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1. (I.Kukharchuk) Let ABCD be a convex quadrilateral with ∠BAD = 2∠BCD
and AB = AD. Let P be a point such that ABCP is a parallelogram. Prove
that CP = DP .

Solution. We obtain that A is the reflection about BD of the circumcenter
O of triangle BCD, i.e. ABOD is a rhombus. Then the segment OD is equal
and parallel to AB, and therefore to CP . Hence CODP is a parallelogram,
and since OC = OD this parallelogram is a rhombus, i.e. CP = DP (fig.
8.1).
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Fig. 8.1.

2. (A.Mardanov) Let ABCD be a right-angled trapezoid and M be the midpoint
of its greater lateral side CD. Circumcircles ω1 and ω2 of triangles BCM
and AMD meet for the second time at point E. Let ED meet ω1 at point
F , and FB meet AD at point G. Prove that GM bisects angle BGD.

Solution. Since ∠BEM = 180◦ −∠C = ∠D, we obtain that E lies on the
sideline AB. Thus ∠CFD = 90◦ and CM = FM = MD. Also G, F , M ,
D are concyclic because ∠BGA = ∠GBC = ∠FMD (fig. 8.2). Hence GM
bisects angle BGD because FM = MD.
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Fig. 8.2.

3. (D.Reznik, A.Zaslavsky) A circle ω and a point P not lying on it are given.
Let ABC be an arbitrary regular triangle inscribed into ω and A′, B′, C ′ be
the projections of P to BC, CA, AB. Find the locus of centroids of triangles
A′B′C ′.

Answer. The midpoint of OP , where O is the center of the given circle.

Solution. Construct the lines a, b, c, passing through and parallel to BC,
CA, AB resepctively. Let PA′′, PB′′, PC ′′ be the perpendiculars from P
to a, b, c. Note that A′′, B′′, C ′′ lie on the circle with diameter OP and
∠A′′B′′C ′′ = ∠A′′PC ′′ = 60◦ (fig. 8.3). Therefore A′′B′′C ′′ is a regular
triangle and its centroid coincide with the midpoint of OP . The centroid of
A′B′C ′ also coincide with this point because
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Fig. 8.3.



4. (A.Mardanov) Let ABCD be a cyclic quadrilateral, O be its circumcenter,
P be a common points of its diagonals, and M , N be the midpoints of AB
and CD respectively. The circle OPM meets for the second time segments
AP and BP at points A1 and B1 respectively, and the circle OPN meets
for the second time segments CP and DP at points C1 and D1 respectively.
Prove that the areas of quadrilaterals AA1B1B and CC1D1D are equal.
Solution. Since PM , PN are the medians of similar triangles PAB and
PDC, and OM , ON are the perpendicular bisectors to the corresponding
sides of these triangles, we have ∠PMO = ∠PNO, thus the radii of two
circles are equal. Then ∠OA1C1 = ∠OC1A1, therefore OA1 = OC1 and
AA1 = CC1. Similarly we obtain that OB1 = OD1 and BB1 = DD1. Let
the line passing through P and perpendicular to OP meet AB and CD at
points M1, N1 respectively. Since ∠OMM1 = ∠ONN1 = 90◦, these points
on the circles OMP and ONP respectively, and OM1 = ON1. Then the
triangles OM1A1 and ON1C1 are congruent by two sides and an angle, i.e.
A1M1 = C1N1. Similarly B1M1 = D1N1 and A1B1 = C1D1. Thus the
triangles A1B1M1 and C1D1N1 are congruent. Also the altitudes of triangles
M1BB1 and N1DD1 from M1 and N1 are equal because they are symmetric
with respect to P , which yields that the areas of these triangles are equal
(fig. 8.4). Similarly the areas of triangles M1AA1 and N1CC1 are equal. From
this we obtain the required equality of areas.
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Remark. We can also obtain that OM1 = ON1 from the butterfly theorem



and obtain from this all remaining equalities.
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5. (D.Shvetsov) The incircle of triangle ABC touches AB, BC, AC at points
C1, A1, B1 respectively. Let A′ be the reflection of A1 about B1C1; point
C ′ is defined similarly. Lines A′C1 and C ′A1 meet at point D. Prove that
BD ∥ AC.

