AMC 8 2019 Problem 17 | Value of Product

Join Trial or Access Free Resources

Try out this beautiful algebra problem from AMC 8, 2019 based on finding the value of the product. You may use sequential hints to solve the problem.

AMC 8 2019: Problem 17


What is the value of the product

$\left(\frac{1 \cdot 3}{2 \cdot 2}\right)\left(\frac{2 \cdot 4}{3 \cdot 3}\right)\left(\frac{3 \cdot 5}{4 \cdot 4}\right) \cdots\left(\frac{97 \cdot 99}{98 \cdot 98}\right)\left(\frac{98 \cdot 100}{99 \cdot 99}\right) ?$

(A) $\frac{1}{2}$


(B) $\frac{50}{99}$


(C) $\frac{9800}{9801}$


(D) $\frac{100}{99}$


(E) $50$


Key Concepts

Algebra

Value

Telescoping


Check the Answer


Answer: is $\frac{50}{99}$

AMC 8, 2019, Problem 17

Try with Hints


We write

$\left(\frac{1.3}{2.2}\right)\left(\frac{2.4}{3.3}\right)\left(\frac{3.5}{4.4}\right) \ldots\left(\frac{97.99}{98.98}\right)\left(\frac{98.100}{99.99}\right)$

in a different form like


$\frac{1}{2} \cdot\left(\frac{3.2}{2.3}\right) \cdot\left(\frac{4.3}{3.4}\right) \cdots \cdots \left(\frac{99.98}{98.99}\right) \cdot \frac{100}{99}$

All of the middle terms eliminate each other, and only the first and last term remains i.e.

$\frac{1}{2} \cdot \frac{100}{99}$

$\frac{1}{2} \cdot \frac{100}{99}=\frac{50}{99}$

and that is the final answer.

Cheenta Numerates Program for AMC - AIME

Subscribe to Cheenta at Youtube


More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram