20, ..., 2h=
== z,/20 have the same absolute values ry, rq, ..., rn» as the numbers
21, 29, ..., 2n and have the arguments 6; — 6o, 8 — 6, ..., 8, — O
instead of the arguments 6, 6, ..., 0, of the numbers 2|, 2, ...
..., Zn, the points A{, A3, ..., A in the complex plane represent-
ing the numbers 2i, 23, ..., 2» are obtained from the points
Ay, Ay, ..., A, by the rotation of the latter -about the point O
through an angle of 6, in the clockwise direction. It follows that
all these points lie within the angle ZP'OQ’ smaller than 120°
obtained from ZPOQ under that rotation, the bisector OR’ of
ZP’0Q’ coinciding with the real axis Ox. Further, it follows that

the real parts af, a$, ..., ap of the numbers z{=1af +ib], 2=

Y
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=ab~+ib}, ..., 2 =a}, - ib, are all positive. Therefore the sum

2 +2+ ... +z;=(a{+ibi)+(a;+ib;)+ +(a,’1—i—ib;)=
=(a,+ay+ ... +a))+i(bi+b+ ... +b)

cannot be equal to zero (because ai+a;+ ... +an>0). Now,
from the relation
z;+z;+...+z;=§;—+z—z—l- %;‘-=

=@+2a+ .. Fz)— %0

20

it follows that the sum z; + 23 ... 4 2, is also different from
ZEro.

339. Let us suppose that the point A in the complex plane re-
presenting the complex number z does not lie within the convex
polygon Cy, Cy, ..., C, whose vertices correspond to the numbers
1, Ca, ..., Cn (see Fig. 46). In this case all the rays ACy, AC,, .
..., AC, “go in one direction” in the sense that they all lie on
one side of a straight line / passing through A. According to the
subtraction rule for complex numbers, the numbers z; = 2 — ¢y,

2y=2—Cy, ..., 28n =2 — Co are represented by some points
Ay, A, ..., A, in the complex plane such that the vectors
OA,, OA,, ..., OA, are equal to the vectors C 14, C.A, ... C,A re-
spectively. Therefore all the rays OA;, OA,, ..., OA, lie on one

side of the straight line !’ passing through O and parallel to L
Further, if ' =1/w and w=r (cos8 4 isinf) then w’ =
=(1/r) (cos(— 6)+ i sin(—8)), that is the numbers w and w” are
represented by points B and B’ in the complex plane such that
the rays OB and OB’ are symmetric about the axis Ox of reals.
It follows that the numbers 2zi=1/2,=1/(z —¢,), b= /2y, ...
.v.s 2h=1/2, are represented in the complex plane by points Aj,
A5, ..., A}, such that the rays OAj, 043, ..., OA; are symmetric
to the rays OA,, OA,, ..., OA, with respect to the axis Ox, whence
it follows that all these rays lie on one side of a straight line "
symmetric to /" about the axis Ox (see again Fig. 46).

The further course of the proof is rather close to the solution
of Problem 338. Let 2o = cos 6 + i sin 6, be a complex number of
unit modulus represented by a point lying on the straight line //;
then the numbers 27 = 2z{/z0, 25 = 2b/20, ..., Zi =24/2y are
represented by the points Af, A7, ..., A7 obtained from the points

{, A, ..., A, by a rotation about O through an angle of 8,.

Therefore all these points A7, A%, ..., A7 lie on one side of the
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axis Ox which is obtained with the aid of the same rotation from
the straight line /7. It follows that the imaginary parts &7, 6%, ...

y {
= A
Zpé
{ . 4,
% i\ Ay, A
\
. :
y o
L7 TG
© A
0N R z
/n N
A \\ N
_ AII \A2 AN
-7 \, \ P
,,, VN \ s
7 fa ; \ -7
7 / \} P
714 ’ XA
'63 // J
\\ /
N /
\\\ //
N
\
Fig. 46

..., U of the numbers 2{ =af J-ib7, 25 =a3 +ib%, ..., 2h==
—=ay + ib, are all of one sign, and therefore
G4t =@+ . )+
N Y N S T
because b + b5 -+ ... 4+ b} == 0. Further, from the relation
4 r” 14 z: z; Zf/'l
Zl +22 + ‘e +z”=—z+2—o.+ [N +—Z—o'=
’ ’ / 1
=(z;+2z+ ... —l—zn)-z—o-qéo
it also follows that

A M #*0

340. First solution. Suppose that a is not divisible by p. Then
the numbers q, 2a, 3a, ..., (p — 1)a are not divisible by p either,
and their division by p leaves different remainders. For, if the

l—l—l—l—...—l-x

Z2— () 2 — Cg 2 —Cp

14 —€0
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division of ka and la (where p— 1=k > 1) by p left equal
remainders then the difference ka — la = (£ — I)a would be divi-
sible by p, which is impossible since p is a prime number, the num-
ber a is not divisible by p and the difference £ — [ is less than p.
Since the set of the possible remainders resulting from the divi-
sion by p are exhausted by the p — 1 numbers 1, 2, 3, ..., p—1,
there must be

a=qp+a, 2a=@p+a 3a=gpta, ..., (p—1la=
=qp—1p+ap—-1

where ay, ay, ..., ap-; are the numbers 1, 2, ..., p— 1 taken in
some order. On multiplying all these equalities we obtain

f1:2. ... «(p—D]a'=Np+taa ... a,
that is
[1-2. ... «(p—D]{@a>'—1)=Np

It follows that a#—! — 1 is divisible by p and, consequently, a®» — a
is also divisible by p. In case a is divisible by p the assertion of
Fermat's theorem is evident.

Second solution. The theorem is evidently true for a =1 be-
cause in this case the difference s> —a =1—1= 0 is divisible
by any number. Now we shall prove the theorem by induction:
let us assume that it is already known that a® — a is divisible
by p and prove that under this assumption (a 4 1)»—(a 4 1) is
also divisible by p.

By Newton’s binomial formula, we have

@+ 1) —(a+1)=

=a”+ pa?~' +C(p,2)aP~2+C(p,3)a*2+ ... + pa+ l—a—1=
=(a” —a)+ pa"~' +C(p, 2’24 ... +C(p, p—2)a®+ pa

Further, every binomial coefficient

— ] —2) ... —k+1
C(p, k)=p(p )(117'2.2)}“.5:7 +1)

is divisible by the prime number p since the numerator of this ex-
pression contains the factor p while the denominator does not.
Finally, by the hypothesis, the number o — a is divisible by p,
and therefore (a4 1)P—(a + 1) is also divisible by p.

Remark. We shall present one more variant of the same proof. Since all the
binomial coefficients C(p, #) are divisible by p, the difference

(A4 B)" — A"~ B =
= pAPIB+C(p, 2) AP72B + ... +C(p, p—2) A’BP2 4+ pABP~?



Solutions 403

where A and B are arbitrary integers is always divisible by p. On applying
this result we consecutively find that

(A+B+C)P —A"P—B° — P =
={[(A+B)+01”—<A+B)”—c”}+(A+B>”—A"_BP
is always divisible by p,
(A+B+C+ D) — A" -7 —c” - D" ={lA+ B+ )+ D)° —
—(A+B+C =D} +(4+B+0C)P —AP—B" —c”
is always divisible by p, and, generally,

(A+B+C+ ... + K —A"—B"—cP— ... —k°
is always divisible by p where all capital letters denote arbltrary integers.
Now, putting A = B =C=..., = K=1 in the last relation and taking

the total number of the integers equal to a we arrive at Fermat's theorem:
a? — a is divisible by p.

341. The proof of Euler’s theorem is completely analogous to the
first proof of Fermat’s theorem. Let us denote the » numbers smal-
ler than N and relatively prime to N as &y, kg, ks, ..., k. We shall
consider the r numbers kia, koa, ..., k.a. They all are relatively
prime to N (because, by the condition of the problem, a and N
are relatively prime), and their division by N leaves different re-
mainders (the latter property is proved by complete analogy with
the solution of Problem 340). It follows that

kha=qN + a, kza=[]2N +a, ..., ka=q,N +a,

where a, @y, ..., a, are the same numbers &y, ko, ..., &k, possibly
arranged in some other order. On multiplying all these equalities
we obtain

kiky ... k" =MN -+ aiay...aqa, thatis kiky... k. (a"—1)=MN

where M is an integer, whence it follows that the number ar — 1
is divisible by M.

342. We shall elaborate the proof by induction. It is obvious
that the proposition stated in the condition of the problem is true
for n =1 because the numbers 2! —1 =1, 22— 1=3 and
28— 1 =7 are not divisible by 5. Let us also prove the proposi-
tion for n = 2. Let 2% be the smallest power of tﬁe number 2 whose
division by 52 = 25 leaves a remaainder of 1 (that is 2¢*—1 is
exactly divisible by 25). Let us suppose that £ << 52 —5 = 25 —
— 5 =20. If 20 is not divisible by £ (in this case 20 = gk 4 r
where r << &) then

220 — | =9%+" — 1 =9"(2% — 1)+ (2" — 1)

By Euler’s theorem, 22— 1 is divisible by 25; the number
29k — 1 = (2%)7 — 14 is divisible by 2¥* — 1 and therefore, by virtue

14*
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of the hypothesis, it is divisible by 25 as well. Consequently,
2r — 1 is also divisible by 25, which contradicts the assumption
that & is the smallest exponent for which 2¢# — 1 is divisible by 25.
Thus, the number £ must be a divisor of 20, that is & can only be
equal to 2, 4, 5 or 10. Further, the numbers 22 — 1=3, 25 — 1 =3I
and 219 — 1 = 1023 are not divisible by 5 and therefore are not
divisible by 25 either while the number 2* — 1 = 15 is divisible
by 5 but is not divisible by 25. Consequently, for n = 2 the pro-
position stated in the problem is also true.

Now let us suppose that the proposition holds for some n and
does not hold for n 4 1; in other words, we suppose that the
smallest exponent k2 such that 2¢ — 1 is divisible by 57+ is less
than 5"t — b* = 4.5 In just the same way as above (for n = 2)
it is proved that the number 2 must be a divisor of the number
4.57 At the same time, it is similarly proved that the number
57 — 51 = 4.5%1 must be a divisor of the number 4. Indeed, if
we had £ = ¢-4-5""1 4 r where r <C4.5"! then the number
5" — 1 would be divisible by 5%, which contradicts the assumption
that the proposition of the problem is true for the number n. Thus,
the exponent & can assume a single possible value, namely k =
= 4.571L,

By virtue of Euler’s theorem, the number 25*~!~5"~2_j—o9t5"~2_
is divisible by 57-1; at the same time it is not divisible by 5"
(the latter property holds because, if otherwise, the proposition of
the problem would not be true for the number n). Therefore we
have 245" *=g4.5""' 41 where ¢ is not divisible by 5.

Now, using the formula

(a + b)® = a® + 5a%b -+ 10a°6% 4 10a2b° -}- 5ab* + b°
we obtain
gtsnl =(24.5n—2)5_ = (g5 + 1)5_ |—
— 5n+1 (q5 . 54n-—-6+ q4 . 53/1-—4 + 2q3 . 52n—3+ 2q2 . 5n-—2) + q- 5n

whence it is seen that 2¢5*">— 1 is not divisible by 57+. Thus,
from the assumption that the proposition holds for some n it fol-
lows that it also holds for n 4- 1.

343. According to Euler’s theorem (see Problem 341), the num-
ber 251078 _ 1 == 945% _ 1 = 9781250 _ | {5 djvisible by 5! Conse-
quently, for nz= 10 the difference 27812 500+n _ 9n_-2n (97 812500 _ 1)
is divisible by 10, therefore the last 10 digits of the numbers
27 812500+n gand 27 coincide. This means that in the number sequence
21,22 23 ..., 2", ... the last 10 digits repeat with a period of
7812500 members of the sequence, the periodicity starting with
the tenth member 2'° of this sequence.
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The fact that the length of the period is not less than 7 812 500
follows from the result of Problem 342,

Remark. 1t can similarly be proved that the last n digits of the members
of the sequence in question repeat with a period of 4-5"~! members starting
with the nth member (for instance, the last two digits repeat with a period of
20 members beginning with the second one).

344. We can even prove a more general proposition: for any
whole number N there always exists a power of the number 2
whose N last digits are all unities and twos.

Since 25 = 32 and 2° == 512, the proposition is true for N =1
and N = 2. In the further course of the proof we use the method
of mathematical induction. Let us assume that the last N digits
oi the number 2¥ are all unities and twos and prove that under
this assumption there must exist a power of the number 2 whose
last N + 1 digits are unities and twos. By the hypothesis, we have
27 = 10¥.aq + b where b is an N-digit number whose decimal re-
presentation contains only the two digits 1 and 2. Let us denote
by r the number 5% — 5¥-! == 4.5%-!; then, by Euler’s theorem
(see Problem 341), the difference 2-— 1 is divisible by 5. It fol-
lows that if an integer & is divisible by 2¥+! then the difference
2k — k = k(2" — 1) must be divisible by 2-10%, that is the last N
digits of the numbers 274 and & coincide and the (N 4 1)th
(counting from right to left) digits of these numbers are simul-
taneously even or odd.

Now let us consider the following five powers of the number 2:

2n 2n+r — 2r R 2n’ 2n+2r — 2r . 2n+r’ 2n+3r — 2r . 2n+2r,

2n+4r — 2r . 2n+3r

According to what has been proved, the last N digits of all these
numbers are the same, that is they all end with the same combi-
nation (number) b consisting of twos and unities, the number &
coinciding with that in the representation 27 = 10Va 4- b, while
the (N 4 1)th (counting from right to left) digits of all these
numbers are simultaneously even or odd. Next we shall prove
that among these five powers of two there are not two numbers
whose (N + 1)th (counting from right to left) digits coincide.
Indeed, the difference of any two of these powers can be repre-
sented in the form 2**™ (2™ —1) where m; =0, 1, 2 or 3 and
me==1, 2, 3, or 4. If this difference were divisible by 10¥+!, the

number 2™ — 1 would be divisible by 57+!; however, since
mor = my + (BN —BN-1) < 5. (B¥ — pNV—1) =[N+l _ 5N
this divisibility contradicts the result of Problem 342.

Thus, the (N 4+ 1)th (counting from right to left) digits of the
five powers of two under consideration are either 1, 3, 5, 7 and 9
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(these digits follow in some unknown order) or 0, 2, 4, 6 and 8.
In both cases the (N -+ 1)th (counting from right to left) digit of
at least one of the powers is 1 or 2. Consequently, in all the cases
there exists a power of the number 2 whose last N 4 1 digits are
all unities and twos; by the principle of mathematical induction,
it follows that the proposition we had to prove is true.

345. It is evident that a pair of the form #n, n? where n is a na-
tural number is “good” for any n > 1. Further, a pair of numbers
n—1, —1=(n—1)(n+1) is sure to be “good” when the
number n -1 is an integral power of two, that is n4+ 1= 2*
where £ = 1 is an integer. Indeed, in this case the only distinction
between the numbers

n—1 and n2—1=2*mn—1)

is that the second of them involves a power of the prime factor
two whose exponent exceeds by & that of the power of two con-
tained in the first number (the number n — 1 must contain the
prime factor 2 because since n 4 1 = 2%, that is n = 2% — 1, the
number n— 1 = 28— 2 is also even). It follows that there are
an infinite number of “very good” pairs: for instance, such are all
the pairs of numbers of the form

n—1=2"—2 n—l=@n-—-1)Hr+1)=22"—2)

where £ =1, 2, 3, .

346. 1t is obv1ous ‘that the first term @ and the common dif-
ference d of the progression can be assumed to be relatively prime
numbers because if both a and d were divisible by a number 2 > 1
then we could simply cancel by & all the terms of the progression.
Further, by virtue of Euler’s theorem (see Problem 341), for re-
latively prime a and d there is an integer r such that the number
o' — 1 and, together with it, a*!' = a 4 Nd, are divisible by d.
Therefore a¢'+! — ¢ = Nd, that is a’+! = a + Nd where N is a na-
tural number, whence it follows that the number a+! belongs to
the given arithmetic progression. Moreover, in this case all the
numbers a™*+! where £ =1, 2, 3, ... also belong to the progression
since the number a*—1=(a"— 1) (@D J g2 4 1)
is divisible by a” — 1 and, consequently, it is divisible by d, whence
it follows that the number a"*+) — g = Md (where M is a na-
tural number) is divisible by d, and the number a"*+ = a 4+ Md
is the (M 4~ 1)th term of the progression. It is clear that the num-
bers a, a't!, a¥+!, a¥+1 ... contain powers of the same prime fac-
tors (the exponents of the powers are different), which completes
the proof of the assertion stated in the problem.

347. Let a be one of the numbers belonging to the sequence
2,3,..., p— 2. We shall consider the numbers

a 2a, ..., (p—1)a
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Among them there are not two numbers whose division by p leaves
equal remainders. Consequently, the remainders resulting from

their division by p are 1, 2, , p— 1, each of the remainders
occurring only once (cf. the solution of Problem 340). In particu-
lar, in the sequence 1, 2, ..., p — 1 there is an integer b such that

the division of ba by p leaves a remainder of 1. For this number b
we must have bs=1 and b %= p — 1 because 2 <L a << p — 2 and,
consequently, for & == 1 the division of the number ba = a by p
leaves the remainder @ 5= | and for b = p — 1 the division of the
number ba = (p— 1)a=pa—a by p leaves the remainder
p— a 5= 1. Besides, we have b 5= a because if the division of a?
by p left the remainder 1 then the number a®> — I=(a+ 1) (a — 1)
would be divisible by p, which is only possible when a =1 and
a=p—1. Consequently, 2 < b < p—2 and b = q, that is the

members of the sequence 2, 3, , p— 2 split into pairs of num-
bers the division of whose products by p leaves the remainder 1.
The product 2-3. ... :(p —2) contains (p — 3)/2 such pairs of

numbers, and the remainder resulting from the division of this
product by p is also equal to 1. Further, the division of the num-
ber p—1 by p gives —1 in the remainder. Consequently, the di-
vision of the number (p — N1 =1-23-...-(p—2)-(p—1)=
=[2-3- ... (p—2)]-(p—1) by p leaves the remainder —1, that
is (p — 1)!=kp — 1, whence (p — I)! + I=kp. Thus, (p — 1)! +
-- 1 is divisible by p.

If the number p is not prime, it has a prime divisor ¢ << p. In
this case (p — 1)! is divisible by g; therefore (p — 1)! 41 is not
divisible by ¢, and hence it cannot be divisible by p either.

348. (a) For p = 2 we can write p = 12+ 02 4 1. Now let the
prime number p be odd; we shall show that in this case there are
two numbers x and y which are both less than p/2 and satisfy the
condition of the problem.

Let us consider the sequence consisting of the (p 4+ 1)/2 num-
bers 0, 1, 2, ..., (p—1)/2. The division of the squares of any
two of these numbers by p leaves different remainders; for, if we

had
=kp+r and xi=kp+r
where x; and x, belong to that sequence then the equality
B — Xy = (% — %) (%, + %) = (By — k) P

would hold, that is the number (X1 — Xg) (%1 + x) would be d1
visible by p, which is impossible since x; << p/2, x2 < p/2, X1+
+x2 <p and [x;— x| <<p (we remind the reader that p isa
prime number). Thus, the (p + 1) /2 numbers

0 12, 2, ... (p;‘)
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give (p -+ 1)/2 different remainders when they are divided by p.
It follows that the division by p of the (p 4 1) /2 (negative) num-
bers —1, —12—1, —22—1, ..., —[(p—1)/2]2—1 also leaves
(p + 1)/2 different remainders (if the remainders resulting from
the division of — x? —1 and — xZ—1 were the same then the di-

vision of x2 and x would also leave equal remainders)*. Since
the division by p can result in only p different remainders (na-
mely, 0, 1, 2, ..., p—1), it is clear that among the p + 1 num-
bers 02, 12, 22, ..., [(p—1)/2]%, —1, —12, —1, —22—1, ...
ceo,— [(p—1)/2]2—1 there are at least two whose division
by p leaves equal remainders. According to what was proved
above, one of the numbers belonging to such a pair must neces-
sarily be of the form x2 and the other of the form —y? — 1. Now,
if x2 = kp 4+ rand —y? — 1 == Ip + r then

PEtyp=k—)p—1=mp—1
whence it follows that x2+ 42+ 1 =mp is divisible by p.

Remark. In the condition of the problem we can additionally require that the
two sought-for numbers x and y should not exceed p/2, that is we are allowed
to impose the condition that the sum x%+4 y24 1 must be less than p?; under
this condition the quotient m resulting from the division of the sum x2 4 y24-1
by p is less than p.

(b) Let p =4n +- 1 be a prime number. By virtue of Wilson’s
theorem (see Problem 347), the number
p—MN+1=1-2.3.- ... -(4n)+1

is divisible by p. Now let us replace all those factors in the last
expression which exceed (p—1)/2 = 2n by the corresponding
differences between the number p and numbers smaller than
(p — 1) /2 (these differences are equal to the factors they replace):

(p—N+1=1-2-3- ... 20(p—2n)(p—2n+-1)- ...

v cp—=1DF1=(1-2-3- ... - 20)[Ap+ (—1)*"2n-
@ —1)- ... 1]+ 1=Ap+4+(1-2-3- ... -2m)?2+1

Since this number is divisible by p, the sum ((2r)1)24 1 is also
divisible by p. Thus, the condition of the problem is satisfied by
the number x = (2n)! = [(p — 1) /2] ..

Remark. 1t should be noted that if the division of the number x by p leaves
a remainder x; then the divisibility of the number x2+ 1= (kp+ x)2+ 1 =

* The quotient £ and the remainder r resulting from the division of an in-
teger a by p are determined by the formula a = kp +r where 0 <7 << p (in
case a is negative the quotient % is also negative).
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= (k?p + 2kxJp+ x + 1 by p implles that the number xf—l— 1 is also divisible

by p. This allows us to assume that the number x mentioned in the condition
of the problem is less than p, the number x2 41 is less than p? and the quo-
tient m resulting from the division of ¥2--1 by p is less than p.

349. The existence of an infinitude of prime numbers follows
from the result of Problem 234. (This problem also shows that in
the sequence of all natural numbers the prime numbers occur
“sufficiently often”, for instance, “more often” than the perfect
squares; see the remark to that problem.) From the result of Pro-
blem 90 it can also be seen that there exist infinitely many prime
numbers: if the total number of prime numbers were n << co then
there could not exist more than n pairwise relatively prime in-
tegers. However, the following proof of the existence of an infini-
tude of prime numbers suggested by Euclid is perhaps the simp-
lest.

Let us suppose that there are only n prime numbers 2, 3, 5,
7, 11, ..., pn; then the number N =2-3-5.7-11- ... -p, + 1 ex-
ceeds all the prime numbers 2, 3, 5, ..., p. and therefore N must
be a composite number. However, the number N — 1 is divisible
by 2, 3,5, 7, ..., ps, and therefore N must be relatively prime to
all the prime numbers. We have thus arrived at a contradiction,
which proves the theorem.

350. (a) The proof of this theorem is rather close to Euclid’s
proof of the existence of infinitely many prime numbers.

Let us suppose that among the numbers of the form 4&£ — 1
there is only a finite set of prime numbers, namely 3, 7, 11,
19, 23, ..., pn. Let us form the number N = 4(3-7-11-19-23. ...
...-pn)— L. 1t is greater than all the prime numbers belonging to
the progression under consideration and hence it must be compo-
site. Let us express N as a product of prime factors. Among these
factors there cannot be numbers of the form 42— 1 because the
number N --1=4(3-7-11-19-23- ... -p,) is divisible by all
prime numbers of the form 42 — 1 and, consequently, the number
N is relatively prime to all these numbers. Since the number N is
odd it must be equal to a product of several prime numbers of the
form 4k - 1. But this is impossible. Indeed, a product of two
numbers of the form 4k 4- 1 has the same form:

(4k1 + 1) (4ky + 1) = 16kiky + 4k +- 4y - 1=
=4 (4kiky + ki + k) + 1 =4ky 1 |

Consequently, a product of several numbers of the form 4% -+ |
also has the same form whereas the number N has the form
4k — 1. The contradiction we have arrived at proves the theorem.

It can similarly be proved that among the members of the pro-
gression 5, 11, 17, 23, ... there are also infinitely many prime
numbers (these are prime numbers of the form 6% — 1).
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(b) The proof of this theorem is based on the same idea as the
one used in the proofs of the theorems of Problem 350 (a) but is
a little more complicated.

Let us suppose that among the numbers belonging to the se-
quence 11, 21, 31, 41, 51, 61, ... there are only a finite number of

prime numbers: 11, 31, 41, 61, ..., p,. Let us form the number
N =(11-31-41-61- ... -p,)>— 1. It is relatively prime to all
prime numbers 11, 31, 41, ..., p. because the number N 41 is

divisible by all these numbers. On denoting by a the product
11-31-41 ... pn we can write N=a5—1=(a—1)(a*+ a® +
4 a2 4-a-+1).

Let us investigate the prime divisors of the second factor a* 4
4+ a® 4 a2+ a -+ 1 in the last product. It is obvious that the sum
a*+ a® -+ a2+ a+ 1 is not divisible by 2 (because a sum of five
odd numbers is itself odd). Further, the number a*+ a3+ a2 4+
+ a + 1 is divisible by 5 since a ends with 1 (because a is equal
to a product of a number of factors each of which ends with 1),
the numbers a2, a® and a* all have 1 at their end, and, conse-
quently, the sum a* + a® 4+ a?+ a + 1 ends with 5. Now let p be
a prime divisor of the number a*+4a%-4- a2+ a+ 1 different
from 5. Then a — 1 cannot be divisible by p because, if otherwise,
the number a would be of the form &p + I and, consequently, the
numbers a2, a® and a* (they are equal to (kp -+ 1)2, (kp + 1)3
and (kp + 1)* respectively) would have that same form and
therefore the division of the number

at 4 a®+a®+a+ 1= (kp+ 1)+ (kp+1)° + (kp+1)°* + (kp+1)+1

by p would leave the remainder 5. It follows that p — 1 must be
divisible by 5. Indeed, for instance, let us suppose that the rema-
inder resulting from the division of p — 1 by 5 is equal to 4, that
is p —1 = Bk + 4. It should be noted that, by Fermat’s theorem
(see Problem 240), the difference a»~!' — 1 is divisible by p, and
therefore in the case under consideration we must have

Pl — =%t —l=qa*(a®* — 1)+ (a*— 1)

Further, since a% — 1 =(a%* — 1* is divisible by a5—1 and
therefore by p as well, the difference a* — 1 is also divisible by p.
But we have a® — 1 = a(a* — 1)4-(a — 1), and, consequently, if
a’ — 1 and a* — | were divisible by p, the difference a — 1 would
also be divisible by p, which, as was shown above, is impossible.
The fact that the remainder resulting from the division of the num-
ber p — 1 by 5 cannot be equal to 1, 2 or 3 is proved similarly.
Thus, the number p — 1 is divisible by 5 and is even (p — 1 is
even because p is odd). Consequently, p — 1 is divisible by 10;
therefore the number p has the form 102 + 1 and hence it belongs
to the progression under consideration. We have thus shown that
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the prime divisors of the sum a*+ a®4 a2+ a -+ 1 can only be
the number 5 and prime numbers of the form 10& 4 1.

Further, the number a* 4 a® 4 a*+ a4 1 is obviously greater
than 5 and is not divisible by 52 = 25. Indeed, the number a ends
with 1 and, consequently, has the form 5% 4 1. By Newton’s bi-
nomial formula, we have

at+ad+a+a+ 1=0Gk+ 1)+ 6k + 1)+ G+ 1) 4
+5k+ 14+ 1=0625k*—4 4126k 6-25k?+4 -5k 4
+ 14 126+ 3-25k2+3-5k+ 1 +26k2+2 -5k 1+
+ 5k 4+ 14+ 1=0625k*-+5-125k%+4- 10-25k%>+ 105k + 5=
=05 - [5(25k* 4 25k°% 4 10k% + 2k) + 1]
It follows that this sum and, consequently, the number N =
= o® — 1 must have at least one prime divisor of the form
10% +4- 1. At the same time, by the hypothesis, the number N is re-

latively prime to all prime numbers of the form 10£ -} 1; we have
thus arrived at a contradiction, which proves the theorem.

Remark. 1t should be noted that the proof presented here can be applied al-
most without any changes in order to show that every arithmetic progression
composed of the numbers of the form 2pk 4 1 where p is an arbitrary odd pri-
me number contains infinitely many prime numbers.
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1. The tallest of the smallest.

2. Consider the sum of the numbers of tlmes each person has ever shaken
hands with other people.

3. Let A be one of the six people; this person either has three acquaintances
or there are three people with whom A is not acquainted.

4. (a) It is impossible. (b) Construct an example satisfying the conditions
of the problem.

5. Prove that if A and B are not acquainted then they have two mutual ac-
quaintances.

6. Consider the scientist who has the greafest number of acquaintances
among the participants.

7. Exclude consecutively from the delegates the pairs of delegates speaking
one language.

8. Let A be an arbitrary participant of the conference; show that there is
the language in which he can speak with not less than 6 other participants.

9. n=k(k+1)/2 4 1 where & is an integer.

10. 5000 days (in the town there are two parties such that two inhabitants
are friends if and only if they belong to one party). )

11. 1f the knight travels sufficiently long then there must be a part AB of
his path (where A and B are castles) along which (in the direction from A to
B) the knight goes not less than three times.

12. Let A and B be {wo enemies sitting next to each other; prove that Mer-
lin can make a part of the knights change their places so that the pair of ene-
mies A, B sitting next to each other is replaced by a pair A, A’ of frlends sit-
ting next to each other while none of the pairs of friends sitting next to each
other is replaced by a pair of enemies.

13. (a) In the first weighing place 27 coins on each of the scale pans. (b)
The number & is determined by the inequalities 3*—! << n < 3%

14. First put one cube on each scale pan; then put both these cubes on one
scale pan and then, in succession, put all the possible pairs of the remaining
cubes on the other scale pan.

15. In the first weighing put four coins on each scale pan.

16. (a) One link. (b) Seven links.

17. Let S be one of the underground stations; consider a station T which is
the farthest from S.

18-19. Use the method of mathematical induction.

20. Use the proof by contradiction. To this end assume that the assertion of
the problem is false and show that under this assumption there is an infinite
number of towns in the state of Shvambrania (when constructing this infinite
sequence of towns it is advisable to use the method of mathematical induction).

21. It cannot.

22. It is sufficient for the king to move first to one of the corners of the
chess-board and then along the diagonal of the chess-board. ’

23. Change the order of the arrangement of the squares so that it becomes
possible to move from any square to the neighbouring ones.

24. Prove (say, using the induction method) that if in a group of students
exactly n people speak each of the three languages (where n = 2) then it Is
possible to form a subgroup in which exactly 2 students speak each of the lan-
guages,
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25. (a) 2. (b) 20.

26. 6 days; 36 sets of medals.

27. 15621.

28. Two rubles.

29. (a) In the Gregorian Calendar (which is in general use) every year, ex-
cept the leap years, has 365 days. Each leap year has an additional day (the
20th of February). The leap years are those whose numbers are divisible by 4
except the years divisible by 100 but not divisible by 400. It follows that every
400 years contain an integral number of weeks; consequently, it only remains
to check what day of the week, Saturday or Sunday, is more frequently the New
Year day. Answer: Sunday. (b) Friday.

30. All the numbers ending with 0 and the two-digit numbers 11, 23, 33, 44,
b5, 66, 77, 88, 99; 12, 24, 36, 48; 13, 26, 39; 14, 28; 15; 16; 17; 18; 19.

31. (a) 6250....0; n =0, 1, 2, .... (b) Try to solve the following problem:

[

n times
find a whole number starting with a known digit a which decreases 35 times

when this d.git is deleted.

32. (a) Start with proving the auxiliary proposition: the number in question

decreases 9 times when the second (counting from right to left) digit 0 is dele-
ted. (b) 10 1252025; 30375; 40535 50 625; 6075, 70875 (at the end of each of
these numbers an arbitrary number of zeros can be additionally written).
. 33. (a) The numbers wﬁose all digits except the first two are zeros. (b) In-
vestigate separately the cases when the first digit of the sought-for number is
1,238, ..., 9 There are altogether 104 different numbers satisfying-the condi-
tion of the problem at the end of each of which an arbitrary number of zeros
can be additionally written.

34. (a) The smallest possible number is 142 887. (b) The digit 1 or 2. The
smallest of the numbers with Initial digit 2 in 285 714.

35. 153 846.

36. Use the property that the numbers divisible by 5 must end with the di-
git 0 or 5; the numbers divisible by 6 or by 8 end with even digits.

37. Try to solve the following problem; find the number which increases
twice when its initial digit is carried to the end.

38. The problem is solved by analogy with the preceding one.

39. The smallest number satisfying the condition of the problem is
7241 379 310 344 827 586 206 896 551.

40. (a) A number which is 5, 6, 8 or 7 times as small as its reversion must
begin with the digit 1; a number which is twice or three times as small as its
reversion can begin with the digits 1, 2, 3, 4 or 1, 2, 3 respectively. (b) The
numbers that are 4 times as small as their reversions are

0. 2178; 21978 219978, 2199978; ... (*)

and also the numbers with decimal representation of the form P,Ps...
veo Py P Pp_y... PP, where Py, Py...P, are some numbers belonging to se-
quence (*).

41. (a) 142857, éb) Try to find an 8-digit number which increases 6 times
when its last four digits are carried to the beginning while their order is pre-
served.

42, 142 857.

43. 111, 222, 333, ..., 999, 407, 518, 629, 370, 481, 592.

44-45. Consider the process of the addition of the given numbers written in
a column.

46. Factor .the polynomials indicated in the condition of the problem; find
what remainders can result from the division of the number n by 3 (according-
ly by 5, by 7 etc.).
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47. (a) Use the property that a difference of two powers with equal even ex-
ponents is divisible by the sum of the bases of the powers. (b) See the hint to
Problem 46.

48. (a) 56786730 = 2:3-5-7-11-13-31-61. Use the propositions established
in Problems 46 (a)-(e) and similar propositions implied by Fermat’s theorem
(see Problem 340). (b) Consider the factorization of the given expression and
compare the number of the factors with that of the factorization of the number
33. (c¢) Make use of the identity n*+43n+5= (n+7)(n —4) 4 33.

49. For even n.

50. It does not exist.

51. Take into account that every integer not divisible by 5 can be written in
the form bk 4= | or 5k 4= 2. Answer: 0 or 1.

52. Make use of the result of the preceding problem.

53. 625 or 376.

54. Determine the last two digits of the number N? and the last three digits
of the number N2 Answer: 7; 3.

55. 14+243+...4+n=n(n-1)/2. Grouping some terms of the sum 1* +
+ 2% 4 3%+ ... +nk prove that the sum is divisible by n/2 and by n41 or
by n and by (n+ 1)/2.

56. The difference between the sum of the digits of the number occupying
even places and the sum of the digits occupying odd places must be divisible
by 11,

57. The number is divisible by 7.

58. It is always possible to find a number starting with the digits, 1, 0 which
is divisible by K. It is possible to prove that 9 is divisible by K by performmg
an appropriate permutation of the digits of the above-mentioned number divi-
sible by K and subtracting from each other two numbers divisible by K.

59. The sought-for number consists of 300 ones.

60. Investigate the last digits of the numbers of the form N = 2% (where
k=12 8,...) and also consider the remainders resulting from the division
of the numbers N by 3.

61. 26 460 = 22.3%.5-72, Prove separately that the given expression is divi-
sible by 5-72 and that it is divisible by 2233,

62. Use the equality

10— 0= (11 — U+ 18+ 117+ 18 1 11 113 1124 11 4 1)
63. Write the given number in the form
(22925555 |- 45555) 1 (55552222 — 42222) . (45555 . 42227)

64. Use the method of mathematical induction.
65. Use the fact that 10— 1 = 999999 is divisible by 7 and that the divi-
sion of any power of ten by 6 leaves a remainder of 4. Answer; 5.

66. (a) 9; 2. (b) 88; 67. (c) Find the last two digits of the numbers 74"

and 21414 Answer: 36.

67. (a) Both numbers have the digits 89 at the end. (b) Prove that the diffe-
rence of the given numbers is divisible by 1000000 = 25.

68. (a) 7; 07. (b) 3; 43.

69. Consider the numbers

Z, =09, Z,=9%, Zs=9Z’, cver Zipp =95 =N

and determine consecutively the last digit of the number Z,, the last two di-
gits of the number Z,, the last three digits of the number Zs, the last four
digits of the number Z,, the last five digits of the number Zs and the last five
digits of the numbers Zg, Z7, ..., Ziooy = N. Answer; 45 289,
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70. Compile the tables of the remainders resulting from the division of the
numbers 5* and n% by the number 13. The smallest number n satisfying the
condition of the problem is n = 12.

71. For all a multiple of 4 the last two digits of the number under considera-
tion are 30.

72. The sought-for 1000 digits can be written as a sequence of the form
pPP ... P where

23 times

P = 020408163265306122448979591836734693877551

Here P is the period of the periodic fraction to which 1/49 is changed and p
is the group of the last 34 digits of the number P. To elaborate the proof make
use of the obvious equality
50[000 —1 501000 —1
T 50—1 49

73. Consider the difference M — 3N.

74. 24.

75. (a) Compare the exponents of the powers of a prime number p which are
contained in a! and in the product (! 4+1)(¢{4-2) ... ({+a). (b) and (c) Use
the result of Problem 71 (a). (d) First g)rove that there exists a number £ such
that the division by n! of the product kd where d is the common difference of
the progression leaves a remainder of 1.

76. It is not divisible by 7.

77. (a) The number (n—1)! is not divisible by n» when s is a prime num-
ber and when n = 4. (b) The number (n— 1)! is not divisible by n? when n
is a prime number or a duplicated prime number or is equal to 8 or is equal
to 9.

78. Prove that all such numbers are less than 72 = 49. Answer: 24, 12, 8,
6, 4 and 2.

79. (a) Prove that a sum of squares of five consecutive whole numbers is
divisible by 5 and is not divisible by 25.

(b) Find the remainder resulting from the division of a sum of even powers
of three consecutive whole numbers by 3.

(c) Determine the remainder resulting from the division by 9 of a sum of
powers with equal even exponents of nine consecutive whole numbers.

80. (a) Find what remainders result from the division of the numbers A and
B by 9. (b) 192, 384, 576, or 273, 546, 819, or 327, 654, 981 or 219, 438, 657.

81. These digits are four noughts.

82. Use Pythagoras’ theorem.

83. Consider the remainder resulting from the division of the expression
b? — 4ac by 8.

84. Prove that after the fractions are added together and the sum is cancel-
led (if possible) the denominator of the resulting fraction is divisible both by 3
and by 2.

85.yTo prove that M and N are not integral numbers it is required to show
that after the addition we obtain a fraction whose denominator is divisible by
a power of 2 higher than that by which the numerator is divisible.

When proving that K is not an integral number we should replace in the pre-
ceding argument powers of two by powers of three.

86. (a) Use the fact that the fractions p/g and ¢/p are simultaneously re-
ducible or irreducible, (b) It can be reduced by 13.

87. Let N = a-10'%2 1 A4 be one of the numbers which are read as indicated
in the condition of the problem (where a is the first digit of the number N);
prove that if N is divisible by 27 then the number Ny = 104 4+ a is also divi-
sible by 27.

88. Prove that if the decimal representation of the number a = 59 involves
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zeros then there is a number divisible by a the first zero in whose decimal re-
presentation (provided there exists such) is placed farther from the (right) end
of that number than the first zero in the representation of a.

89. Start with proving the equality

(14 10+ 105+ ... +10%). 101 = (1 4 10+ ... + 10%) (10%+2 1 1)

90. Show that (22”4 1) — 2 is divisible by all the preceding numbers of the
given sequence; this will imply that 22* 4- 1 and any of the preceding numbers
in the sequence cannot have common divisors other than 2.

91. Consider the remainders resulting from the division by 3 of the numbers
2" —1 and 2" - 1.

92, (a) Consider the remainders resultin% from the division by 3 of the num-
bers p, 80— 1, and 8p 4 1. (b) Consider the remainders resulting from the di-
vision of the numbers p, 8p? -+ 1 and 8p? — 1 by the number 3.

93. Investigate the remainders obtained in the division of a prime number

y 6.
94. See the hint to the foregoing problem.

95. (a) Prove that the common difference of the progression must be divi-
sible by 2:3.5-7 = 210. Answer: 199, 409, 619, ..., 2089. (b) Prove that if the
first term of the progression is different from 11 then the common difference must
be divisible by 2-3-5-7-11 = 2310; if the first term of the progression is equal
to 11 then the common difference must be divisible by 210 (In the solution of
Problems 95 (az and (b) it is advisable to use table of prime numbers.)

96. (a) Such I8 an odd number not divisible by 3.

(b) It is sufficient to find a number among the given 16 numbers which does
!rjlot have common divisors equal to 2, 8, 5, 7, 11 or 13 with the other 15 num-

ers.

97. The product is equal to 22..... 2177 ... 78.
N’
665 times 665 times
98. The quotient is equal to 777000777000 ... 777000 77;  the remainder

the combination 777 000 is
repeated 166 times

Is equal to 700.

99. 222 222 674 025 = 471 4052

100. They do not exist.

101. 523 152 and 523 656.

102. 1946.

103. (a) Transform the indicated number and compare it with the expression
for the sum of terms of an arithmetic progression with common difference 1
whose first term is 107! and last term 10%, (b)-1 769580,

104. Begin with considering all whole numbers from 0 to 99999 999; at the
left end of those of them which consist of less than eight digits write additio-
nally a number of zeros so that they all become 8-digit expression.

105. 7.

106. No.

107. The number of ones exceeds by unity that of twos.

108. It cannot.

109. This number is divisible by 11 111.

110. 6 210 001 000.

111. Since the given number A is equal to 10°—1, for any number X =
= X Xz...%, we have AX = xi%;... x,000000000 — x1%,...%, = M —N. On
writing the numbers M and N in a column consider the process of subtraction
of N from M.

i12. The condition of the problem is satisfied by all numbers N == A4 such
that N = 10m — 1.




Answers and Hints 417

113. Use the induction method (with respect to the number n); for m=n
the assertion of the problem is false.

114, It suffices to note that among the first four numbers of every row there
is an even number.

115. Prove that the sum of all numbers in every row of the table (beginning
with the second one) is divisible by 1958.

116. 40.

117. On denoting by 12 4 x the time of the beginning of the first perform-
ance and by y the duration of the performance we can readily set a linear
system of inequalities for the numbers x and y.

118. The possible values of T (expressed in minutes) are 20, 15, 12,7—12— and
5

11

119. 100.

120. (a) The sought-for number must begin with the greatest possible num-
ber of nines, (b)- The answer is the same with nines replaced by zeros.

121. (a) 147; 258; 369. (b) 941, 852; 763.

122-123. Apply the formula for the sum of the terms of an arithmetic pro-
gression.

124. Write the expression n(n+1)(n+2)(n+3)+1 in the form of a
square of a polynomial.

125. Prove that among the numbers in question there cannot be more than
four pairwise distinct.

126. Divide 9 weights with consecutively increasing magnitudes into three
groups two of which are of the same weight while the third one is lighter.

127. Prove that the numbers of grams the given weights weigh are all either
even or odd.

128. It suffices to consider the case when all the numbers in question are
positive and their product is equal to 1.

129. After 2* operations we inevitably arrive at an N-tuple of ones,

130. Prove that in the transformation process described in the condition of
the problem the differences between the given numbers permanently decrease.

131, (x, y, 2) = (1, 1, 0).

132, (a) First of all prove that for any original numbers we eventually ar-
rive at a 4-tuple of even numbers. (b) The assertion stated in Problem 132 (a)
remains true for rational numbers and is false for irrational numbers (in the
latter case the original numbers can be chosen so that all the following 4-tup-
les are proportional to the first one).

133. (b) Construct an increasing sequence beginning with the first of the
given 101 numbers. If this sequence contains less than 11 numbers, delete these
numbers from the original set and construct a new increasing sequence begin-
ning with the first of the remaining numbers; if that sequence again contains
less than 11 numbers, delete these numbers as well and construct a new in-
creasing sequence, and so on. If all the sequences thus constructed contain less
than 11 numbers each, then the total number of these sequences is not less than
{1; using this fact we can construct a decreasing sequence of 11 numbers.

134. Consider the greatest odd divisors of the given numbers.

135. (a) Consider the remainders with the smallest absolute values resulting
from the division of the numbers by 100.

(b) Let ay, ay, ..., aipo be the given numbers. Consider the remainders re-
sulting from the division by 100 of the numbers a;, @)+ as, a1 +as+as, ... .

(c) If the sum of several numbers is less than 200 and is divisible by 100
then it is equal to 100.

(d) Prove in succession the following properties: among any 3 integral num-
bers there are 2 numbers whose sum is divisible by 2; among any 9 integral
numbers there are 5 numbers whose sum is divisible by 5; among any 199 inte-

5
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gral numbers there are 100 numbers whose sum is divisible by 100 (when prov-
ing the third property use the first two).

136. Elaborate the proof by contradiction.

137. Consider the numbers of passages from a cross to a nought and from
a nought to a cross encountered when the circle is described in one chosen di-
rection.

138. Consider the sum of all the factors of this product.

139. One half of the summands in the given sum consists of the numbers -1
and the other half of the numbers —I.

140. Collect in the first group all numbers whose decimal representations con-
tain an even number of ones. )

141. Write the 5 numbers one below another; then the number of the columns
of digits containing two identical digits lies within the limits from 400 to 600.

142, Prove that after a number of operations have been performed we can
always change any sign while the other signs remain unchanged.

143. Use Dirichlet’s principle (see page 9).

144. Change the number 1/N to a (periodic) decimal.

145. Let d be the common difference of an arithmetic progression and let
o = {d} (see page 36) for a nonintegral d and o =1 for an integral d. It is
sufficient to place the line segments of length 1 in such a way that a line seg-
ment of length o cannot be formed of intervals between the former segments
or of its parts (here are meant the intervals between the line segments or its
parts lying “sufficiently far” from the point representing the first term of the
progression).

146. Prove that for A << m + n the interval (0, A) of the number line con-
tains exactly A — 1 of the given fractions.

147. Denote by & (i=1, 2, 3, ...) the number of those members of the
given sequence of positive integers which lie between 1000/i and 1000/(i -+ 1)
and compute the number of the numbers less than 1000 which are multiple of
at least one of the numbers ay, az, ..., an

148. The length £ of the period of p/g is equal to the smallest exponent &
for which 10* —1 is divisible by ¢. If & = 2! then it follows that 10’ —1 is
divisible by ¢, that is (10’4 1)/g is an integral number. The last fact implies

that for the period @ia;...ai2+1@42...a, of the fraction p/g we have

a1+al+1=a2+al+2= oo =a; +a,=9

149. Use the fact that the number of digits in the periods of the fractions
an/p" and @nq,/ptt! are equal to the smallest positive numbers £ and ! respec-
tively such that 10*—1 is divisible by p* and 10* —1 is divisible by pr+l.

150. (a) 7744. (b) 29; 38; 47; 56; 65; 74; 83 and 92.

151. Let a denote the number formed of the first two digits of the sought-for
number and let b denote the number formed of the last two digits; then 99a =
= (a+b)2—(a+b) = (a+b)(a-+b—1). Answer: 9801; 3025; 2025.

152. (a) 4624; 6084; 6400; 8464. (b) Such numbers do not exist at all.

153. (a) 145. (b) Only the number 1.

154. (a) 1; 81. (b) 1; 8; 17; 18; 26; 27.

155. (a) The number x cannot exceed 4. Answer: x =1, y= %1, x = 3,
y = +3. (b) x =1, y = %1, 2 is an arbitrary even number; x =3, y = +£3,
2=2, x=1, y=1, z is an arbitrary odd number; x is an arbitrary positive
integer, y= 114214+ ...+ xl,z=1

156. Consider the exponents of the powers of two by which the sought-for
four numbers can be divisible. Answer: the expansion is impossible for an odd
n and there exists only one expansion for an even n:

9" — 2%_1)2 + (z%1 )2 + (2—;‘_1 )2+ (2121“1)2
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157. See the hint to Problem 156. Problem 157 (b) is similar to Problem 157
(a): there exists only one answer, namely x =y =2=v = 0.

158. (a) It can be shown that if the numbers x, y and z satisfy the indicat-
ed equality and, for instance, the inequality 2 > kxy/2 holds, then the numbers
can be decreased in such a way that the same equality remains valid for them.
In case x << kyz/2, y << kx2/2, 2 << kx2/2 and x < y << z there must be 2<Ckx <
<< 3. Answer: k=1 and & = 3. (b) Every such triple of integers can be ob-
tained with the aid of a number of consecutive substitutions of the form x;=x,
y1 =1y, 21 = kxy — 2z from one of the iriples 1, I, 1 and 3, 3, 3. Altogether,
among the first 1000 numbers there are 23 triples of numbers satisfying the
conditions of the problem.

159. Prove that x, y and z, are even. Answer; x =y =2=0.

160. (x, y) = (0, —1), (—1, —1), (0, 0), (—1, 0), (5, 2), (—6, 2).

161, x =3,y = 1.

162. x =n%4 y=1,z=norx=0,y=m, z2=0.

163. Suppose that the assertion stated in the condition of the problem is
false and consider the greatest prime number for which there are solutions.

164. Consider in succession the follow!ng cases: all the four numbers are
distinct, two of the numbers coincide while the other two are distinct, there are
two pairs of pairwise equal numbers etc. Answer. 96, 96, 57, 40; 11, 11,6, 6;
k(Bk2), k(3R £=2), B(3k+2), 1 (here k£ is an arbitrary integer such that
k(3k 4= 2) is positive); 1, 1, 1, 1.

165. 2, 2 and 0, 0.

166. 1 =1/24+1/4+1/4=1/2+1/34+1/6 = 1/34+1/3 + 1/3.

167. (a) Put x =%, +n, y = y1 4+ n. (b) Ci. the hint to Problem 167 (a).
(b) x =m(m+4n)t, y = n(m+ n)t, z= mnt where m, n and ¢ are arbitrary
integers.

168. (a) Let y > x; show that in this case y is divisible by x. Answer: x =
=2 y=4. (b) x= [(p+1)/p]?, y = [p+1)/p]P*! where p is an arbitrary
integer different from 0 and —I.

169. 7 or 14.

170. From the relationship between the number of points received by the
pupils of the 6th form and the number of games they played one can conclude
that all the pupils of the 6th form won all the games they played. It follows
that only one pupil of the 5th form participated in the tournament.

171. Denote p—~a = x, p—b =y, p—c = 2z where a, b and ¢ are the sides
of the triangle and p is half the perimeter of the triangle: p= (a4 56+ ¢)/2.
Then the problem reduces to the determination of the integral solutions of the
equation xyz = 4(x 4+ y + 2) or of the equation x = (4y + 42)/(yz — 4). The
condition x == y can be regarded as a quadratic inequality with respect to g
(with coefficients depending on z); this makes it possible to find the limits with-
in which 2 and y must lie (altogether, there are 5 solutions to the problem).

172. n(n2 4 1)/2.

173. Prove that every number occurs on the diagonal an odd number of
times. For an even n the assertion of the problem is false.

174. The difference is equal to n? — n.

175. From the tables obtained as described choose the one with the maximum
sum of all its numbers and investigate this table.

176. 1.

177. Use the property that the ith row, the (9 —i)th row, the ith column
and the (9 — i)th column contain the same numbers.

178. Use the relation ai; + aw = aw; -+ an, which holds for all i, j, £ and L

179. Take into account that ay = 0 and ay = —ay for all i and |.

180. Use the method of mathematical induction.

181. (a) Consider the variation of the signs which stand in the 8 squares
adjoining the edges of the board but are not at the cornmers. (b) Reduce the
problem to Problem 180 (a).
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182, (a) This is not always possible (prove that there are distributions of
the signs that cannot be obtained from the one in which all the squares con-
tain the sign “4" with the aid of the operations described in the condition of
the problem). (b) This is not always possible(see what has been said in con-
nection with Problem 182 (a)).

183. (a) Yes. (b) It is possible to transform consecutively into zero all the
numbers in the Ist row, then the numbers in the 2nd row ete.

184. Write the number a in binary notation.

185. Make use of the induction method.

186. Let tnt) = tntz ... + tnts = s, (where u, is the kth Fibonacci num-
ber); prove that un4+9 << Sn << Un+i0.

" 187. Consider the sequence of the remainders resulting from the division of
the Fibonacci numbers by 5.

188. The last four digits of a difference of two numbers are completely de-
termined by the last four digits of the minuend and of the subtrahend. Prove
that there exist n and & such that the last four digits of the (n -+ £)th and of
the (n+ &+ 1)th Fibonacci numbers are equal to those of the kth and of the
(k+ 1)th Fibonacci numbers respectively. This will mean that the last four
digits of the (n 4+ £— 1)th and of the (#— 1)th Fibonacci numbers coincide
etc. In this way it is possible to find a Fibonacci number whose last four digits
coincide with those of the first Fibonacci number which is equal to zero.

189. Use the inequalities a2_; +2<a? <a’_,+3.

190. First solution. Add a number a.+; to the sequence. Second solution. Ap-
ply the principle of mathematical induction.

191. 2952 (prove that the greatest number of members in a sequence satis-
fying the conditions of the problem which starts with the greatest number
a; = n is equal to [(3n + 1)/2]).

192. Elaborate the proof by contradiction. Investigate the possible values of
the digits otn, On41, ... such that when they are written additionally the given
number always remains prime.

193. (a) This is impossible. (b) It is possible.

194. For the first time the number 8! occurs in the 111 111 [11th place; the
number 27 is consecutively repeated 4 times earlier than the number 36 first oc-
curs.

195. 1972 times (take into account that if @ and b are relatively prime num-
bers then the pair a, b occurs only once in the sequence of the collections I,
I, ... and if a and b are not relatively prime then these numbers never occur).

196. Let o, a3, o, o be the last four digits of the sequence; determine the
number of times the group of the digits oaq0scy occurs in the given sequence.

197. Let N, be the product of the first & prime numbers; prove (using the
induction method) that the assertion stated in the condition of the problem%olds
for the numbers N, with any &.

198. Prove that any natural number n can be written in a unique manner
in the form n == px 4 qy where x and y are integers and 0 << x << ¢.

199. Represent the numbers indicated in the condition of the problem in the
form X(X+1)/24+ x where X = 0 and 0 < x << X.

200. Consider all the points with integral coordinates (x,y) located within
the square bounded by the coordinate axes and the straight lines x == 100 and

201. Write x in the form x = [x] + o where & = {x}.

202.. Use the result of Problem 201 (3).

203. Consider all the points with integral coordinates ¥, y such that 0 <
<x<gqg 0<y<pand ylt<plg

204. Apply the principle of mathematical induction. (It is also possible to
solve the problem geometrically; to this end one should consider all the points
with integral coordinates lying in the first quadrant below the hyperbola
xy = n).
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205-207. In the solution of Problem 205 one should use the equality
@+ v2)]=(2+v2)" + (2 —v2)" —1

Problems 206 (a), (b) and 207 are solved analogously.

208. Among the p consecutive whole numbers n, n—1, n—2, ..., n—p+1
there is one and only one number divisible by p. If this number is equal to N
then [n/p] == N/p. Thus, the difference, C(n, p) —[n/p] can be written in the

form
ar—1) .. N+t DHNWVN =) ...(n—p+1) N
p! p
209. If ¢ > 0 then (N—1)/N < a << N/(N—1).
210. Prove that (N/2%) is equal to the number of those whole numbers not
exceeding N which are divisible by 2*¥-! and are not divisible by 2%.
211. 31.
212. (a) Compare the given product with the product (2/3)-(4/5)-(6/7) ...
... (98/99) or square the inequality that must be proved.
(b) Using the principle of mathematical induction prove that
1 3 5 2n — 1 < 1

2 4 6 " 21 ABtd

213. The second number. :

214. (a) The first of the numbers is smaller. (b) The first of the numbers is
greater (make use of the method of mathematical induction).

215. Prove that if 10%—! < 1974" << 10% then the inequality 1974”4 2* = 10*
cannot hold.

216. +11.

217. Use the inequality established in Problem 212 (a).

218. The number 997 4- 100" is greater than 101" for n << 48 and is smaller
than 101" for n > 48.

219. 300!

220. Begin with proving that

k 1\* E o, R
e < (i) <thg

for any positive inleger & << n.
221-222, Use the result of Problem 220.
223. Use the method of mathematical induction.
224, Apply Newton’s binomial formula.
225, Use the method of mathematical induction.
226. Use the inequality

EFDLEE=D>FN— 1> E+DE=1)
which implies that
(p+ DEH — pFFl S (£ 4 1) p* > pAHl — (p — 1)kH]

for any positive integer p.

227. These inequalities can be obtained by replacing the terms of the given
sums by greater (accordingly, smaller) numbers; when necessary, group these
terms in an appropriate manner before replacing the numbers (that is, when
necessary, the indicated replacement should be performed for the new sums con-
taining a smaller number of terms).

228. Begin with showing that

o/n41—24/n <—'}—n:<2x/r7—2'\/n—l
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Answers: (a) 1998. (b) 1800.
229. Start with proving that

%w——<n+ IV — 7] < = < 2|7 = G F 7]

Nn T2
Answer: 14 996. .
230. (a) 0.105. (b) Use the inequality

1 1 1 1 1 9 10 11 999
Eﬁﬁﬁ+ﬁﬁ“~+ﬁm<3{ﬁﬁ7ﬂ+m+-~+ﬁw}

Answer: 0.00000029.
231. Use the result of Problem 227.
232, Start with determining the number of those terms lying between 1/10%
and 1/10%+! that are not deleted.
233. (a) This problem is solved by analogy with Problem 231. (b) Use the
relation -
U SN S
1.2 V23" " T
234. Prove that

1 1 1 1 2log3
tog (14 bbb ) < 28
og +p+p2+p3+ +p,Z »

for any positive integers £ and p = 2. Proceeding from this inequality derive
the inequality

og(1+3+3+g+ -+ +

=141
n

L
n—l-l-z)<

<2log3(+++ 414 L
= g (2 3T% .r..+pl)

where p; is the greatest prime number among the numbers from 1 to n.
235. Take into account the identity (¢+b+¢c)*—a®—b3—¢3 =3(a+
+b) (b +c) (c +a). _
5236. Make3 5use of the relations a®4 4541 = ((a%)°%—1)/(a°—1) and
as—1 = (a®)5—1.
237. Praove that the difference (9999 f- 8888 L. | xUM L 1) — (29 -
+ x84 .. x4 1) is divisble by ° 4+ 284 ... 4 x + L.
238. (a) The expression a3 b3 ¢®—3abc is divisible by a6 4.
(b) Answer: x;, = —a—Db where
3 o
- g 4 4P
“’b—’\/2i’\/4 +5
239. Eliminate radicals and solve the resultant equation with respect to a.
240. Use the fact that if x24-2ax 4+ 1/16 =y then x= — a+'\/a2 + y—1/16;
consider the graphs of the functions y=x%?4-2ax+41/16 and yy =—a 4
+ 4/a2+ x — 1/16.
241. Prove that there must be 3x = x2
242. (a) Prove that there must be 1/(1 4 x) = «.
243. The roots of the equation are all the numbers lying between 5 and 10.
244. The roots of the equation are the number —2 and all the numbers not
exceeding 2.
245. X, =1, X0 =2, ..., s = n.
246, x == /4,
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247. For a = +1 the system possesses three solutions; for g = 4/2 the
system possesses two solutions.

248. (a) For a = —1 the system has no solutions; for @ = | the system has
infinitely many solutions. (b) For a = =1 the system has infinitely many so-
lutions. (¢) For a =1 the system has infinitely many solutions; for ¢ = —2

it has no solutions at all.
249, For the system to possess solutions it is necessary that three of the four
numbers a1, o o3 and o4 should be equal to one another. If

a? o
o=y =0;=0, o;=_0§ then X=Xy = K=o, x4=a(ﬂ-—-2—)

250. There is only one real solution: x =1,y =1, 2=0.

25, x =1, y=0and x=0,y= 1.

252. Xy = Xy = x3 = x4 = x5 =0 and x is arbitrary; x; =%, = %3 = x;, =
= x5 are arbitrary and x = 2; x ={(—1 1/5 )2, %, and x, are arbitrary, x; =
= XXy — X1, Xy = —x(x; + xp) and x5 = xx; — x5

253. Either all the numbers are equal to 1 or three of them are equal to —1
and the fourth one is equal to 3.

254. For a>b>c>d we have x=(=1/(a—d), y=2=0.

255. Note that depending on the sign of the discriminant A = (b —1)2—
— 4ac the quadratic trinomial a&®+4 (b — 1)E -} ¢ either retains sign for all §
or turns into zero for a single value of E or possesses two different roots
E=E and § = §.

256. There are no solutions at all when n is even and aias...an—y 5= apas...

. ap; there are infinitely many solutions when n is even and aya; ...
v ln-y == Q4 ... an, there are two solutions when n is odd.

257. (a) The number of real roots of the equation coincides with the num-
ber of the points of intersection of the sine curve y = sinx and the straight
line y = x/100. (b) The number of the roots is equal to the number of the
points of intersection of the graphs of the functions y = sinx and y = log x.

258. All the numbers ay, a, ..., @i are equal.

259. Investigate the coefficients of the equation

Px) = (x—a)(x—0)(x+d) =0

260. Consider the reciprocal of the fraction indicated in the condition of the
problem; eliminate radicals in the denominator of the resultant fraction.

261. Denoting the numbers in question as a, b and l/ab we can express the
assertion stated in the condition of the problem in the form a -+ & 4 1/ab >
> l/a+ 1/b + ab. )

262. Prove (using the induction method) that for any natural numbers n
and % the fact that a sum of n positive numbers is equal to 1 implies that the
sum of all the possible products of &£ (where 1 << £ <C n) numbers chosen from
the given numbers is less than 1.

263. 1/2.

264. All the numbers a; (where i =1, 2, ..., 1973) are equal (consider se-
parately the cases @y > 1 and a1 << 1).

265. Apply the method of mathematical induction.

266. This is impossible (for the second polynomial the answer to the question
is positive).

267. Use the method of mathematical induction.

268. If 99999+ 111111 4/3=(4+ B4/3)® then 99999 — 111 111 4/3 =
=(A—B4/3)

269. Prove that the assumption that 4/2=p -4 g4/r leads to the wrong

conclusion that ,\72— is a rational number.
270. Let A = 4™, then x - l/x = n.
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271. There are no such numbers,

272. This is impossible.

273. For x = (6k -} 5)}/(3 — k%) where k is a rational number.

274. Estimate the diflerence y; — x; between those roots of the equations

¥2+4+px+g=0 and y’+py+ g =0 where |g1—q] =001

which are close to each other.
275. Let oy, o2 ooy Qn where 0 < oy < az<... <, denote the frac-
tional parts of the given numbers a,, as ..., @, take ‘the minor approximations

of the numbers a;, @, ..., a. and the major approximations of the numbers
Qr+1, Qeto, ... , Qn after Wthh choose an appropriate value of the index 4.
276. 0; 0.5; 0.501; 0.502; ; 0.999;

277. Cons'der the fractional parts of the numbers 0, o, 2a, 3a, ..., 1000a
and use Dirichlet’s principle (see page 9).

278. (a) Prove that if @ << 1— (0.1)1% then also 4/a < 1 — (0.1)!%, (b) Take
into account that the number x under consideration is equal to
(/T =(1/10)™0)/3. Answer: with an accuracy of 300 decimal places we have

x==0.3333 ... 333166666 ... 6666250000 ... 000

100 threes 100 sixes 97 noughts

279. The second of the two given expressions is greater than the first one.

280. x = (a;+az+...+an)/n.
281. (a) ai, as ai, az (b) Prove that if ai, and a;, are some two of the

given numbers (where o <) and if a;,, and a;, , are the numbers pre-
ceding a;, and following alﬂ respectively in the sought-for arrangement then

( g~ (3) (a’a 1 'ﬁ+1) >0
282. (a) Consider a broken line ApA;As...A, such that the projections of

the line segments Apd,, A14z, ..., An—1A, on the axis Ox are equal to a,
@y, ..., a. respectively and the prolectlons on the axis Oy are equal to b,
by, ..., b,. The equality takes place when ai/b; = /by == ... = a,/b,. (b)

Make use of the inequality of Problem 282 (a).

283. For an even n the problem can be solved geometrically by analogy with
the solution of Problem 282 (a); the case when n is odd can be reduced to the
former case of an even n. The equality takes place for the even values of n
whengg=1—ay=ag3=1—a, = = @4, —a, and for the odd values of
n it holds only whengy=a;, = ... = a,, = 1/2.

284. Square both members of the inequality.

285. The expression cossinx is greater than sincosx for any x

286. (a) Denoting logsm = a and logsm = b we can write a1/t = 10
(b) Denoting logs = a and log ;2 = b we can write b = 1/a.

287. (a) Take into account that sinx << x for every angle x lying in the
first quadrant. (b) Take into account that tan x > x for every angle x lying in
the first quadrant.

288. Take into account that the tangents of angles can be defined geometri-
cally in terms of their line values (with the aid ol unit circle used in trigono-
metry) and can also be interpreted as twice the areas of some triangles.

289. arc sin cos arc 8in x -+ arc cos sin arc cos x == 1t/2.

290. Replace the angle x by x +m in the sum cos 32x4- a3 cos3l x 4.,

..+ ajcosx and add the resultant expression to the original sum.

291. Usmg the formula 2sino/2==4-4/2 —2cosa compute consecutively
for n =1, 2, ... the expressions

2sin(a|+ AR L B ) “")_-45°

2?1-—-1




Answers and Hints 425

292, 1.

293. Take into account that the two given polynomials and the polynomials
(1 4+ x2 4 x3)190 gand (1 — x2 — x%)1%%0 have the same coefficients in x20 respec-
tivel

29}411 Make use of the formula (a - b) (a —b) = o> — b2

295. (a) C(1001, 50) = 10011/50!-9511. (b) 1000 C(1001, 1) — C(1001, 52) =
= 51 050-1001!/521-950!

296. Let us denote the given expression as Ili; then ITp = ([1,—, —2)2 An-
swer: (4%-1—4%-1):3,

297. (a) 6. (b) 6x.

298. —x 4+ 3

299. Use the fact that the polynomial x4+ x*+2x2+x -1 is a divisor of
the binomial x'2— 1. Answer: —1.

300. P(x) =cx(x—1)(x—2)...(x—26) where ¢ is constant.

301. (a) Consider the numbers P{10¥) for sufficiently large N. (b) Use the
result of Problem 301 (a).

302. In the equality x2004200 41 = f(x)g(y) first put y = 0 and then x = 0.
: 303. Take into account that the quadratic trinomial p(x) —x retains sign
or all x.

304. Make use of the inequalities [p(1)| << 1, |p(0)| <1 and |p(—1)| < L.

305. Consider the two numbers p(xl) and p(xg) where p(x) 1is the polyno-
mial on the left-hand side of equation ( 2

806. Q2+ ¢>— pP(Q + q) + gP*+ Qp*—2Qq.

307. a =1 and ¢ = —2.

308. (a) a= 8 and a=12. (b) b=1,¢=2 a=3; b=—1, c¢=-2,
a=-—3;b=2c=—l,a=land b=1¢=—2, a=—l.

309. (a) The representatlon is impossible. (b) Only when n =2, a;=aqa, +
+2andn=4,;s=a—l,as=a+1,as=a+2,

310. Use the fact that if

(x—a)?(x—a)? ... (x—an)?+1=p(x)g(x)

then the polynomials p(x) and ¢(x) as well as the product (x—a\)2(x —
— )% ... (x—ay)?+ 1 cannot turn into zero for any x and therefore cannot
change sign. In all the other respects the solution is quite analogous to.that of
Problem 309 (a).

311. Take into account that the number 14 —7 = 7 cannot be expressed as
a product of several integral factors among which four factors are different.

312. Use the fact that if the given polynomial can be expressed as a pro-
duct of polynomials with integral coefficients then the. values of x for which
the polynomial is equal to =1 also turn the latter polynomials into #=1 and
that a polynomial of the third degree cannot assume one and the same value
more than three times.

313. Take into account that if p and g are two integers then P(p) — P(q)
is divisible by p —

314. Prove that 1f P(kfl) =0 then k—pl = =1 and k— gl = #1.

31{5t (a) Equate the coefficients in like powers of x on both sides of the
equality

(@t ax+agx®+ ... +apx™) (bo+ bix 4+ bex? 4 ... 4 bax") =

=codex+ e’ + .. Feppmptt™
and, using the resultant formula, show that if the given polynomial could be
expressed as a product of two polynomials with integral coefficients then all
the coefficients of one of the polynomial factors must be even (which is im-
possible because the leading coefficient of the original polynomal is equal
to 1).
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(b) Put x = y+ 1 in the given polynomial and then, by analogy with the
solution of Problem 315 (a), show that if the resultant polynomial could be
expressed as a product of two polynomial factors with integral coefficients then
all the coeificients of one of the factors must be divisible by the prime num-
ber 251.

316. Use the same formula as the one in the solution of Problem 315 (a)
(see the hint to the latter problem).

317. Prove that the expression P(p/q) where p/q is an irreducible fraction
cannot be equal to an integral number.

312. Let P(N) = M; prove that P(N 4+ kM) — P(N) is divisible by M for
any k.

%19. Write the polynomial P(x) which assumes integral values for the in-
tegral values of x in the form of a sum P(x) =boPo(x)+b,P(x)+ ... +baPr(x)

with indeterminate coefficients by, by, ..., b, where Pr(x) = C(x, &) (for inte-
gral x > k) and then determine these coefficients by substituting consecuti-
vely into the last equality the values x =10,1,2,3, ..., n.

320. (a) See the hint to the foregoing problem. (b) Perform the change of
variable y = x + k£ in the given polynomial. (¢) Consider the polynomial
Q(x) = P(x?).

321. Use De Moivre’s formula.

322. Make use of the result of Problem 321 (b).

323. If we put x + 1/x = 2cosa then x = cosa =+ sina.

324. Use De Moivre’s formula.

325. Make use of the result of the foregoing problem. Answer:

—1 + sin (n -+ 1) a cos na
2 2sino

n
cos?a -+ cos?2a+ ... + cos?na=

326. Use De Moivre's formula and Newton’s binomial formula.
327. Apply the formula

sinAsinB=%[cos (A — B) —cos (A + B)]

and use the results of Problem 324.

328. Cousider the roots of the equation x2*+!—1 = 0.

329. Make use of the formulas of Problem 321 (b).

330. Make use of the result of Problem 329 (b). Answer: (a) n(2n—1)/3.
(b) 2n(n+ 1)/3. -

331. Make use of the result of Problem 329 (a). Answer: (a) A/2n F1/2" and
A/n/27 1, (b) 172" and A/r/2" "L

332. Take into account that for an angle a lying in the first quadrant we
always have sin a < a << tana.

333. (a) and (b) Use the formula of Problem 324. (¢) Use the result of
Problem (b).

334. (a) Use the proposition established in Problem (a). (b) Make use
of the formula of Problem 324.

335. (a) Use the proposition established in Problem 333 (a). (b) See the
hint to Problem 334 (b). (c) Use the result of Problem 331 (a).

336. Using De Moivre’s formula represent sin®c in the form of a sum of
products of cosines of angles multiple of a by some coefficients. Answer:
5000 C(50, 25) R%® = (5000-50! R%%) : (25!)2

337, The greatest value is |2|=(a + 4/a® + 4)/2; the smallest value is
| 2] = (+/a?+ 4 — a)f2.

338. Prove that if the greatest of the differences between the arguments of
the given numbers is less than 120° then they can be multiplied by a number
with unit absolute value such that the real part of the sum of the resultant
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products is positive. It is impossible to replace the value 120° indicated in the
condition of the problem by a greater value

339. Use the fact that if the point A representing the number 2z in the com-
plex plane lies outside the polygon M = C,Cy...C, whose vertices represent
the numbers ¢, ¢; ..., ¢, then A “lies on one side” of M in the sense that
all the vectors AM where M & M go in one direction from a straight line !
passing through A.

340. Take into account that if a is not divisible by p then the division of the
numbers a, 2a, 3a, ..., (p— 1)a by p leaves different remainders.

341. Take into account that if &y, ks ..., & are all positive integers smaller
than N and relatively prime to N then the division of the numbers &, ks, ...
..., kya by N leaves different remainders.

342. Make use of the principle of mathematical induction.

343. Apply Euler’s theorem (see Problem 341).

344. Using the induction method prove that for any whole number N there
always exists a power of the number 2 the last N digits of whose decimal repre-
sentation are all unities and twos; to elaborate the proof make use of Euler’s
theorem (see Problem 341) and of the proposition of Problem 342.

345. It is clear that a pair of numbers n and n? is ‘*‘good”; ¢ompare the
factorizations of the numbers n —1 and n2—1.

346. Let a and d be relatively prime; using Euler’s theorem (see Problem
341) prove that the progression contains infinitely many powers of the num-
ber a with natural exponents.

347. See the hint to Problem 340.

348. (a) Prove that for every odd prime number p there exist two positive
integers x and y (where x, y << p/2) such that the division of x* and y2—1
by p leaves equal remainders. (b) Make use of Wilson’s theorem (see Problem

347).

349. Let py, po, ..., pn be n prime numbers. Find a number which is divi-
sible by neither of these numbers and is greater than each of them.

350. (a) Let py, p2, ..., pn be n prime numbers of the form 4k—1 (or of
the form 64— 1). Find a number of the form 4N —1 (or, accordingly, of the
form 6N — 1) which is divisible by neither of the numbers py, po, ..., p. and

is greater than each of them. (b) The idea of the solution of this problem is
close to the one on which the solution of Problem 350 (a) is based.
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