Solution. We have ∠A′C1B1 = ∠A1C1B1 = (180◦ − ∠C)/2, therefore
∠DC1A1 = ∠C. Similarly we obtain that ∠DA1C1 = ∠A. Then ∠C1DA1 =
∠B. Thus A1BDC1 is a cyclic quadrilateral and ∠DBA = ∠DA1C1 =
∠BAC, which yields the required assumption (fig. 8.5).
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Fig. 8.5.

6. ( A.Bremzen , A.Kulakov) Two circles meeting at points A, B and a point O
outside them are given. Using a compass and a ruler, construct a ray with
origin O meeting the first circle at point C and the second one at point D

in such a way that the ratio OC : OD be maximal.

Solution. Consider a homothety with center O and coefficient OC : OD. It
maps the second circle ω2 to some circle ω passing through C. If the ratio
OC : OD is maximal, then any circle homothetic to ω with center O and



coefficient greater than 1 does not intersect the first circle ω1. Therefore ω is
tangent to ω1 at C, i.e. the tangents to ω1 and ω2 at C and D respectively are
parallel, and CD passes through the center I of the internal homothety of
these circles. From this we obtain the required construction: C is the farest
from O common point of ω1 and the line OI, and D is the nearest to O
common point of OI and ω2 (fig. 8.5).
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7. (A.Shapovalov) Ten points on a plane are such that any four of them lie on
the boundary of some square. Is it obligatory true that all ten points lie on
the boundary of some square?

Answer. No.

Solution. Prove that the vertices of a cyclic quadrilateral lie on the boundary
of some square. If ABCD is cyclic then there are two adjacent non-acute
angles, let they are angles A and B. Thus the projections X, Y of C, D
respectively to AB lie outside the segment AB. Let CX ≤ DY , then the
vertices of the quadrilateral lie on the boundary of rectangle XYDZ, where
Z is the projection of D to CX (fig. 8.7). Now, if DY > DZ, then extend
the segments XY and ZD beyond Y and D respectively, and if DY < DZ,
then extend Y D and XZ beyond D and Z.
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Fig. 8.7.

Now consider a cyclic decagon. Its vertices can not lie on the boundary of
any square, because such boundary has at most eight common points with
a circle. But as proved above any four vertices lie on the boundary of some
square.

8. (I.Kukharchuk) An isosceles trapezoid ABCD (AB = CD) is given. A point
P on its circumcircle is such that segments CP and AD meet at point Q.
Let L be the midpoint of QD. Prove that the diagonal of the trapezoid is
not greater than the sum of distances from the midpoints of the lateral sides
to an arbitrary point of line PL.

Solution. Let E be the midpoint of AB, F be the midpoint of CD, G be
the midpoint of CQ, and E1 be the reflection of E about PL. Prove that
E1F = AC (this is sufficient by a known lemma). For this prove that the
triangles LE1F and AGC are congruent. In fact, AG = EL = E1L (the
first equality from an isosceles trapezoid AEGL, the second one from the
symmetry), LF = QC/2 = GC, ∠PLE1 = ∠ELP . Also the pentagon
PAEGL is cyclic because the trapezoid AEGL is isosceles and ∠APC =
∠ADC = ∠ALG (fig. 8.8). Thus ∠ELP = ∠EGP = ∠ALR (where R
lies on the extension of FL beyond L) and ∠RLE1 = ∠ALE1 − ∠ALR =
∠ALE1 − ∠PLE1 = ∠ALP = ∠AGP . Hence ∠E1LF = ∠AGC and the
triangles are congruent.
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1. (D.Shvetsov) Let BH be an altitude of right-angled triangle ABC (∠B =
90◦). An excircle of triangle ABH opposite to B touches AB at point A1; a
point C1 is defined similarly. Prove that AC ∥ A1C1.
Solution. The segments BA1, BC1 are equal to the semiperimeters of triangles
ABH, BCH respectively. Since these triangles are similar, we have BA1 :
BC1 = BA : BC, which yields the required assumption.

2. (L.Emelyanov) Let circles s1 and s2 meet at points A and B. Consider all
lines passing through A and meeting the circles for the second time at points
P1 and P2 respectively. Construct by a compass and a ruler a line such that
P1A · AP2 is maximal.
First solution. Let X, Y be the projections of A to BP1, BP2 respectively.
Since angles AP1B, AP2B do not depend on the choice of the line, we obtain
that the products AP1 · AP2 and AX · AY obtain their maximal values
simultaneously. Since X, Y lie on the circle with diameter AB, we obtain
that he angle XAY , and the length of XY are constant, therefore we have
to find such chord XY , that the distance from A to it is maximal. Since all
chords XY touch a fixed circle centered at the midpoint of AB (fig. 9.2), we
obtain the maximal distance, when the the distance from the touching point
to A is maximal. Then AB bisects the angle AXY , and therefore the angle
P1BP2. The construction of this chord is clear.
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Fig. 9.2.



Since the endpoints of constructed chord may be denoted as X and Y by two
ways, we obtain two possible dispositions of line P1P2. The line BA is the
internal bisector of angle P1BP2 for one of them, and the external bisector
for the remaining one. If the angle P1BP2 is obtuse, we obtain the maximal
value of AP1 · AP2 in the first case, if this angle is acute the maximal value
is obtained in the second case. If ∠P1BP2 = 90◦ both values are equal.

Second solution. Applying an inversion centered at A we obtain the following
problem:

A point A and lines ℓ1, ℓ2 are given. Construct a line passing through A and
meeting ℓ1 and ℓ2 at points P1 and P2 such that P1A · AP2 is minimal.

Fix ℓ1 and apply to ℓ2 a homothety with center A such that the distances
from A to ℓ1 and ℓ2 will be equal. Then all products P1A ·AP2 are multiplied
to a constant, hence the required line does not change. Let ℓ1 and ℓ2 meet at
point C, and the perpendicular to CA at A meet ℓ1 and ℓ2 at points Q1 and
Q2 respectively. Then CQ1Q2 is an isosceles triangle, and A is the midpoint
of Q1Q2.

Prove that the required line is Q1Q2 or AC. Let m be a line passing through
A and meeting ℓ1 and ℓ2 at points P1 and P2 respectively. It is sufficient to
consider two cases.

In the first case P1 lies on the segment CQ1, and P2 lies on the extension
of CQ2 beyond Q2. Since ∠P1P2Q2 < ∠AQ2C = ∠P1Q1Q2, we obtain that
Q1 lies inside the circle (P1P2Q2), thus Q1A · AQ2 < P1A · AP2.

In the second case P1 lies on the segment CQ1, and P2 lies on the extension of
CQ2 beyond C. Since ∠P1P2C < ∠P1CA, we obtain that the circle P1CP2

intersects the segment CA, thus CA2 < P1A · AP2.

To construct the required line we do the inversion and the homothety, choose
the minimum of Q1A · AQ2 and CA2, and draw the corresponding line.

3. (A.Mardanov) A medial line parallel to the side AC of a triangle ABC meets
its circumcircle at points X and Y . Let I be the incenter of triangle ABC
and D be the midpoint of the arc AC not containing B. A point L lie on
segment DI in such a way that DL = BI/2. Prove that ∠IXL = ∠IY L.

Solution. Reflecting X about the bisector of angle B, we obtain a point X ′

lying on the ray BY . We have to prove that ILY X ′ is a cyclic quadrilateral,
i.e., BI ·BL = BX ·BY . Note, that L is the midpoint of BIB, where IB is
the excenter. Thus we have to prove that 2BX ·BY = BI ·BIB = AB ·BC.



Let X ′′ be the common point of AC and BX. Then the triangles X ′′BA
and CBY are similar, because ∠BX ′′A = ∠BXY = ∠BCY and ∠XBA =
∠CBY (fig. 9.3), which yields the required equality.
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Remark. We can also obtain that BI ·BL = BX ·BY using the composition
of an inversion centered at B and the reflection about the bisector of angle
ABC, swapping X and Y .

4. (B.Yakovlev) Let ABC be an isosceles triangle with AB = AC, P be the
midpoint of the minor arc AB of its circumcircle, and Q be the midpoint of
AC. A circumcircle of triangle APQ centered at O meets AB for the second
time at point K. Prove that lines PO and KQ meet on the bisector of angle
ABC.

Solution. Let R, S be the midpoints of the chord AB and the minor arc
AC respectively. Prove that PO and KQ meet on the circle PRQS.

The spiral similarity with center P mapping the circle APQ to the circle
ABC maps K to B, Q to C, and O to the circumcenter of ABC lying on
PR. Therefore angle OPR equals to the angle between KQ and BC, which
is equal to the angle KQR, i.e. the common point of PO and KQ lies on
the circle PQR.

Now prove that PO and the bisector BS of angle B also meet on the circle
PRQS. Since BS ∥ AP and QS ⊥ AC, we have ∠OPQ = |90◦−∠QAP | =



|90◦ −∠CTB| = ∠BSQ, where T is the common point of BS and AC, i.e.
the quadrilateral formed by PO, PQ, QS and BS is cyclic.

So PO, KQ and BS meet the circle PRQS at the same point (fig. 9.4).
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5. (A.Mardanov) Chords AB and CD of a circle ω meet at point E in such
a way that AD = AE = EB. Let F be a point of segment CE such that
ED = CF . The bisector of angle AFC meets an arc DAC at point P . Prove
that A, E, F , and P are concyclic.

Solution. Since AED is an isosceles triangle, we obtain that the triangle
BCE is also isosceles, thus from AD = BE, DF = CE = CB, and
∠ADF = ∠EBC we obtain that this triangle is congruent to the triangle
AFD. Hence PF ∥ AD and ∠PFD = 180◦ − ∠ADF = ∠AEF , i.e. AE
and PF are symmetric with respect to the perpendicular bisector to FE,
which is a diameter of the circle. Therefore P and A are also symmetric with
respect to this diameter and AEFP is an isosceles trapezoid (fig. 9.5).
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6. (D.Brodsky) Lateral sidelines AB and CD of a trapezoid ABCD (AD >
BC) meet at point P . Let Q be a point of segment AD such that BQ = CQ.
Prove that the line passing through the circumcenters of triangles AQC and
BQD is perpendicular to PQ.



Solution. Let the circle AQC meet for the second time AP at point X, and
the circle BQD meet for the second time DP at point Y . Then ∠AXC =
∠CQD = ∠BQA = ∠BYD. Therefore B, C, X, Y (and thus A, D, X, Y )
are concyclic (fig. 9.6), i.e. PX : PY = PC : PB = PD : PA and PQ is
the radical ais of circles AQC and BQD.
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7. (I.Kukharchuk) Let H be the orthocenter of an acute-angled triangle ABC.
The circumcircle of triangle AHC meets segments AB and BC at points P
and Q. Lines PQ and AC meet at point R. A point K lies on the line PH
in such a way that ∠KAC = 90◦. Prove that KR is perpendicular to one of
medians of triangle ABC.

First solution. Since ∠BPH = ∠ACH = ∠ABH, we have PH = BH.
Similarly QH = BH. Let L be the common point of HQ and the perpendicular
to AC from C. Then AK = KP = AP/2 sinA and CL = LQ = CQ/2 sinC.
By the Menelaos theorem AR : CR = (AP : BP )(BQ : CQ) = AK : CL,
therefore K, L, and R are collinear (fig. 9.7).



A

B

C

H

P

K

Q

L

R

Fig. 9.7.

Now note that

BK2−AK2 =

(
AB +BP

2

)2

−
(
AB −BP

2

)2

= AB·BP = BC·BQ = BL2−CL2,

Hence if M is the midpoint of AC, then MK2 − ML2 = AK2 − CL2 =
BK2 −BL2, i.e. BM ⊥ KL.

Second solution. We proved in the first solution that H is the circumcenter
of BPQ. Thus this circle touches the circles ωa and ωc with centers K, L
and radii KA, LC respectively. By the three homotheties theorem we obtain
that R is the external homothety enter of circles ωa and ωc, i.e. R lies on
KL.

Since AP is the common chord of circles AHC and ωa, and CQ is the
common chord of circles AHC and ωc, we obtain that B is the radical center
of these three circles. Also the degrees of M with respect to ωa and ωc are
equal, therefore BM is the radical axis of these circles and BM ⊥ KL.

8. (F.Nilov) Several circles are drawn on the plane and all points of their
intersection or touching are marked. is it possible that each circle contains
exactly five marked points and each point belongs to exactly five circles?

Answer. Yes.

Solution. For each vertex of a regular icosahedron construct a circle passing
through five adjacent vertices. It is clear that all such circles lie on the



circumsphere of the icosahedron, Each vertex belongs to exactly five circles,
and any two circles have not common points or intersect at two vertices.
Hence applying a stereographic projection centered at any point not lying
on these circles we obtain the required configuration.

The same example may be obtained by another way.

Mark 12 points: the vertices of regular pentagon ABCDE, its center O, five
common points of its diagonals, and the infinite point. If P is the common
point of AC and BD, then ∠APB = 72◦ = ∠AOB, thus A, B, O, and P are
concyclic. Draw 12 lines or circles: the diagonals of ABCDE, its circumcircle,
the circle passing through the common points of diagonals, and the circles
ABO, BCO, CDO, DEO, EAO (fig. 9.8). applying an inversion with a
center not lying on these lines we obtain the required configuration.
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Fig. 9.8.

Remark. For any k = 2, 3, 4, 5 there exists a configuration of several circles
and their common points, such that each circle passes through exactly k
points and each point belongs to exactly k circles. It is not known does such
configurations exist for k > 5.
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1. (Tran Quang Hung) Let A1A2A3A4 and B1B2B3B4 be two squares oriented
clockwisely. The perpendicular bisectors to segments A1B1, A2B2, A3B3,
A4B4 meet the perpendicular bisectors to segments A2B2, A3B3, A4B4, A1B1

at points P , Q, R, S respectively. Prove that PR ⊥ QS.

Solution. Let O be the center of a spiral similarity mapping one of the given
squares to the second one, and Ci be the midpoints of AiBi (i = 1, 2, 3, 4).
Then C1C2C3C4 is a square, and ∠OC1P = ∠OC2Q = ∠OC3R = ∠OC4S,
i.e. OC1PC2, OC2QC3, OC3RC4, and OC4SC1 are cyclic quadrilaterals. Let
the first circle meet the third one for the second time at point U , and the
second circle meet the fourth one for the second time at point V . Then by
the spiral similarity theorem PR passes through U , QS passes through V ,
and the angle between PR and QS equals to angle UOV . But it is clear that
OU ∥ C1C2 and OV ∥ C2C3, thus ∠UOV = π/2.

Remark. The assumption is also correct for two directly similar rectangles.

2. (A.Kuznetsov) Let ABCD be a convex quadrilateral. The common external
tangents to circles ABC and ACD meet at point E, the common external
tangents to circles ABD and BCD meet at point F . Let F lie on AC, prove
that E lies on BD.

Solution. Since F is the external homothety center of circles ABD and
BCD, it is also the center of an inversion mapping one of these circles to
the second one. This inversion conserves the points B and D, and maps
each of points A and C to the second one, therefore AB = (BC · FB)/FC,
AD = (CD · FD)/FC, and AB · CD = AD · BC. Now let EB meet the
arc ADC at point D′. Then we similarly obtain that AD′ ·BC = CD′ ·AB.
The point of arc ADC with such property is unique, thus D′ coincides with
D, and B, D, E are collinear.

3. (G.Chelnokov) A line meets a segment AB at point C. What is the maximal
number of points X of this line such that one of angles AXC and BXC is
equal to a half of the second one?

Answer. 4.



Estimation. Denote the given line (meeting the segment AB at C) as ℓ.
Prove that there exists at most two points of ℓ with required property lying
on the same semiplane with respect to AB.
Suppose that there are three points X1, X2, X3 with required property lying
on the same semiplane with respect to AB. Two cases are possible: the
greatest angles in each pair lie on the same semiplane with respect to ℓ,
or two greatest angles lie in the same semiplane, and the third one lies in
the other semiplane. Without lost of generality let ∠BX1C = 2∠AX1C,
∠BX2C = 2∠AX2C.
In the first case (∠BX3C = 2∠AX3C) the reflection F of A about ℓ is the
common point of the bisectors of tree angles, thus it lies on equal distances
from ℓ and the lines X1B, X2B, X3B. But the distances from F to three
concurrent lines can not be equal.
In the second case (2∠BX3C = ∠AX3) F is the common point of the
bisectors of angles CX1B and CX2B. Prove that F and X3 lie on the different
sides with respect to AB, and therefore F can not lie on the ray symmetric
to X3A about ℓ. For this it is sufficient to prove that B and the ray CX1 lie
in the same semiplane with respect to AF .
Since 3∠AX1C < π, 3∠AX2C < π, we obtain that the angles AX1C, AX2C
are acute. Hence the midpoint H of segment AF do not lie on the segment
X1X2. Suppose that X2 lies on the segment HX1. Let E be the common
point of rays X2B and HF (if these rays do not intersect, the assumption is
clear) (fig. 10.3).
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Fig. 10.3.



Prove that ∠FX1E > ∠FX1H. This yields that B, X1, X2 lie on the same
semiplane with respect to HF , and we obtain the required assumption.

We have HF/FE = HX2EX2 = cos∠HX2E < cos∠HX1E = HX1/EX1,
hence the bisector of angle HX1E meets HE at such point P , that F lies
on PH, i.e. ∠FX1E > ∠FX1H.

Example. Consider a triangle X1AB with a median X1C such that ∠AX1C =
40◦, ∠BX1C = 80◦. Let X2 be such point of segment X1C that ∠X1BX2 =
20◦. Prove that ∠X1AX2 = 10◦. Then X1, X2 and their reflections about C
form the required quadruple.

Let AK, BH be the perpendicular to X1X2. Prove that KA2 = KX1 ·KX2.
Since the triangles AKC and BHC are congruent this is equivalent to the
equality

(AX1 sin 40
◦)2 = AX1 cos 40

◦(AX1 cos 40
◦ − 2AX1 sin 40

◦ tg 10◦).

It is easy to see that this is correct.

From this we obtain that the circle AX1X2 touches the line AK, i.e. ∠X2AK =
∠AX1K = 40◦, ∠X1AX2 = 10◦, ∠AX2C = 50◦ and ∠BX2C = 100◦.

4. (A.Matveev, I.Frolov) Let ABCD be a convex quadrilateral with ∠B = ∠D.
Prove that the midpoint of BD lies on the common internal tangent to the
incircles of triangles ABC and ACD.

Solution. Let M , N C1, A1 be the midpoints of AC, BD, AB, BC respectively.
Since ∠A1NC1 = ∠D = ∠B = ∠A1MC1, we obtain that N lies on the
circle A1MC1. By the Feuerbach theorem this circle touches the incircle ω1

of triangle ABC. Hence applying the Casey theorem to A1, C1, N and ω1

we can find the length x of the tangent from N to ω1. For ezample for the
configuration of fig. 10.4 we have

x
AC

2
=

CD

2
· AC −BC

2
+

AD

2
· AB − AC

2
.
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Fig. 10.4.

Similarly for the tangent y from N to the incircle ω2 of ACD we have

y
AC

2
=

AB

2
· CD − AC

2
+

BC

2
· AC − AD

2
.

Summing these equalities we obtain that x + y = (AB + CD − AD −
BC)/2, which equals to the length of the common internal tangent to ω1

and ω2, therefore N lies on such tangent. The solution for the remaining
configurations is similar.
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5. (A.Mardanov, K.Struikhina) Let AB and AC be the tangents from a point
A to a circle Ω. Let M be the midpoint of BC and P be an arbitrary point
on this segment. A line AP meets Ω at points D and E. Prove that the
common external tangents to circles MDP and MPE meet on the medial
line of triangle ABC.

