Area of Square - Singapore Mathematical Olympiad - 2013 - Problem No.17

Join Trial or Access Free Resources

Try this beautiful problem from Singapore Mathematical Olympiad. 2013 based on the area of Square.

Problem - Area of Square


Let ABCD be a square and X and Y be points such that the lengths of XY, AX, and AY are 6,8 and 10 respectively. The area of ABCD can be expressed as \(\frac{m}{n}\) units where m and n are positive integers without common factors. Find the value of m+n.

area of square
  • 1215
  • 1041
  • 2001
  • 1001

Key Concepts


2D Geometry

Area of Square

Check the Answer


Answer: 1041

Singapore Mathematical Olympiad - 2013 - Junior Section - Problem Number 17

Challenges and Thrills -

Try with Hints


This can the very first hint to start this sum:

Assume the length of the side is a.

Now from the given data we can apply Pythagoras' Theorem :

Since, \(6^2+8^2 = 10^2\)

so \(\angle AXY = 90^\circ\).

From this, we can understand that \(\triangle ABX \) is similar to \(\triangle XCY\)

Try to do the rest of the sum........................

From the previous hint we find that :

\(\triangle ABX \sim \triangle XCY\)

From this we can find \(\frac {AX}{XY} = \frac {AB}{XC} \)

\(\frac {8}{6} = \frac {a}{a - BX}\)

Can you now solve this equation ?????????????

This is the very last part of this sum :

Solving the equation from last hint we get :

a = 4BX and from this we can compute :

\(8^2 = {AB}^2 +{BX}^2 = {16BX}^2 + {BX}^2 \)

so , \( BX = \frac {8}{\sqrt {17}} and \(a^2 = 16 \times \frac {64}{17} = \frac {1024}{17}\)

Thus m + n = 1041 (Answer).

Subscribe to Cheenta at Youtube


More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram