

CHEENTA ACADEMY

Mahalanobis Olympiad Demo Problems

Mahalanobis Olympiad

Cheenta Academy

High School Mathematics

Problem 1

For some particular value of N, when $(a + b + c + d + 1)^{N}$ is expanded and like terms are combined, the resulting expression contains exactly 1001 terms that include all four variables a, b, c, and d, each to some positive power. What is N?

Calculus and Linear Algebra

Problem 1

Describe the set of values of a for which the curves $x^2 + y^2 = a^2$ and $y = x^2 - a$ in the real xy-plane intersect at exactly 3 points?

Probability

Problem 1

Suppose x_1, x_2, \ldots, x_n constitute a random sample from a Bernoulli population with parameter p. Let

$$z_i = \begin{cases} 1 & \text{if } x_i \le x_0 \\ 0 & \text{otherwise} \end{cases}$$

for i = 1, 2, ..., n.

A) Find the probability distribution of z_i . Find $E(z_i), V(z_i)$ and $\text{Cov}(z_i, z_j), i \neq j$.

B) Let $y = \sum_{i=1}^{n} z_i$. Find the probability distribution of y.

Statistics

Problem 1

Suppose we have *n* observations $x_1, x_2, \cdots x_n$.

Let

$$\bar{x}_i = \left(\sum_{j=1}^i x_j\right)/i, \quad i = 1, 2, \cdots n$$

and

•

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x}_{n})^{2}$$

Show that

$$ns^{2} = \sum_{i=2}^{n} \frac{i}{i-1} \left(x_{i} - \bar{x}_{i} \right)^{2}$$

Problem 2

Let x_1, x_2, \ldots, x_n be a random sample from the rectangular population with density

$$f(x) = \begin{cases} \frac{1}{\theta}, & 0 < x < \theta \\ 0, & \text{otherwise} \end{cases}$$

Consider the critical region $x_{(n)} > 0.8$ for testing the hypothesis $H_0: \theta = 1$, where $x_{(n)}$ is the largest of x_1, x_2, \ldots, x_n . What is the associated probability of type I error and what is the power function?