Solution. Let K be the midpoint of AP . Since K is the circumcenter of
triangle APM , we have KP = KM , i.e. K lies on the line joining the
centers of circles MDP and MPE. Also since A, P , D, and E form a
harmonic quadruple, we have KP 2 = KD · KE. Thus K is the external
homothety center of these circles (fig.10.5).
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Fig. 10.5.



6. (D.Brodsky) Let O, I be the circumcenter and the incenter of triangle ABC;
P be an arbitrary point on segment OI ; PA, PB, and PC be the second
common points of lines PA, PB, and PC with the circumcircle of triangle
ABC. Prove that the bisectors of angles BPAC, CPBA, and APCB concur
at a point lying on OI.

Solution. Note that for any point P the bisector of angle BPAC meets the
circumcircle for the second time at the fixed point — the midpoint of the arc
BAC. Hence the common point of this bisector with OI projectively depend
on P . This is also correct for the common points of OI with the bisectors of
angles CPBA и APCB. But when P coincides with I, all three bisectors pass
through O, and when P is one of comon points of OI with the circumcircle,
the bisectors meet OI at the same point. Thus for any point P all bisectors
meet OI at the same point.

7. (F.Nilov) Several circles are drawn on the plane and all points of their
intersection or touching are marked. May be that each circle contains exactly
four marked points and each point belongs to exactly four circles?

Answer. Yes.

First solution. Take a square ABCD with center O, its circumcircle and
incircle, and four circles with diameters OA, OB, OC, OD (fig.10.7). Applying
an inversion with an arbitrary center not lying on these circles and lines AB,
BC, CD, DA we obtain ten circles ntersecting or touching at ten points —
the images of the midpoints of the sides, the images of A, B, C, D, O, and
the center of the inversion. It is easy to see that this configuration satisfies
the assumption.
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Second solution. Consider a cuboctahedron — the polyhedron formed by
the midpoints of the edges of a cube. Construct for each its vertex the
circle passing through four adjacent vertices. Clearly all these circles lie on
the circumsphere of the cuboctahedron, and any two of them do not have
common points, intersect at two vertices of the cuboctahedron, or touch at a
vertex. Hence applying a stereographic projection from any center not lying
on these circles we obtain the required configuration.

Remark. For any k = 2, 3, 4, 5 there exists a configuration of several circles
and their common points, such that each circle passes through exactly k

points and each point belongs to exactly k circles. It is not known does such
configurations exist for k > 5.

8. (A.Erdnigor) Let ABCA′B′C ′ be a centrosymmetric octahedron (vertices A
and A′, B and B′, C and C ′ are opposite) such that the sums of four planar
angles equal 240◦ for each vertex. The Torricelli points T1 and T2 of triangles
ABC and A′BC are marked. Prove that the distances from T1 and T2 to
BC are equal.

Solution. Let D be the vertex of a parallelogram AB′CD. Then the faces
of tetrahedron ABCD are congruent to the faces of the octahedron, and
the sums of four angles opposite to two non-intersecting edges (for example,
∠CAD + ∠CBD + ∠ACB + ∠ADB) equal 240◦. Let A1, B1, C1, D1 be
the touching points of the insphere with the faces BCD, CDA, DAB, ABC



respectively. Then the triangles A1BC and D1BC are congruent, and this is
also correct for five similar pairs of triangles. Therefore, ∠BD1C+∠BA1C =
∠BAC + ∠ABD1 + ∠ACD1 + ∠BDC + ∠DCA1 + ∠DBA1 = ∠BAC +
∠BDC + ∠ABC1 + ∠ACB1 + ∠DCB1 + ∠DBC1 = 240◦ and ∠BD1C =
∠BA1C = 120◦. Similarly ∠AD1B = ∠AD1C = ∠BA1C = ∠BA1D =
120◦, i.e. A1, D1 coincide with the Torricelli points, which yields the required
assumption.

Remark. Tetrahedrons with Torricelli points coinciding with the touching
points of the insphere are called isogonal or Gergonian. It is known that
the segments joining the Torricelli points with the opposite vertices of such
tetrahedrons are concurrent, and the products of cosines of a halves of
opposite bihedral angles are equal. The problem gives another characteristic
property of Gergonian tetrahedrons.


