A Tricky Integral

Join Trial or Access Free Resources

Let's solve a beautiful and tricky integral problem.

The Problem:

Let $$ I$$=$$\int e^x/(e^{4x}+e^{2x}+1) dx$$ $$ J$$=$$ \int e^{-x}/(e^{-4x}+e^{-2x}+1)dx$$. Find the value of (J-I).

Solution:

$$ I$$=$$\int e^x/(e^{4x}+e^{2x}+1) dx$$

$$J$$= $$\int e^{-x}/(e^{-4x}+e^{-2x}+1)dx$$

Let (e^x)=(z)

$$ J-I$$=$$\int\frac{e^x(e^{2x-1})}{e^{4x}+e^{2x}+1}dx$$=$$\int\frac{z^2-1}{z^4+z^2+1}dz
$$

$$ =\frac{1}{2}ln\frac{(e^x+e^-x-1)}{(e^x+e^-x+1)}+c$$

(where c is a constant of integration)

More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram